SlideShare une entreprise Scribd logo
1  sur  107
FBW
01-10-2013
Wim Van Criekinge
Outline
• Molecular Biology
• Flat files “sequence” databases
– DNA
– Protein
– Structure
• Relational Databases
– What ?
– Why ?
• Biological Relational Databases
– Howto ?
Flat Files
What is a “flat file” ?
• Flat file is a term used to refer to when
data is stored in a plain ordinary file
on the hard disk
• Example RefSEQ
– See CD-ROM
– FILE: hs.GBFF
• Hs: Homo Sapiens
• GBFF: Genbank File Format
• (associated with textpad, use monospaced
font eg. Courier)
Sequence entries
gene 10317..12529 /gene="ZK822.4"
CDS join(10317..10375,10714..10821,10874..10912,10960..11013,
11061..11114,11169..11222,11346..11739,11859..11912,
11962..12195,12242..12529)
/gene="ZK822.4" /codon_start=1
/protein_id="CAA98068.1"
/db_xref="PID:g3881817"
/db_xref="GI:3881817"
/db_xref="SPTREMBL:Q23615"
/translation="MHRHTYRKLYWNLGADGFSQGNADASVSAGSSGSNFLSGLQNSS
FGQAVMGGINTYNQAKNSSGGNWQTAVANSSVGNFFQNGIDFFNGMKNGTQNFLDTDT
IQETIGNSSFGEVVQTGVEFFNNIKNGNSPFQGDASSVMSQFVPFLANASAEAKAEFY
TILPNFGNMTIAEFETAVNAWAAKYNLTDEVEAFNERSKNATVVAEEHANVVVMNLPN
VLNNLKAISSDKNQTVVEMHTRMMAYVNSLDDDTRDIVFIFFRNLLPPQFKKSKCVDQ
GNFLTNMYNKASDFFAGRNNRTDGEGSFWSGQGQNGNSGGSGFSSFFNNFNGQGNGNG
NGAQNPMIGMFNNFMKKNNITADEANAAMADGGASIQILPAISAGWGDVAQVKIGGDF
KIAVEEETKTTKKNKKQQQQANKNKNKNKKKTTIAPEAAIDANIAAEVHTQVL"
EMBL Nucleotide Sequence Database (European Molecular Biology
Laboratory) http://www.ebi.ac.uk/ebi_docs/embl_db/ebi/topembl.html
GenBank at NCBI (National Center for Biotechnology Information)
http://www.ncbi.nlm.nih.gov/Web/Genbank/index.html
DDBJ (DNA Database of Japan) http://www.ddbj.nig.ac.jp/
DDBJ,the Center for operating DDBJ, National Institute of Genetics (NIG),Japan,established in
April 1995.
http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html
Release Notes (ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt)
Genetic Sequence Data Bank - August 15 2003
NCBI-GenBank Flat File Release 137.0
Distribution Release Notes
33 865 022 251 bases, from 27 213 748 reported sequences
Nucleotide Databases
GenBank Format
LOCUS LISOD 756 bp DNA BCT 30-JUN-1993
DEFINITION L.ivanovii sod gene for superoxide dismutase.
ACCESSION X64011.1 GI:37619753
NID g44010
KEYWORDS sod gene; superoxide dismutase.
SOURCE Listeria ivanovii.
ORGANISM Listeria ivanovii
Eubacteria; Firmicutes; Low G+C gram-positive bacteria;
Bacillaceae; Listeria.
REFERENCE 1 (bases 1 to 756)
AUTHORS Haas,A. and Goebel,W.
TITLE Cloning of a superoxide dismutase gene from Listeria ivanovii
by functional complementation in Escherichia coli and
characterization of the gene product
JOURNAL Mol. Gen. Genet. 231 (2), 313-322 (1992)
MEDLINE 92140371
REFERENCE 2 (bases 1 to 756)
AUTHORS Kreft,J.
TITLE Direct Submission
JOURNAL Submitted (21-APR-1992) J. Kreft, Institut f. Mikrobiologie,
Universitaet Wuerzburg, Biozentrum Am Hubland, 8700
Wuerzburg, FRG
FEATURES Location/Qualifiers
source 1..756
/organism="Listeria ivanovii"
/strain="ATCC 19119"
/db_xref="taxon:1638"
RBS 95..100
/gene="sod"
gene 95..746
/gene="sod"
CDS 109..717
/gene="sod"
/EC_number="1.15.1.1"
/codon_start=1
/product="superoxide dismutase"
/db_xref="PID:g44011"
/db_xref="SWISS-PROT:P28763"
/transl_table=11
/translation="MTYELPKLPYTYDALEPNFDKETMEIHYTKHHNIYVTKL
NEAVSGHAELASKPGEELVANLDSVPEEIRGAVRNHGGGHANHTLFWSSLSPN
GGGAPTGNLKAAIESEFGTFDEFKEKFNAAAAARFGSGWAWLVVNNGKLEIVS
TANQDSPLSEGKTPVLGLDVWEHAYYLKFQNRRPEYIDTFWNVINWDERNKRF
DAAK"
terminator 723..746
/gene="sod"
Example of location descriptors
Location Description
476 Points to a single base in the presented sequence
340..565 Points to a continuous range of bases bounded by and
including the starting and ending bases
<345..500 The exact lower boundary point of a feature is unknown.
(102.110) Indicates that the exact location is unknown but that it
is one of the bases between bases 102 and 110.
(23.45)..600 Specifies that the starting point is one of the bases
between bases 23 and 45, inclusive, and the end base 600
123^124 Points to a site between bases 123 and 124
145^177 Points to a site anywhere between bases 145 and 177
J00193:hladr Points to a feature whose location is described in
another entry: the feature labeled 'hladr' in the
BASE COUNT 247 a 136 c 151 g 222 t
ORIGIN
1 cgttatttaa ggtgttacat agttctatgg aaatagggtc tatacctttc gccttacaat
61 gtaatttctt ttcacataaa taataaacaa tccgaggagg aatttttaat gacttacgaa
121 ttaccaaaat taccttatac ttatgatgct ttggagccga attttgataa agaaacaatg
181 gaaattcact atacaaagca ccacaatatt tatgtaacaa aactaaatga agcagtctca
241 ggacacgcag aacttgcaag taaacctggg gaagaattag ttgctaatct agatagcgtt
301 cctgaagaaa ttcgtggcgc agtacgtaac cacggtggtg gacatgctaa ccatacttta
361 ttctggtcta gtcttagccc aaatggtggt ggtgctccaa ctggtaactt aaaagcagca
421 atcgaaagcg aattcggcac atttgatgaa ttcaaagaaa aattcaatgc ggcagctgcg
481 gctcgttttg gttcaggatg ggcatggcta gtagtgaaca atggtaaact agaaattgtt
541 tccactgcta accaagattc tccacttagc gaaggtaaaa ctccagttct tggcttagat
601 gtttgggaac atgcttatta tcttaaattc caaaaccgtc gtcctgaata cattgacaca
661 ttttggaatg taattaactg ggatgaacga aataaacgct ttgacgcagc aaaataatta
721 tcgaaaggct cacttaggtg ggtcttttta tttcta
//
EMBL format
ID LISOD standard; DNA; PRO; 756 BP. IDentification
XX
AC X64011; S78972; Accession (Axxxxx, Afxxxxxx), GUID
XX
NI g44010 Nucleotide Identifier --> x.x
XX
DT 28-APR-1992 (Rel. 31, Created) DaTe
DT 30-JUN-1993 (Rel. 36, Last updated, Version 6)
XX
DE L.ivanovii sod gene for superoxide dismutase DEscription
XX.
KW sod gene; superoxide dismutase. KeyWord
XX
OS Listeria ivanovii Organism Species
OC Eubacteria; Firmicutes; Low G+C gram-positive bacteria; Bacillaceae;
OC Listeria. Organism Classification
XX
RN [1]
RA Haas A., Goebel W.; Reference
RT "Cloning of a superoxide dismutase gene from Listeria ivanovii by
RT functional complementation in Escherichia coli and
RT characterization of the gene product.";
RL Mol. Gen. Genet. 231:313-322(1992).
XX
GenBank,EMBL & DDBJ: Comments
• Collaboration Genbank/EMBL/DDBJ
– Effort: Identical within 24 hours
• Redundant information
• Historical graveyard
– BANKIT (responsability of the submitter)
– Version conflicts
• IDIOSYNCRATIC ( peculiar to the
individual)
– Heterogeneous annotation
– No consistant quality check
• Vectors, sequence errors etc
Other Genbank Formats
• ASN1
– Computer friendly, human unfriendly
• FASTA
– Brief, loses information
– Easy to use
– Compatible with multiple sequences
Web Query tools & Programming Query tools
• NCBI website example:
– http://www.ncbi.nlm.nih.gov/entrez/query/static/ad
vancedentrez.html
• EBI UniProtKB website example:
– http://www.ebi.ac.uk/uniprot/index.html
– http://www.ebi.uniprot.org/search/SearchTools.sht
ml
batch download (ftp server)
• Data available via website is most of
the time also available via an ftp
server to download a complete
batch.
• Examples:
–ftp://ftp.ncbi.nih.gov/
–ftp://ftp.ebi.ac.uk/pub/
Sequence file format tips
• When saving a sequence for use in an email
message or pasting into a web page, use an
unannotated text format such as FASTA
• When retrieving from a database or
exchanging between programs, use an
annotated text format such as Genbank
• When using sequence again with the same
program, use that program’s annotated binary
format (or annotated text if binary not
available)
– Asn-1 (NCBI)
– Gbff (sanger)
– XML
Expressed Sequence Tags
• Sequence that codes for protein is < 5% of the
genome.
• Coding sequence can be obtained from mRNA by
reverse transcription.
• Tags for that sequence can be obtained by end-
sequencing.
• Incyte and HGS gambled on this being the useful
part:
– Search for homologies to known proteins, motifs.
– Search for changed levels of expression and tissue specificity
(“virtual/electronic northern” used in GeneCards)
• ESTs have driven the huge expansion of GenBank:
– Unigene now contains some sequence from most genes.
– > 4,000,000 human est sequences
– http://www.ncbi.nlm.nih.gov/dbEST/
dbEST release 100303 Summary by Organism - October 3, 2003
Number of public entries: 18,762,324
Homo sapiens (human) 5,426,001
Mus musculus + domesticus (mouse) 3,881,878
Rattus sp. (rat) 538,073
Triticum aestivum (wheat) 500,898
Ciona intestinalis 492,488
Gallus gallus (chicken) 451,565
Zea mays (maize) 383,416
Danio rerio (zebrafish) 362,362
Hordeum vulgare + subsp. vulgare (barley) 348,233
Xenopus laevis (African clawed frog) 344,695
Glycine max (soybean) 341,573
Bos taurus (cattle) 322,074
Drosophila melanogaster (fruit fly) 261,404
Traces <-> strings
• Traces contain much more information
– TraceDB: http://www.ncbi.nlm.nih.gov/Traces/
Example
Traces <-> strings
• Phrep
– base calling, vector trimming, end of sequence
read trimming
• Phrap
– Phrap uses Phred’s base calling scores to
determine the consensus sequences. Phrap
examines all individual sequences at a given
position, and uses the highest scoring sequence
(if it exists) to extend the consensus sequence
• Consend
– graphical interface extension that controls both
Phred and Phrap
What is Phred?
• Phred is a program that observes the base trace, makes
base calls, and assigns quality values (qv) of bases in the
sequence.
• It then writes base calls and qv to output files that will be
used for Phrap assembly. The qv will be useful for
consensus sequence construction.
• For example, ATGCATGC string1
ATTCATGC string2
AT-CATGC superstring
• Here we have a mismatch ‘G’ and ‘T’, the qv will
determine the dash in the superstring. The base with higher
qv will replaces the dash.
How Phred calculates qv?
• From the base trace Phred know number of peaks
and actual peak locations.
• Phred predicts peaks locations.
• Phred reads the actual peak locations from base
trace.
• Phred match the actual locations with the
predicted locations by using Dynamic
Programming.
• The qv is related to the base call error probability
(ep) by the formula qv = -10*log_10(ep)
• Example 1:10000 = qv 40
Why Phred?
• Output sequence might contain
errors.
• Vector contamination might occur.
• Dye-terminator reaction might not
occur.
• Segment migration abnormal in
gel electrophoresis.
• Weak or variable signal strength
of peak corresponding to a base.
Vector Trimming
End of Sequence Cropping
• It is common that the end of sequencing reads
have poor data. This is due to the difficulties in
resolving larger fragment ~1kb (it is easier to
resolve 21bp from 20bp than it is to resolve
1001bp from 1000bp).
• Phred assigns a non-value of ‘x’ to this data by
comparing peak separation and peak intensity to
internal standards. If the standard threshold score
is not reached, the data will not be used.
• Handle traces
– Abi-view EMBOSS
– Bioedit
– Acembly, …
• EXAMPLE
Traces <-> strings
NCBI reference sequences
RefSeq database is a non-redundant set of
reference standards that includes
chromosomes, complete genomic
molecules, intermediate assembled genomic
contigs, curated genomic
regions, mRNAs, RNAs, and proteins.
RefSeq nomenclature
NC_#### complete genomic
NG_#### incomplete genomic
NM_#### mRNA
NR_#### noncoding transcripts
NP_#### proteins
NT_#### intermediate genomic contigs
RefSeq nomenclature - models
XM_#### mRNA
XR_#### RNA
XP_#### protein
Automated Homo sapiens models provided by
the Genome Annotation process; sequence
corresponds to the genomic contig.
Open reading frame
• Definition:
– A stretch of triplet codons with an initiator
codon at one end and a stop codon sat the
other, as identifiable by nucleotide sequences.
• Example
– http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=nucleotide&list_uids=6688
473&dopt=GenBank&term=Y18948.1&qty=1
Protein sequence database
SWISS-PROT & TREMBL
SwissProt - http://expasy.hcuge.ch/sprot/
SWISS-PROT is an annotated protein sequence database
The sequences are translated from the EMBL Nucleotide Sequence Database
Sequence entries are composed of different lines.
For standardization purposes the format of SWISS-PROT follows as
closely as possible that of the EMBL Nucleotide Sequence Database.
Continuously updated (daily).
Different Features of SWISS-PROT
• Format follows as closely as
possible that of EMBL’s
• Curated protein sequence database
• Three differences:
1. Strives to provide a high level of
annotations
2. Minimal level of redundancy
3. High level of integration with
other databases
Three Distinct Criteria
The sequence data; the citation
information (bibliographical
references) and the taxonomic data
(description of the biological source of
the protein) such as protein
functions,post-translational
modifications ,domains and
sites,secondary structure,quaternary
structure,similarities to other
proteins,diseases associated with
deficiencies in the protein,sequence
conflicts, variants, etc.
1. Annotation
any sequence databases contain, for a
given protein sequence, separate
entries which correspond to
different literature reports. SWISS-
PROT is as much as possible to
merge all these data so as to
minimize the redundancy. If
conflicts exist between various
sequencing reports, they are
indicated in the feature table of the
corresponding entry.
2. Minimal Redundancy
• SWISS-PROT and TrEMBL - Protein
sequences
• PROSITE - Protein families and domains
• SWISS-2DPAGE - Two-dimensional
polyacrylamide gel electrophoresis
• SWISS-3DIMAGE - 3D images of proteins
and other biological macromolecules
• SWISS-MODEL Repository - Automatically
generated protein models
• CD40Lbase - CD40 ligand defects
• ENZYME - Enzyme nomenclature
• SeqAnalRef - Sequence analysis bibliographic
references
3. Integration With Other Databases
TREMBL- http://expasy.hcuge.ch/sprot/
Translated EMBL sequences not (yet) in
Swissprot.
Updated faster than SWISS-PROT.
TREMBL - two parts
1. SP-TREMBL
Will eventually be incorporated into Swissprot
Divided into FUN, HUM, INV, MAM, MHC, ORG, PHG, PLN,
PRO,
ROD, UNC, VRL and VRT.
2. REM-TREMBL (remaining)
Will NOT be incorporated into Swissprot
Divided into:Immunoglobins and T-cell receptors,Synthetic
sequences,Patent application sequences,Small fragments,CDS
not coding for real proteins
SWISS-PROT/TrEMBL
• TrEMBL is a computer-annotated
supplement of SWISS-PROT that contains
all the translations of EMBL nucleotide
sequence entries not yet integrated in
SWISS-PROT
• SWISS-PROT Release 39.15 of 19-
Mar-2001: 94,152 entries
TrEMBL Release 16.2 of 23-Mar-
2001: 436,924 entries
Example of a SwissProt entry
ID TNFA_HUMAN STANDARD; PRT; 233 AA. IDentification
AC P01375; ACcession
DT 21-JUL-1986 (REL. 01, CREATED) DaTe
DT 21-JUL-1986 (REL. 01, LAST SEQUENCE UPDATE)
DT 15-JUL-1998 (REL. 36, LAST ANNOTATION UPDATE)
DE TUMOR NECROSIS FACTOR PRECURSOR (TNF-ALPHA) (CACHECTIN).
GN TNFA. Gene name
OS HOMO SAPIENS (HUMAN). Organism Species
OC EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA;
OC EUTHERIA; PRIMATES. Organism Classification
RN [1] Reference
RP SEQUENCE FROM N.A.
RX MEDLINE; 87217060.
RA NEDOSPASOV S.A., SHAKHOV A.N., TURETSKAYA R.L., METT V.A.,
RA AZIZOV M.M., GEORGIEV G.P., KOROBKO V.G., DOBRYNIN V.N.,
RA FILIPPOV S.A., BYSTROV N.S., BOLDYREVA E.F., CHUVPILO S.A.,
RA CHUMAKOV A.M., SHINGAROVA L.N., OVCHINNIKOV Y.A.;
RL COLD SPRING HARB. SYMP. QUANT. BIOL. 51:611-624(1986).
RN [2]
RP SEQUENCE FROM N.A.
RX MEDLINE; 85086244.
RA PENNICA D., NEDWIN G.E., HAYFLICK J.S., SEEBURG P.H., DERYNCK R.,
RA PALLADINO M.A., KOHR W.J., AGGARWAL B.B., GOEDDEL D.V.;
RL NATURE 312:724-729(1984).
...
CC -!- FUNCTION: CYTOKINE WITH A WIDE VARIETY OF FUNCTIONS: IT CAN
CC CAUSE CYTOLYSIS OF CERTAIN TUMOR CELL LINES, IT IS IMPLICATED
CC IN THE INDUCTION OF CACHEXIA, IT IS A POTENT PYROGEN CAUSING
CC FEVER BY DIRECT ACTION OR BY STIMULATION OF IL-1 SECRETION, IT
CC CAN STIMULATE CELL PROLIFERATION & INDUCE CELL DIFFERENTIATION
CC UNDER CERTAIN CONDITIONS. Comments
CC -!- SUBUNIT: HOMOTRIMER.
CC -!- SUBCELLULAR LOCATION: TYPE II MEMBRANE PROTEIN. ALSO EXISTS AS
CC AN EXTRACELLULAR SOLUBLE FORM.
CC -!- PTM: THE SOLUBLE FORM DERIVES FROM THE MEMBRANE FORM BY
CC PROTEOLYTIC PROCESSING.
CC -!- DISEASE: CACHEXIA ACCOMPANIES A VARIETY OF DISEASES, INCLUDING
CC CANCER AND INFECTION, AND IS CHARACTERIZED BY GENERAL ILL
CC HEALTH AND MALNUTRITION.
CC -!- SIMILARITY: BELONGS TO THE TUMOR NECROSIS FACTOR FAMILY.
DR EMBL; X02910; G37210; -. Database Cross-references
DR EMBL; M16441; G339741; -.
DR EMBL; X01394; G37220; -.
DR EMBL; M10988; G339738; -.
DR EMBL; M26331; G339764; -.
DR EMBL; Z15026; G37212; -.
DR PIR; B23784; QWHUN.
DR PIR; A44189; A44189.
DR PDB; 1TNF; 15-JAN-91.
DR PDB; 2TUN; 31-JAN-94.
KW CYTOKINE; CYTOTOXIN; TRANSMEMBRANE; GLYCOPROTEIN; SIGNAL-ANCHOR;
KW MYRISTYLATION; 3D-STRUCTURE. KeyWord
FT PROPEP 1 76 Feature Table
FT CHAIN 77 233 TUMOR NECROSIS FACTOR.
FT TRANSMEM 36 56 SIGNAL-ANCHOR (TYPE-II PROTEIN).
FT LIPID 19 19 MYRISTATE.
FT LIPID 20 20 MYRISTATE.
FT DISULFID 145 177
FT MUTAGEN 105 105 L->S: LOW ACTIVITY.
FT MUTAGEN 108 108 R->W: BIOLOGICALLY INACTIVE.
FT MUTAGEN 112 112 L->F: BIOLOGICALLY INACTIVE.
FT MUTAGEN 162 162 S->F: BIOLOGICALLY INACTIVE.
FT MUTAGEN 167 167 V->A,D: BIOLOGICALLY INACTIVE.
FT MUTAGEN 222 222 E->K: BIOLOGICALLY INACTIVE.
FT CONFLICT 63 63 F -> S (IN REF. 5).
FT STRAND 89 93
FT TURN 99 100
FT TURN 109 110
FT STRAND 112 113
FT TURN 115 116
FT STRAND 118 119
FT STRAND 124 125
FT STRAND 130 143
FT STRAND 152 159
FT STRAND 166 170
FT STRAND 173 174
FT TURN 183 184
FT STRAND 189 202
FT TURN 204 205
FT STRAND 207 212
FT HELIX 215 217
FT STRAND 218 218
FT STRAND 227 232
SQ SEQUENCE 233 AA; 25644 MW; 666D7069 CRC32;
MSTESMIRDV ELAEEALPKK TGGPQGSRRC LFLSLFSFLI VAGATTLFCL LHFGVIGPQR
EEFPRDLSLI SPLAQAVRSS SRTPSDKPVA HVVANPQAEG QLQWLNRRAN ALLANGVELR
DNQLVVPSEG LYLIYSQVLF KGQGCPSTHV LLTHTISRIA VSYQTKVNLL SAIKSPCQRE
TPEGAEAKPW YEPIYLGGVF QLEKGDRLSA EINRPDYLDF AESGQVYFGI IAL
//
Protein searching
3-levels of Protein Searching
1. Swissprot Little Noise
Annotated entries
2. Swissprot + TREMBL More Noisy
All probable entries
3. Translated EMBL - tblast or tfasta Most Noisy
All possible entries
New initiatiaves
• IPI: International Protein Index
– http://www.ebi.ac.uk/IPI/IPIhelp.ht
ml
• UNIPROT: Universal Protein
Knowledgebase
– http://www.pir.uniprot.org/
• HPRD: Human Protein Reference
Database
– http://www.hprd.org/
UniProt Consortium
• European Bioinformatics Institute (EBI)
• Swiss Institute of Bioinformatics (SIB)
• Protein Information Resource (PIR)
Uniprot Databases
•UniProt Knowledgebase (UniProtKB)
•UniProt Reference Clusters (UniRef)
•UniProt Archive (UniParc)
UniprotKB
•Swiss-Prot (annotated protein sequence db,
golden standard)
•trEMBL (translated EMBL + automated
electronic annotations)
UniProt
understanding molecular
structure is critical to the
understanding of biology
because because structure
determines function
• the drug morphine has chemical groups that are functionally equivalent to the natural
endorphins found in the human body
From Structure to Function
• the drug morphine has chemical groups that are functionally equivalent to the natural
endorphins found in the human body
• the receptor molecules
located at the synapse
(between two neurons)
bind morphine much the
same way as endorphins
• therefore, morphine is
able to attenuate the pain
response
From Structure to Function
Structure databases
Protein Data Bank (PDB)
Protein Data Bank - http://www.rcsb.org/pdb
Diffraction 7373 structures determined by X-ray diffraction
NMR 388 structures determined by NMR spectroscopy
Theoretical Model 201 structures proposed by modeling
• PDB is three-dimensional structure of
proteins,some nuclei acids involved
• PDB is operated by RCSB(Research Collaboratory for
Structural Bioinformatics),funded by NSF, DOE, and
two units of NIH:NIGMS National Institute Of General
Medical Sciences and NLM National Library Of Medicine.
• Established at BNL Brookhaven NationalLaboratories in
1971,as an archive for
biologicalmacromolecular crystal structures
• In 1980s, the number of deposited structures
beganto increase dramatically.
• October 1998, the management of the PDB
became the responsibilityof RCSB.
• Website http://www.rcsb.org
PDB Holdings List: 27-Mar-2001
Molecule Type
Proteins, Pe
ptides, and
Viruses
Protein/
Nucleic
Acid
Complexes
Nuclei
c
Acids
Carbohydrate
s
total
Exp.
Tech.
X-ray
Diffraction
and other
11045 526 552 14 12137
NMR 1832 71 366 4 2273
Theoretica
l Modeling
281 19 21 0 321
total 13158 616 939 18 14731
5032 Structure Factor Files
968 NMR Restraint Files
PDB Content Growth
PDB Growth in New Folds
Other structure databases
BioMagResBankhttp://www.bmrb.wisc.edu/
A Repository for Data from NMR Spectroscopy on Proteins, Peptides, and Nucleic
Acids
Biological Macromolecule Crystallization Database
(BMCD)http://h178133.carb.nist.gov:4400/bmcd/bmcd.html
Contains crystal data and the crystallization conditions, which have been compiled
from literature
Nucleic Acid Database (NDB)http://ndbserver.rutgers.edu:80/
Assembles and distributes structural information about nucleic acids
Structural Classification of Proteins (SCOP)http://scop.mrc-lmb.cam.ac.uk/scop/
Structure similarity search. Hierarchic organization.
MOOSEhttp://db2.sdsc.edu/moose/
Macromolecular Structure Query
Cambridge Structural Database (CSD)http://www.ccdc.cam.ac.uk/
Small molecules.
Protein Splicing?
• Protein splicing is defined as the excision of
an intervening protein sequence (the
INTEIN) from a protein precursor and the
concomitant ligation of the flanking protein
fragments (the EXTEINS) to form a mature
extein protein and the free intein
• http://www.neb.com/inteins/intein_intro.ht
ml
Biological databases
• NAR Database Issue
– Every year: NAR DB Issue
– The 2006 update includes 858 databases
– Citation top 5 are:
• Pfam
• Gene Ontology
• UniProt
• SMART
• KEGG
– Primary Nucleotide DB’s and PDB are
not cited anymore
Outline
• Molecular Biology
• Flat files “sequence” databases
– DNA
– Protein
– Structure
• Relational Databases
– What ?
– Why ?
• Biological Relational Databases
– Howto ?
Why biological databases ?
• Explosive growth in biological data
• Data (sequences, 3D structures, 2D
gel analysis, MS analysis….) are no
longer published in a conventional
manner, but directly submitted to
databases
• Essential tools for biological
research, as classical publications used
to be !
Problems with Flat files …
• Wasted storage space
• Wasted processing time
• Data control problems
• Problems caused by changes to data
structures
• Access to data difficult
• Data out of date
• Constraints are system based
• Limited querying eg. all single exon
GPCRs (<1000 bp)
Relational
• The Relational model is not only very mature, but it
has developed a strong knowledge on how to make a
relational back-end fast and reliable, and how to
exploit different technologies such as massive
SMP, Optical jukeboxes, clustering and etc. Object
databases are nowhere near to this, and I do not
expect then to get there in the short or medium term.
• Relational Databases have a very well-known and
proven underlying mathematical theory, a simple one
(the set theory) that makes possible
– automatic cost-based query optimization,
– schema generation from high-level models and
– many other features that are now vital for mission-critical
Information Systems development and operations.
• What is a relational database ?
– Sets of tables and links (the data)
– A language to query the datanase (Structured
Query Language)
– A program to manage the data (RDBMS)
• Flat files are not relational
– Data type (attribute) is part of the data
– Record order mateters
– Multiline records
– Massive duplication
• Bv Organism: Homo sapeinsm Eukaryota, …
– Some records are hierarchical
• Xrefs
– Records contain multiple “sub-records”
– Implecit “Key”
The Benefits of Databases
• Redundancy can be reduced
• Inconsistency can be avoided
• Conflicting requirements can be
balanced
• Standards can be enforced
• Data can be shared
• Data independence
• Integrity can be maintained
• Security restrictions can be applied
Disadvantages
• size
• complexity
• cost
• Additional hardware costs
• Higher impact of failure
• Recovery more difficult
Relational Terminology
ID NAME PHONE EMP_ID
201 Unisports 55-2066101 12
202 Simms Atheletics 81-20101 14
203 Delhi Sports 91-10351 14
204 Womansport 1-206-104-0103 11
Row (Tuple)
Column (Attribute)
CUSTOMER Table (Relation)
Relational Database Terminology
• Each row of data in a table is uniquely identified by a primary key (PK)
• Information in multiple tables can be logically related by foreign keys (FK)
ID LAST_NAME FIRST_NAME
10 Havel Marta
11 Magee Colin
12 Giljum Henry
14 Nguyen Mai
ID NAME PHONE EMP_ID
201 Unisports 55-2066101 12
202 Simms Atheletics 81-20101 14
203 Delhi Sports 91-10351 14
204 Womansport 1-206-104-0103 11
Table Name: CUSTOMER Table Name: EMP
Primary Key Foreign Key Primary Key
• RDBM products
– Free
• MySQL, very fast, widely usedm easy to
jump into but limited non standard SQL
• PostrgreSQL – full SQLm limited
OO, higher learning curve than MySQL
– Commercial
• MS Access – Great query builder, GUI
interfaces
• MS SQL Server – full SQL, NT only
• Oracle, everything, including the kitchen
sink
• IBM DB2, Sybase
A simple datamodel (tables and relations)
Prot_id name seq Species_id
1 GTM1_HUMA
N
MGTDHG… 1
2 GTM1_RAT MGHJADSW.. 2
3 GTM2_HUMA
N
MVSDBSVD.. 1
Species_id name Full Lineage
1 human Homo Sapiens …
2 rat Rattus rattus
Relational Database Fundamentals
• Basic SQL
– SELECT
– FROM
– WHERE
– JOIN – NATURAL, INNER, OUTER
• Other SQL functions
– COUNT()
– MAX(),MIN(),AVE()
– DISTINCT
– ORDER BY
– GROUP BY
– LIMIT
BioSQL
• Query: een opdracht om gegevens uit
een databaase op te vragen noemt men
een query
• eg. MyGPCRdb
– Bioentry
– Taxid (include full lineage)
– Linking table (bioentry_tax)
MyGPCR;
Geef me allE GPCR die korter zijn dan 1000bp
select * from bioentry;
select count(*) from bioentry;
select * from bioentry inner join biosequence on
bioentry.bioentry_id=biosequence.bioentry_id ;
select * from bioentry inner join biosequence on
bioentry.bioentry_id=biosequence.bioentry_id
where length(biosequence_str)<1000;
Example 3-tier model in biological database
http://www.bioinformatics.be
Example of different interface to the same back-end database (MySQL)
Overview
• DataBases
– FF
• *.txt
• Indexed version
– Relational (RDBMS)
• Access, MySQL, PostGRES, Ora
cle
– OO (OODBMS)
• AceDB, ObjectStore
– Hierarchical
• XML
– Frame based system
• Eg. DAML+OIL
– Hybrid systems
Overview
Object
• The Object paradigm is already proven for application design and
development, but it may simply not be an adequate paradigm for
the data store.
• Object Database are modelled by graphs. The graph theory plays a
great role on computer science, but is also a great source of
unbeatable problems, the NP-complex class: problems for which
there are no computationally efficient solution, as there's no way to
escape from exponential complexity. This is not a current
technological limit. It's a limit inherent to the problem domain.
• Hybrid Object-Relational databases will probably be the long term
solution for the industry. They put a thin object layer above the
relational structure, thus providing a syntax and semantics closer to
the object oriented design and programming tools. They simply
make it easier to build the data layer classes
Conclusions
• A database is a central component of any
contemporary information system
• The operations on the database and the mainenance
of database consistency is handled by a DBMS
• There exist stand alone query languages or
embedded languages but both deal with definition
(DDL) and manipulation (DML) aspects
• The structural properties, constraints and operations
permitted within a DBMS are defined by a data
model - hierarchical, network, relational
• Recovery and concurrency control are essential
• Linking of heterogebous datasources is central theme
in modern bioinformatics
• How do you know which database
exists ?
• NAR list
• Weblinks op Nexus
– Searchable
– Maintainable
• Tools available in public domain for
simultaneous access
–entrez
–srs
• Batch queries for offload in local
databases for subsequent analysis
(see further)
• What if you want to search the
complete human genome (golden path
coordinates) instead of separate NCBI
entries ?
• ENSEMBL
BioMart
• Joined project between EBI and
CSHL, http://www.biomart.org/
• Aim is to develop a generic, query-oriented data
management system capable of integrating
distributed data sources
• 3 step system:
– Start by selecting a dataset to query
– Filter this dataset by applying the appropriate filters
– Generate the output by selecting the attributes and output
format
• Available public biomart websites:
http://www.biomart.org/biomart/martview
BioMart - Single access point - Generic interface
BioMart - ‘Out of the box’ website
BioMart – 3 step system
Dataset
Attribute
Filter
BioMart - 3 step system
Name, chromosome position, description
for all Ensembl genes
located on chromosome 1, expressed in
lung, associated with human
homologues
Dataset
Attribute
Filter
BioMart - EnsMart
• The first in line was EnsMart, a powerful data
mining toolset for retrieving customized data sets
from annotated genomes. EnsMart integrates data
from Ensembl and various worldwide data sources.
• EnsMart provides ....
– Gene and protein annotation
– Disease information
– Cross-species analyses
– SNPs affecting proteins
– Allele frequency data
– Retrieval by external identifiers
– Retrieval by Gene Ontology
– Customized sequence datasets
– Microarray annotation tools
Other BioMart implementations
• Other data resources also implemented
a BioMart interface:
– Wormbase
– Gramene
– HapMap
– DictyBase
– euGenes
Single interface
BioBar
• A toolbar for browsing biological data
and databases
http://biobar.mozdev.org/
• The following databases are included
http://biobar.mozdev.org/Databases.ht
ml
• a toolbar for Mozilla-based browsers
including Firefox and Netscape 7+
Weblems
Weblems Online (example posting)
W2.1. Which isolate of Tabac was used in record accession
Z71230, and human sample in the genbank entry with
accession AJ311677 ?
W2.2: Find all structures of GFP in the Protein Data Bank and
draw a histogram of their dates of deposition ?
W2.3: What is the chromosomal location of the human gene for
insulin ?
W2.4: How many different human NHR (nuclear hormone
receptors) s exist ? How many of these are single exon genes
? Are there any drugs working on this class of receptors ?
W2.5: The gene for Berardinelli-Seip syndrome was initially
localized between two markers on chromosome band 11q13-
D11S4191 and D11S987.
a. How many base pairs are there in the interval between
these two markers ?
b. How many known genes are there ?
c. List the gene ontology terms for that region ?

Contenu connexe

Similaire à Bioinformatics t2-databases wim-vancriekinge_v2013

2015 bioinformatics databases_wim_vancriekinge
2015 bioinformatics databases_wim_vancriekinge2015 bioinformatics databases_wim_vancriekinge
2015 bioinformatics databases_wim_vancriekingeProf. Wim Van Criekinge
 
2016 bioinformatics i_databases_wim_vancriekinge
2016 bioinformatics i_databases_wim_vancriekinge2016 bioinformatics i_databases_wim_vancriekinge
2016 bioinformatics i_databases_wim_vancriekingeProf. Wim Van Criekinge
 
Bioinfo ngs data format visualization v2
Bioinfo ngs data format visualization v2Bioinfo ngs data format visualization v2
Bioinfo ngs data format visualization v2Li Shen
 
Accelerating Genomics SNPs Processing and Interpretation with Apache Spark
Accelerating Genomics SNPs Processing and Interpretation with Apache SparkAccelerating Genomics SNPs Processing and Interpretation with Apache Spark
Accelerating Genomics SNPs Processing and Interpretation with Apache SparkDatabricks
 
Seqr - Protein Sequence Search: Presented by Lianyi Han, Medical Science & Co...
Seqr - Protein Sequence Search: Presented by Lianyi Han, Medical Science & Co...Seqr - Protein Sequence Search: Presented by Lianyi Han, Medical Science & Co...
Seqr - Protein Sequence Search: Presented by Lianyi Han, Medical Science & Co...Lucidworks
 
Databases_CSS2.pptx
Databases_CSS2.pptxDatabases_CSS2.pptx
Databases_CSS2.pptxSilpa87
 
Esa 2014 qiime
Esa 2014 qiimeEsa 2014 qiime
Esa 2014 qiimeZech Xu
 
Mass storage structure
Mass storage structureMass storage structure
Mass storage structureRobert Antony
 
Realtimestream and realtime fastcatsearch
Realtimestream and realtime fastcatsearchRealtimestream and realtime fastcatsearch
Realtimestream and realtime fastcatsearch상욱 송
 
Extreme Scripting July 2009
Extreme Scripting July 2009Extreme Scripting July 2009
Extreme Scripting July 2009Ian Foster
 
Scaling Web Applications with Cassandra Presentation.ppt
Scaling Web Applications with Cassandra Presentation.pptScaling Web Applications with Cassandra Presentation.ppt
Scaling Web Applications with Cassandra Presentation.pptssuserbad56d
 
"Einstürzenden Neudaten: Building an Analytics Engine from Scratch", Tobias J...
"Einstürzenden Neudaten: Building an Analytics Engine from Scratch", Tobias J..."Einstürzenden Neudaten: Building an Analytics Engine from Scratch", Tobias J...
"Einstürzenden Neudaten: Building an Analytics Engine from Scratch", Tobias J...Dataconomy Media
 
Process and Threads in Linux - PPT
Process and Threads in Linux - PPTProcess and Threads in Linux - PPT
Process and Threads in Linux - PPTQUONTRASOLUTIONS
 
ENCODE-DCC-metadata-standard-Biocurator 2014
ENCODE-DCC-metadata-standard-Biocurator 2014ENCODE-DCC-metadata-standard-Biocurator 2014
ENCODE-DCC-metadata-standard-Biocurator 2014ENCODE-DCC
 
Galaxy RNA-Seq Analysis: Tuxedo Protocol
Galaxy RNA-Seq Analysis: Tuxedo ProtocolGalaxy RNA-Seq Analysis: Tuxedo Protocol
Galaxy RNA-Seq Analysis: Tuxedo ProtocolHong ChangBum
 

Similaire à Bioinformatics t2-databases wim-vancriekinge_v2013 (20)

2015 bioinformatics databases_wim_vancriekinge
2015 bioinformatics databases_wim_vancriekinge2015 bioinformatics databases_wim_vancriekinge
2015 bioinformatics databases_wim_vancriekinge
 
2016 bioinformatics i_databases_wim_vancriekinge
2016 bioinformatics i_databases_wim_vancriekinge2016 bioinformatics i_databases_wim_vancriekinge
2016 bioinformatics i_databases_wim_vancriekinge
 
Bioinformatica t2-databases
Bioinformatica t2-databasesBioinformatica t2-databases
Bioinformatica t2-databases
 
Bioinformatica 06-10-2011-t2-databases
Bioinformatica 06-10-2011-t2-databasesBioinformatica 06-10-2011-t2-databases
Bioinformatica 06-10-2011-t2-databases
 
Ashg2014 grc workshop_schneider
Ashg2014 grc workshop_schneiderAshg2014 grc workshop_schneider
Ashg2014 grc workshop_schneider
 
Bioinfo ngs data format visualization v2
Bioinfo ngs data format visualization v2Bioinfo ngs data format visualization v2
Bioinfo ngs data format visualization v2
 
Accelerating Genomics SNPs Processing and Interpretation with Apache Spark
Accelerating Genomics SNPs Processing and Interpretation with Apache SparkAccelerating Genomics SNPs Processing and Interpretation with Apache Spark
Accelerating Genomics SNPs Processing and Interpretation with Apache Spark
 
Seqr - Protein Sequence Search: Presented by Lianyi Han, Medical Science & Co...
Seqr - Protein Sequence Search: Presented by Lianyi Han, Medical Science & Co...Seqr - Protein Sequence Search: Presented by Lianyi Han, Medical Science & Co...
Seqr - Protein Sequence Search: Presented by Lianyi Han, Medical Science & Co...
 
Databases_CSS2.pptx
Databases_CSS2.pptxDatabases_CSS2.pptx
Databases_CSS2.pptx
 
Esa 2014 qiime
Esa 2014 qiimeEsa 2014 qiime
Esa 2014 qiime
 
GRCWorkshop_geval_1KG_slides
GRCWorkshop_geval_1KG_slidesGRCWorkshop_geval_1KG_slides
GRCWorkshop_geval_1KG_slides
 
Mass storage structure
Mass storage structureMass storage structure
Mass storage structure
 
Realtimestream and realtime fastcatsearch
Realtimestream and realtime fastcatsearchRealtimestream and realtime fastcatsearch
Realtimestream and realtime fastcatsearch
 
Extreme Scripting July 2009
Extreme Scripting July 2009Extreme Scripting July 2009
Extreme Scripting July 2009
 
Scaling Web Applications with Cassandra Presentation.ppt
Scaling Web Applications with Cassandra Presentation.pptScaling Web Applications with Cassandra Presentation.ppt
Scaling Web Applications with Cassandra Presentation.ppt
 
"Einstürzenden Neudaten: Building an Analytics Engine from Scratch", Tobias J...
"Einstürzenden Neudaten: Building an Analytics Engine from Scratch", Tobias J..."Einstürzenden Neudaten: Building an Analytics Engine from Scratch", Tobias J...
"Einstürzenden Neudaten: Building an Analytics Engine from Scratch", Tobias J...
 
Process and Threads in Linux - PPT
Process and Threads in Linux - PPTProcess and Threads in Linux - PPT
Process and Threads in Linux - PPT
 
ENCODE-DCC-metadata-standard-Biocurator 2014
ENCODE-DCC-metadata-standard-Biocurator 2014ENCODE-DCC-metadata-standard-Biocurator 2014
ENCODE-DCC-metadata-standard-Biocurator 2014
 
Galaxy RNA-Seq Analysis: Tuxedo Protocol
Galaxy RNA-Seq Analysis: Tuxedo ProtocolGalaxy RNA-Seq Analysis: Tuxedo Protocol
Galaxy RNA-Seq Analysis: Tuxedo Protocol
 
Major databases in bioinformatics
Major databases in bioinformaticsMajor databases in bioinformatics
Major databases in bioinformatics
 

Plus de Prof. Wim Van Criekinge

2019 03 05_biological_databases_part5_v_upload
2019 03 05_biological_databases_part5_v_upload2019 03 05_biological_databases_part5_v_upload
2019 03 05_biological_databases_part5_v_uploadProf. Wim Van Criekinge
 
2019 03 05_biological_databases_part4_v_upload
2019 03 05_biological_databases_part4_v_upload2019 03 05_biological_databases_part4_v_upload
2019 03 05_biological_databases_part4_v_uploadProf. Wim Van Criekinge
 
2019 03 05_biological_databases_part3_v_upload
2019 03 05_biological_databases_part3_v_upload2019 03 05_biological_databases_part3_v_upload
2019 03 05_biological_databases_part3_v_uploadProf. Wim Van Criekinge
 
2019 02 21_biological_databases_part2_v_upload
2019 02 21_biological_databases_part2_v_upload2019 02 21_biological_databases_part2_v_upload
2019 02 21_biological_databases_part2_v_uploadProf. Wim Van Criekinge
 
2019 02 12_biological_databases_part1_v_upload
2019 02 12_biological_databases_part1_v_upload2019 02 12_biological_databases_part1_v_upload
2019 02 12_biological_databases_part1_v_uploadProf. Wim Van Criekinge
 
Bio ontologies and semantic technologies[2]
Bio ontologies and semantic technologies[2]Bio ontologies and semantic technologies[2]
Bio ontologies and semantic technologies[2]Prof. Wim Van Criekinge
 
2018 03 27_biological_databases_part4_v_upload
2018 03 27_biological_databases_part4_v_upload2018 03 27_biological_databases_part4_v_upload
2018 03 27_biological_databases_part4_v_uploadProf. Wim Van Criekinge
 
2018 02 20_biological_databases_part2_v_upload
2018 02 20_biological_databases_part2_v_upload2018 02 20_biological_databases_part2_v_upload
2018 02 20_biological_databases_part2_v_uploadProf. Wim Van Criekinge
 
2018 02 20_biological_databases_part1_v_upload
2018 02 20_biological_databases_part1_v_upload2018 02 20_biological_databases_part1_v_upload
2018 02 20_biological_databases_part1_v_uploadProf. Wim Van Criekinge
 

Plus de Prof. Wim Van Criekinge (20)

2020 02 11_biological_databases_part1
2020 02 11_biological_databases_part12020 02 11_biological_databases_part1
2020 02 11_biological_databases_part1
 
2019 03 05_biological_databases_part5_v_upload
2019 03 05_biological_databases_part5_v_upload2019 03 05_biological_databases_part5_v_upload
2019 03 05_biological_databases_part5_v_upload
 
2019 03 05_biological_databases_part4_v_upload
2019 03 05_biological_databases_part4_v_upload2019 03 05_biological_databases_part4_v_upload
2019 03 05_biological_databases_part4_v_upload
 
2019 03 05_biological_databases_part3_v_upload
2019 03 05_biological_databases_part3_v_upload2019 03 05_biological_databases_part3_v_upload
2019 03 05_biological_databases_part3_v_upload
 
2019 02 21_biological_databases_part2_v_upload
2019 02 21_biological_databases_part2_v_upload2019 02 21_biological_databases_part2_v_upload
2019 02 21_biological_databases_part2_v_upload
 
2019 02 12_biological_databases_part1_v_upload
2019 02 12_biological_databases_part1_v_upload2019 02 12_biological_databases_part1_v_upload
2019 02 12_biological_databases_part1_v_upload
 
P7 2018 biopython3
P7 2018 biopython3P7 2018 biopython3
P7 2018 biopython3
 
P6 2018 biopython2b
P6 2018 biopython2bP6 2018 biopython2b
P6 2018 biopython2b
 
P4 2018 io_functions
P4 2018 io_functionsP4 2018 io_functions
P4 2018 io_functions
 
P3 2018 python_regexes
P3 2018 python_regexesP3 2018 python_regexes
P3 2018 python_regexes
 
T1 2018 bioinformatics
T1 2018 bioinformaticsT1 2018 bioinformatics
T1 2018 bioinformatics
 
P1 2018 python
P1 2018 pythonP1 2018 python
P1 2018 python
 
Bio ontologies and semantic technologies[2]
Bio ontologies and semantic technologies[2]Bio ontologies and semantic technologies[2]
Bio ontologies and semantic technologies[2]
 
2018 05 08_biological_databases_no_sql
2018 05 08_biological_databases_no_sql2018 05 08_biological_databases_no_sql
2018 05 08_biological_databases_no_sql
 
2018 03 27_biological_databases_part4_v_upload
2018 03 27_biological_databases_part4_v_upload2018 03 27_biological_databases_part4_v_upload
2018 03 27_biological_databases_part4_v_upload
 
2018 03 20_biological_databases_part3
2018 03 20_biological_databases_part32018 03 20_biological_databases_part3
2018 03 20_biological_databases_part3
 
2018 02 20_biological_databases_part2_v_upload
2018 02 20_biological_databases_part2_v_upload2018 02 20_biological_databases_part2_v_upload
2018 02 20_biological_databases_part2_v_upload
 
2018 02 20_biological_databases_part1_v_upload
2018 02 20_biological_databases_part1_v_upload2018 02 20_biological_databases_part1_v_upload
2018 02 20_biological_databases_part1_v_upload
 
P7 2017 biopython3
P7 2017 biopython3P7 2017 biopython3
P7 2017 biopython3
 
P6 2017 biopython2
P6 2017 biopython2P6 2017 biopython2
P6 2017 biopython2
 

Dernier

Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxMusic 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxleah joy valeriano
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
Activity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationActivity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationRosabel UA
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 

Dernier (20)

Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxMusic 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
Activity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationActivity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translation
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 

Bioinformatics t2-databases wim-vancriekinge_v2013

  • 1.
  • 3.
  • 4. Outline • Molecular Biology • Flat files “sequence” databases – DNA – Protein – Structure • Relational Databases – What ? – Why ? • Biological Relational Databases – Howto ?
  • 5.
  • 6.
  • 7.
  • 8.
  • 9. Flat Files What is a “flat file” ? • Flat file is a term used to refer to when data is stored in a plain ordinary file on the hard disk • Example RefSEQ – See CD-ROM – FILE: hs.GBFF • Hs: Homo Sapiens • GBFF: Genbank File Format • (associated with textpad, use monospaced font eg. Courier)
  • 10. Sequence entries gene 10317..12529 /gene="ZK822.4" CDS join(10317..10375,10714..10821,10874..10912,10960..11013, 11061..11114,11169..11222,11346..11739,11859..11912, 11962..12195,12242..12529) /gene="ZK822.4" /codon_start=1 /protein_id="CAA98068.1" /db_xref="PID:g3881817" /db_xref="GI:3881817" /db_xref="SPTREMBL:Q23615" /translation="MHRHTYRKLYWNLGADGFSQGNADASVSAGSSGSNFLSGLQNSS FGQAVMGGINTYNQAKNSSGGNWQTAVANSSVGNFFQNGIDFFNGMKNGTQNFLDTDT IQETIGNSSFGEVVQTGVEFFNNIKNGNSPFQGDASSVMSQFVPFLANASAEAKAEFY TILPNFGNMTIAEFETAVNAWAAKYNLTDEVEAFNERSKNATVVAEEHANVVVMNLPN VLNNLKAISSDKNQTVVEMHTRMMAYVNSLDDDTRDIVFIFFRNLLPPQFKKSKCVDQ GNFLTNMYNKASDFFAGRNNRTDGEGSFWSGQGQNGNSGGSGFSSFFNNFNGQGNGNG NGAQNPMIGMFNNFMKKNNITADEANAAMADGGASIQILPAISAGWGDVAQVKIGGDF KIAVEEETKTTKKNKKQQQQANKNKNKNKKKTTIAPEAAIDANIAAEVHTQVL"
  • 11. EMBL Nucleotide Sequence Database (European Molecular Biology Laboratory) http://www.ebi.ac.uk/ebi_docs/embl_db/ebi/topembl.html GenBank at NCBI (National Center for Biotechnology Information) http://www.ncbi.nlm.nih.gov/Web/Genbank/index.html DDBJ (DNA Database of Japan) http://www.ddbj.nig.ac.jp/ DDBJ,the Center for operating DDBJ, National Institute of Genetics (NIG),Japan,established in April 1995. http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html Release Notes (ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt) Genetic Sequence Data Bank - August 15 2003 NCBI-GenBank Flat File Release 137.0 Distribution Release Notes 33 865 022 251 bases, from 27 213 748 reported sequences Nucleotide Databases
  • 12. GenBank Format LOCUS LISOD 756 bp DNA BCT 30-JUN-1993 DEFINITION L.ivanovii sod gene for superoxide dismutase. ACCESSION X64011.1 GI:37619753 NID g44010 KEYWORDS sod gene; superoxide dismutase. SOURCE Listeria ivanovii. ORGANISM Listeria ivanovii Eubacteria; Firmicutes; Low G+C gram-positive bacteria; Bacillaceae; Listeria. REFERENCE 1 (bases 1 to 756) AUTHORS Haas,A. and Goebel,W. TITLE Cloning of a superoxide dismutase gene from Listeria ivanovii by functional complementation in Escherichia coli and characterization of the gene product JOURNAL Mol. Gen. Genet. 231 (2), 313-322 (1992) MEDLINE 92140371 REFERENCE 2 (bases 1 to 756) AUTHORS Kreft,J. TITLE Direct Submission JOURNAL Submitted (21-APR-1992) J. Kreft, Institut f. Mikrobiologie, Universitaet Wuerzburg, Biozentrum Am Hubland, 8700 Wuerzburg, FRG
  • 13. FEATURES Location/Qualifiers source 1..756 /organism="Listeria ivanovii" /strain="ATCC 19119" /db_xref="taxon:1638" RBS 95..100 /gene="sod" gene 95..746 /gene="sod" CDS 109..717 /gene="sod" /EC_number="1.15.1.1" /codon_start=1 /product="superoxide dismutase" /db_xref="PID:g44011" /db_xref="SWISS-PROT:P28763" /transl_table=11 /translation="MTYELPKLPYTYDALEPNFDKETMEIHYTKHHNIYVTKL NEAVSGHAELASKPGEELVANLDSVPEEIRGAVRNHGGGHANHTLFWSSLSPN GGGAPTGNLKAAIESEFGTFDEFKEKFNAAAAARFGSGWAWLVVNNGKLEIVS TANQDSPLSEGKTPVLGLDVWEHAYYLKFQNRRPEYIDTFWNVINWDERNKRF DAAK" terminator 723..746 /gene="sod"
  • 14. Example of location descriptors Location Description 476 Points to a single base in the presented sequence 340..565 Points to a continuous range of bases bounded by and including the starting and ending bases <345..500 The exact lower boundary point of a feature is unknown. (102.110) Indicates that the exact location is unknown but that it is one of the bases between bases 102 and 110. (23.45)..600 Specifies that the starting point is one of the bases between bases 23 and 45, inclusive, and the end base 600 123^124 Points to a site between bases 123 and 124 145^177 Points to a site anywhere between bases 145 and 177 J00193:hladr Points to a feature whose location is described in another entry: the feature labeled 'hladr' in the
  • 15. BASE COUNT 247 a 136 c 151 g 222 t ORIGIN 1 cgttatttaa ggtgttacat agttctatgg aaatagggtc tatacctttc gccttacaat 61 gtaatttctt ttcacataaa taataaacaa tccgaggagg aatttttaat gacttacgaa 121 ttaccaaaat taccttatac ttatgatgct ttggagccga attttgataa agaaacaatg 181 gaaattcact atacaaagca ccacaatatt tatgtaacaa aactaaatga agcagtctca 241 ggacacgcag aacttgcaag taaacctggg gaagaattag ttgctaatct agatagcgtt 301 cctgaagaaa ttcgtggcgc agtacgtaac cacggtggtg gacatgctaa ccatacttta 361 ttctggtcta gtcttagccc aaatggtggt ggtgctccaa ctggtaactt aaaagcagca 421 atcgaaagcg aattcggcac atttgatgaa ttcaaagaaa aattcaatgc ggcagctgcg 481 gctcgttttg gttcaggatg ggcatggcta gtagtgaaca atggtaaact agaaattgtt 541 tccactgcta accaagattc tccacttagc gaaggtaaaa ctccagttct tggcttagat 601 gtttgggaac atgcttatta tcttaaattc caaaaccgtc gtcctgaata cattgacaca 661 ttttggaatg taattaactg ggatgaacga aataaacgct ttgacgcagc aaaataatta 721 tcgaaaggct cacttaggtg ggtcttttta tttcta //
  • 16. EMBL format ID LISOD standard; DNA; PRO; 756 BP. IDentification XX AC X64011; S78972; Accession (Axxxxx, Afxxxxxx), GUID XX NI g44010 Nucleotide Identifier --> x.x XX DT 28-APR-1992 (Rel. 31, Created) DaTe DT 30-JUN-1993 (Rel. 36, Last updated, Version 6) XX DE L.ivanovii sod gene for superoxide dismutase DEscription XX. KW sod gene; superoxide dismutase. KeyWord XX OS Listeria ivanovii Organism Species OC Eubacteria; Firmicutes; Low G+C gram-positive bacteria; Bacillaceae; OC Listeria. Organism Classification XX RN [1] RA Haas A., Goebel W.; Reference RT "Cloning of a superoxide dismutase gene from Listeria ivanovii by RT functional complementation in Escherichia coli and RT characterization of the gene product."; RL Mol. Gen. Genet. 231:313-322(1992). XX
  • 17. GenBank,EMBL & DDBJ: Comments • Collaboration Genbank/EMBL/DDBJ – Effort: Identical within 24 hours • Redundant information • Historical graveyard – BANKIT (responsability of the submitter) – Version conflicts • IDIOSYNCRATIC ( peculiar to the individual) – Heterogeneous annotation – No consistant quality check • Vectors, sequence errors etc
  • 18. Other Genbank Formats • ASN1 – Computer friendly, human unfriendly • FASTA – Brief, loses information – Easy to use – Compatible with multiple sequences
  • 19. Web Query tools & Programming Query tools • NCBI website example: – http://www.ncbi.nlm.nih.gov/entrez/query/static/ad vancedentrez.html • EBI UniProtKB website example: – http://www.ebi.ac.uk/uniprot/index.html – http://www.ebi.uniprot.org/search/SearchTools.sht ml
  • 20. batch download (ftp server) • Data available via website is most of the time also available via an ftp server to download a complete batch. • Examples: –ftp://ftp.ncbi.nih.gov/ –ftp://ftp.ebi.ac.uk/pub/
  • 21. Sequence file format tips • When saving a sequence for use in an email message or pasting into a web page, use an unannotated text format such as FASTA • When retrieving from a database or exchanging between programs, use an annotated text format such as Genbank • When using sequence again with the same program, use that program’s annotated binary format (or annotated text if binary not available) – Asn-1 (NCBI) – Gbff (sanger) – XML
  • 22. Expressed Sequence Tags • Sequence that codes for protein is < 5% of the genome. • Coding sequence can be obtained from mRNA by reverse transcription. • Tags for that sequence can be obtained by end- sequencing. • Incyte and HGS gambled on this being the useful part: – Search for homologies to known proteins, motifs. – Search for changed levels of expression and tissue specificity (“virtual/electronic northern” used in GeneCards) • ESTs have driven the huge expansion of GenBank: – Unigene now contains some sequence from most genes. – > 4,000,000 human est sequences – http://www.ncbi.nlm.nih.gov/dbEST/
  • 23. dbEST release 100303 Summary by Organism - October 3, 2003 Number of public entries: 18,762,324 Homo sapiens (human) 5,426,001 Mus musculus + domesticus (mouse) 3,881,878 Rattus sp. (rat) 538,073 Triticum aestivum (wheat) 500,898 Ciona intestinalis 492,488 Gallus gallus (chicken) 451,565 Zea mays (maize) 383,416 Danio rerio (zebrafish) 362,362 Hordeum vulgare + subsp. vulgare (barley) 348,233 Xenopus laevis (African clawed frog) 344,695 Glycine max (soybean) 341,573 Bos taurus (cattle) 322,074 Drosophila melanogaster (fruit fly) 261,404
  • 24. Traces <-> strings • Traces contain much more information – TraceDB: http://www.ncbi.nlm.nih.gov/Traces/ Example
  • 25. Traces <-> strings • Phrep – base calling, vector trimming, end of sequence read trimming • Phrap – Phrap uses Phred’s base calling scores to determine the consensus sequences. Phrap examines all individual sequences at a given position, and uses the highest scoring sequence (if it exists) to extend the consensus sequence • Consend – graphical interface extension that controls both Phred and Phrap
  • 26. What is Phred? • Phred is a program that observes the base trace, makes base calls, and assigns quality values (qv) of bases in the sequence. • It then writes base calls and qv to output files that will be used for Phrap assembly. The qv will be useful for consensus sequence construction. • For example, ATGCATGC string1 ATTCATGC string2 AT-CATGC superstring • Here we have a mismatch ‘G’ and ‘T’, the qv will determine the dash in the superstring. The base with higher qv will replaces the dash.
  • 27. How Phred calculates qv? • From the base trace Phred know number of peaks and actual peak locations. • Phred predicts peaks locations. • Phred reads the actual peak locations from base trace. • Phred match the actual locations with the predicted locations by using Dynamic Programming. • The qv is related to the base call error probability (ep) by the formula qv = -10*log_10(ep) • Example 1:10000 = qv 40
  • 28. Why Phred? • Output sequence might contain errors. • Vector contamination might occur. • Dye-terminator reaction might not occur. • Segment migration abnormal in gel electrophoresis. • Weak or variable signal strength of peak corresponding to a base.
  • 30. End of Sequence Cropping • It is common that the end of sequencing reads have poor data. This is due to the difficulties in resolving larger fragment ~1kb (it is easier to resolve 21bp from 20bp than it is to resolve 1001bp from 1000bp). • Phred assigns a non-value of ‘x’ to this data by comparing peak separation and peak intensity to internal standards. If the standard threshold score is not reached, the data will not be used.
  • 31. • Handle traces – Abi-view EMBOSS – Bioedit – Acembly, … • EXAMPLE Traces <-> strings
  • 32. NCBI reference sequences RefSeq database is a non-redundant set of reference standards that includes chromosomes, complete genomic molecules, intermediate assembled genomic contigs, curated genomic regions, mRNAs, RNAs, and proteins.
  • 33. RefSeq nomenclature NC_#### complete genomic NG_#### incomplete genomic NM_#### mRNA NR_#### noncoding transcripts NP_#### proteins NT_#### intermediate genomic contigs
  • 34. RefSeq nomenclature - models XM_#### mRNA XR_#### RNA XP_#### protein Automated Homo sapiens models provided by the Genome Annotation process; sequence corresponds to the genomic contig.
  • 35.
  • 36.
  • 37.
  • 38. Open reading frame • Definition: – A stretch of triplet codons with an initiator codon at one end and a stop codon sat the other, as identifiable by nucleotide sequences. • Example – http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=nucleotide&list_uids=6688 473&dopt=GenBank&term=Y18948.1&qty=1
  • 39. Protein sequence database SWISS-PROT & TREMBL SwissProt - http://expasy.hcuge.ch/sprot/ SWISS-PROT is an annotated protein sequence database The sequences are translated from the EMBL Nucleotide Sequence Database Sequence entries are composed of different lines. For standardization purposes the format of SWISS-PROT follows as closely as possible that of the EMBL Nucleotide Sequence Database. Continuously updated (daily).
  • 40. Different Features of SWISS-PROT • Format follows as closely as possible that of EMBL’s • Curated protein sequence database • Three differences: 1. Strives to provide a high level of annotations 2. Minimal level of redundancy 3. High level of integration with other databases
  • 41. Three Distinct Criteria The sequence data; the citation information (bibliographical references) and the taxonomic data (description of the biological source of the protein) such as protein functions,post-translational modifications ,domains and sites,secondary structure,quaternary structure,similarities to other proteins,diseases associated with deficiencies in the protein,sequence conflicts, variants, etc. 1. Annotation
  • 42. any sequence databases contain, for a given protein sequence, separate entries which correspond to different literature reports. SWISS- PROT is as much as possible to merge all these data so as to minimize the redundancy. If conflicts exist between various sequencing reports, they are indicated in the feature table of the corresponding entry. 2. Minimal Redundancy
  • 43. • SWISS-PROT and TrEMBL - Protein sequences • PROSITE - Protein families and domains • SWISS-2DPAGE - Two-dimensional polyacrylamide gel electrophoresis • SWISS-3DIMAGE - 3D images of proteins and other biological macromolecules • SWISS-MODEL Repository - Automatically generated protein models • CD40Lbase - CD40 ligand defects • ENZYME - Enzyme nomenclature • SeqAnalRef - Sequence analysis bibliographic references 3. Integration With Other Databases
  • 44. TREMBL- http://expasy.hcuge.ch/sprot/ Translated EMBL sequences not (yet) in Swissprot. Updated faster than SWISS-PROT. TREMBL - two parts 1. SP-TREMBL Will eventually be incorporated into Swissprot Divided into FUN, HUM, INV, MAM, MHC, ORG, PHG, PLN, PRO, ROD, UNC, VRL and VRT. 2. REM-TREMBL (remaining) Will NOT be incorporated into Swissprot Divided into:Immunoglobins and T-cell receptors,Synthetic sequences,Patent application sequences,Small fragments,CDS not coding for real proteins
  • 45. SWISS-PROT/TrEMBL • TrEMBL is a computer-annotated supplement of SWISS-PROT that contains all the translations of EMBL nucleotide sequence entries not yet integrated in SWISS-PROT • SWISS-PROT Release 39.15 of 19- Mar-2001: 94,152 entries TrEMBL Release 16.2 of 23-Mar- 2001: 436,924 entries
  • 46. Example of a SwissProt entry ID TNFA_HUMAN STANDARD; PRT; 233 AA. IDentification AC P01375; ACcession DT 21-JUL-1986 (REL. 01, CREATED) DaTe DT 21-JUL-1986 (REL. 01, LAST SEQUENCE UPDATE) DT 15-JUL-1998 (REL. 36, LAST ANNOTATION UPDATE) DE TUMOR NECROSIS FACTOR PRECURSOR (TNF-ALPHA) (CACHECTIN). GN TNFA. Gene name OS HOMO SAPIENS (HUMAN). Organism Species OC EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA; OC EUTHERIA; PRIMATES. Organism Classification RN [1] Reference RP SEQUENCE FROM N.A. RX MEDLINE; 87217060. RA NEDOSPASOV S.A., SHAKHOV A.N., TURETSKAYA R.L., METT V.A., RA AZIZOV M.M., GEORGIEV G.P., KOROBKO V.G., DOBRYNIN V.N., RA FILIPPOV S.A., BYSTROV N.S., BOLDYREVA E.F., CHUVPILO S.A., RA CHUMAKOV A.M., SHINGAROVA L.N., OVCHINNIKOV Y.A.; RL COLD SPRING HARB. SYMP. QUANT. BIOL. 51:611-624(1986). RN [2] RP SEQUENCE FROM N.A. RX MEDLINE; 85086244. RA PENNICA D., NEDWIN G.E., HAYFLICK J.S., SEEBURG P.H., DERYNCK R., RA PALLADINO M.A., KOHR W.J., AGGARWAL B.B., GOEDDEL D.V.; RL NATURE 312:724-729(1984). ...
  • 47. CC -!- FUNCTION: CYTOKINE WITH A WIDE VARIETY OF FUNCTIONS: IT CAN CC CAUSE CYTOLYSIS OF CERTAIN TUMOR CELL LINES, IT IS IMPLICATED CC IN THE INDUCTION OF CACHEXIA, IT IS A POTENT PYROGEN CAUSING CC FEVER BY DIRECT ACTION OR BY STIMULATION OF IL-1 SECRETION, IT CC CAN STIMULATE CELL PROLIFERATION & INDUCE CELL DIFFERENTIATION CC UNDER CERTAIN CONDITIONS. Comments CC -!- SUBUNIT: HOMOTRIMER. CC -!- SUBCELLULAR LOCATION: TYPE II MEMBRANE PROTEIN. ALSO EXISTS AS CC AN EXTRACELLULAR SOLUBLE FORM. CC -!- PTM: THE SOLUBLE FORM DERIVES FROM THE MEMBRANE FORM BY CC PROTEOLYTIC PROCESSING. CC -!- DISEASE: CACHEXIA ACCOMPANIES A VARIETY OF DISEASES, INCLUDING CC CANCER AND INFECTION, AND IS CHARACTERIZED BY GENERAL ILL CC HEALTH AND MALNUTRITION. CC -!- SIMILARITY: BELONGS TO THE TUMOR NECROSIS FACTOR FAMILY. DR EMBL; X02910; G37210; -. Database Cross-references DR EMBL; M16441; G339741; -. DR EMBL; X01394; G37220; -. DR EMBL; M10988; G339738; -. DR EMBL; M26331; G339764; -. DR EMBL; Z15026; G37212; -. DR PIR; B23784; QWHUN. DR PIR; A44189; A44189. DR PDB; 1TNF; 15-JAN-91. DR PDB; 2TUN; 31-JAN-94.
  • 48. KW CYTOKINE; CYTOTOXIN; TRANSMEMBRANE; GLYCOPROTEIN; SIGNAL-ANCHOR; KW MYRISTYLATION; 3D-STRUCTURE. KeyWord FT PROPEP 1 76 Feature Table FT CHAIN 77 233 TUMOR NECROSIS FACTOR. FT TRANSMEM 36 56 SIGNAL-ANCHOR (TYPE-II PROTEIN). FT LIPID 19 19 MYRISTATE. FT LIPID 20 20 MYRISTATE. FT DISULFID 145 177 FT MUTAGEN 105 105 L->S: LOW ACTIVITY. FT MUTAGEN 108 108 R->W: BIOLOGICALLY INACTIVE. FT MUTAGEN 112 112 L->F: BIOLOGICALLY INACTIVE. FT MUTAGEN 162 162 S->F: BIOLOGICALLY INACTIVE. FT MUTAGEN 167 167 V->A,D: BIOLOGICALLY INACTIVE. FT MUTAGEN 222 222 E->K: BIOLOGICALLY INACTIVE. FT CONFLICT 63 63 F -> S (IN REF. 5). FT STRAND 89 93 FT TURN 99 100 FT TURN 109 110 FT STRAND 112 113 FT TURN 115 116 FT STRAND 118 119 FT STRAND 124 125
  • 49. FT STRAND 130 143 FT STRAND 152 159 FT STRAND 166 170 FT STRAND 173 174 FT TURN 183 184 FT STRAND 189 202 FT TURN 204 205 FT STRAND 207 212 FT HELIX 215 217 FT STRAND 218 218 FT STRAND 227 232 SQ SEQUENCE 233 AA; 25644 MW; 666D7069 CRC32; MSTESMIRDV ELAEEALPKK TGGPQGSRRC LFLSLFSFLI VAGATTLFCL LHFGVIGPQR EEFPRDLSLI SPLAQAVRSS SRTPSDKPVA HVVANPQAEG QLQWLNRRAN ALLANGVELR DNQLVVPSEG LYLIYSQVLF KGQGCPSTHV LLTHTISRIA VSYQTKVNLL SAIKSPCQRE TPEGAEAKPW YEPIYLGGVF QLEKGDRLSA EINRPDYLDF AESGQVYFGI IAL //
  • 50. Protein searching 3-levels of Protein Searching 1. Swissprot Little Noise Annotated entries 2. Swissprot + TREMBL More Noisy All probable entries 3. Translated EMBL - tblast or tfasta Most Noisy All possible entries
  • 51. New initiatiaves • IPI: International Protein Index – http://www.ebi.ac.uk/IPI/IPIhelp.ht ml • UNIPROT: Universal Protein Knowledgebase – http://www.pir.uniprot.org/ • HPRD: Human Protein Reference Database – http://www.hprd.org/
  • 52. UniProt Consortium • European Bioinformatics Institute (EBI) • Swiss Institute of Bioinformatics (SIB) • Protein Information Resource (PIR) Uniprot Databases •UniProt Knowledgebase (UniProtKB) •UniProt Reference Clusters (UniRef) •UniProt Archive (UniParc) UniprotKB •Swiss-Prot (annotated protein sequence db, golden standard) •trEMBL (translated EMBL + automated electronic annotations) UniProt
  • 53. understanding molecular structure is critical to the understanding of biology because because structure determines function
  • 54.
  • 55. • the drug morphine has chemical groups that are functionally equivalent to the natural endorphins found in the human body From Structure to Function
  • 56. • the drug morphine has chemical groups that are functionally equivalent to the natural endorphins found in the human body • the receptor molecules located at the synapse (between two neurons) bind morphine much the same way as endorphins • therefore, morphine is able to attenuate the pain response From Structure to Function
  • 57. Structure databases Protein Data Bank (PDB) Protein Data Bank - http://www.rcsb.org/pdb Diffraction 7373 structures determined by X-ray diffraction NMR 388 structures determined by NMR spectroscopy Theoretical Model 201 structures proposed by modeling
  • 58. • PDB is three-dimensional structure of proteins,some nuclei acids involved • PDB is operated by RCSB(Research Collaboratory for Structural Bioinformatics),funded by NSF, DOE, and two units of NIH:NIGMS National Institute Of General Medical Sciences and NLM National Library Of Medicine. • Established at BNL Brookhaven NationalLaboratories in 1971,as an archive for biologicalmacromolecular crystal structures • In 1980s, the number of deposited structures beganto increase dramatically. • October 1998, the management of the PDB became the responsibilityof RCSB. • Website http://www.rcsb.org
  • 59. PDB Holdings List: 27-Mar-2001 Molecule Type Proteins, Pe ptides, and Viruses Protein/ Nucleic Acid Complexes Nuclei c Acids Carbohydrate s total Exp. Tech. X-ray Diffraction and other 11045 526 552 14 12137 NMR 1832 71 366 4 2273 Theoretica l Modeling 281 19 21 0 321 total 13158 616 939 18 14731 5032 Structure Factor Files 968 NMR Restraint Files
  • 61. PDB Growth in New Folds
  • 62. Other structure databases BioMagResBankhttp://www.bmrb.wisc.edu/ A Repository for Data from NMR Spectroscopy on Proteins, Peptides, and Nucleic Acids Biological Macromolecule Crystallization Database (BMCD)http://h178133.carb.nist.gov:4400/bmcd/bmcd.html Contains crystal data and the crystallization conditions, which have been compiled from literature Nucleic Acid Database (NDB)http://ndbserver.rutgers.edu:80/ Assembles and distributes structural information about nucleic acids Structural Classification of Proteins (SCOP)http://scop.mrc-lmb.cam.ac.uk/scop/ Structure similarity search. Hierarchic organization. MOOSEhttp://db2.sdsc.edu/moose/ Macromolecular Structure Query Cambridge Structural Database (CSD)http://www.ccdc.cam.ac.uk/ Small molecules.
  • 63.
  • 64. Protein Splicing? • Protein splicing is defined as the excision of an intervening protein sequence (the INTEIN) from a protein precursor and the concomitant ligation of the flanking protein fragments (the EXTEINS) to form a mature extein protein and the free intein • http://www.neb.com/inteins/intein_intro.ht ml
  • 65. Biological databases • NAR Database Issue – Every year: NAR DB Issue – The 2006 update includes 858 databases – Citation top 5 are: • Pfam • Gene Ontology • UniProt • SMART • KEGG – Primary Nucleotide DB’s and PDB are not cited anymore
  • 66. Outline • Molecular Biology • Flat files “sequence” databases – DNA – Protein – Structure • Relational Databases – What ? – Why ? • Biological Relational Databases – Howto ?
  • 67. Why biological databases ? • Explosive growth in biological data • Data (sequences, 3D structures, 2D gel analysis, MS analysis….) are no longer published in a conventional manner, but directly submitted to databases • Essential tools for biological research, as classical publications used to be !
  • 68. Problems with Flat files … • Wasted storage space • Wasted processing time • Data control problems • Problems caused by changes to data structures • Access to data difficult • Data out of date • Constraints are system based • Limited querying eg. all single exon GPCRs (<1000 bp)
  • 69. Relational • The Relational model is not only very mature, but it has developed a strong knowledge on how to make a relational back-end fast and reliable, and how to exploit different technologies such as massive SMP, Optical jukeboxes, clustering and etc. Object databases are nowhere near to this, and I do not expect then to get there in the short or medium term. • Relational Databases have a very well-known and proven underlying mathematical theory, a simple one (the set theory) that makes possible – automatic cost-based query optimization, – schema generation from high-level models and – many other features that are now vital for mission-critical Information Systems development and operations.
  • 70. • What is a relational database ? – Sets of tables and links (the data) – A language to query the datanase (Structured Query Language) – A program to manage the data (RDBMS) • Flat files are not relational – Data type (attribute) is part of the data – Record order mateters – Multiline records – Massive duplication • Bv Organism: Homo sapeinsm Eukaryota, … – Some records are hierarchical • Xrefs – Records contain multiple “sub-records” – Implecit “Key”
  • 71. The Benefits of Databases • Redundancy can be reduced • Inconsistency can be avoided • Conflicting requirements can be balanced • Standards can be enforced • Data can be shared • Data independence • Integrity can be maintained • Security restrictions can be applied
  • 72. Disadvantages • size • complexity • cost • Additional hardware costs • Higher impact of failure • Recovery more difficult
  • 73. Relational Terminology ID NAME PHONE EMP_ID 201 Unisports 55-2066101 12 202 Simms Atheletics 81-20101 14 203 Delhi Sports 91-10351 14 204 Womansport 1-206-104-0103 11 Row (Tuple) Column (Attribute) CUSTOMER Table (Relation)
  • 74. Relational Database Terminology • Each row of data in a table is uniquely identified by a primary key (PK) • Information in multiple tables can be logically related by foreign keys (FK) ID LAST_NAME FIRST_NAME 10 Havel Marta 11 Magee Colin 12 Giljum Henry 14 Nguyen Mai ID NAME PHONE EMP_ID 201 Unisports 55-2066101 12 202 Simms Atheletics 81-20101 14 203 Delhi Sports 91-10351 14 204 Womansport 1-206-104-0103 11 Table Name: CUSTOMER Table Name: EMP Primary Key Foreign Key Primary Key
  • 75. • RDBM products – Free • MySQL, very fast, widely usedm easy to jump into but limited non standard SQL • PostrgreSQL – full SQLm limited OO, higher learning curve than MySQL – Commercial • MS Access – Great query builder, GUI interfaces • MS SQL Server – full SQL, NT only • Oracle, everything, including the kitchen sink • IBM DB2, Sybase
  • 76. A simple datamodel (tables and relations) Prot_id name seq Species_id 1 GTM1_HUMA N MGTDHG… 1 2 GTM1_RAT MGHJADSW.. 2 3 GTM2_HUMA N MVSDBSVD.. 1 Species_id name Full Lineage 1 human Homo Sapiens … 2 rat Rattus rattus
  • 77. Relational Database Fundamentals • Basic SQL – SELECT – FROM – WHERE – JOIN – NATURAL, INNER, OUTER • Other SQL functions – COUNT() – MAX(),MIN(),AVE() – DISTINCT – ORDER BY – GROUP BY – LIMIT
  • 79.
  • 80.
  • 81.
  • 82. • Query: een opdracht om gegevens uit een databaase op te vragen noemt men een query • eg. MyGPCRdb – Bioentry – Taxid (include full lineage) – Linking table (bioentry_tax)
  • 83. MyGPCR; Geef me allE GPCR die korter zijn dan 1000bp select * from bioentry; select count(*) from bioentry; select * from bioentry inner join biosequence on bioentry.bioentry_id=biosequence.bioentry_id ; select * from bioentry inner join biosequence on bioentry.bioentry_id=biosequence.bioentry_id where length(biosequence_str)<1000;
  • 84. Example 3-tier model in biological database http://www.bioinformatics.be Example of different interface to the same back-end database (MySQL)
  • 85. Overview • DataBases – FF • *.txt • Indexed version – Relational (RDBMS) • Access, MySQL, PostGRES, Ora cle – OO (OODBMS) • AceDB, ObjectStore – Hierarchical • XML – Frame based system • Eg. DAML+OIL – Hybrid systems Overview
  • 86. Object • The Object paradigm is already proven for application design and development, but it may simply not be an adequate paradigm for the data store. • Object Database are modelled by graphs. The graph theory plays a great role on computer science, but is also a great source of unbeatable problems, the NP-complex class: problems for which there are no computationally efficient solution, as there's no way to escape from exponential complexity. This is not a current technological limit. It's a limit inherent to the problem domain. • Hybrid Object-Relational databases will probably be the long term solution for the industry. They put a thin object layer above the relational structure, thus providing a syntax and semantics closer to the object oriented design and programming tools. They simply make it easier to build the data layer classes
  • 87. Conclusions • A database is a central component of any contemporary information system • The operations on the database and the mainenance of database consistency is handled by a DBMS • There exist stand alone query languages or embedded languages but both deal with definition (DDL) and manipulation (DML) aspects • The structural properties, constraints and operations permitted within a DBMS are defined by a data model - hierarchical, network, relational • Recovery and concurrency control are essential • Linking of heterogebous datasources is central theme in modern bioinformatics
  • 88.
  • 89. • How do you know which database exists ? • NAR list • Weblinks op Nexus – Searchable – Maintainable
  • 90.
  • 91. • Tools available in public domain for simultaneous access –entrez –srs • Batch queries for offload in local databases for subsequent analysis (see further)
  • 92.
  • 93.
  • 94. • What if you want to search the complete human genome (golden path coordinates) instead of separate NCBI entries ? • ENSEMBL
  • 95. BioMart • Joined project between EBI and CSHL, http://www.biomart.org/ • Aim is to develop a generic, query-oriented data management system capable of integrating distributed data sources • 3 step system: – Start by selecting a dataset to query – Filter this dataset by applying the appropriate filters – Generate the output by selecting the attributes and output format • Available public biomart websites: http://www.biomart.org/biomart/martview
  • 96. BioMart - Single access point - Generic interface
  • 97. BioMart - ‘Out of the box’ website
  • 98. BioMart – 3 step system Dataset Attribute Filter
  • 99. BioMart - 3 step system Name, chromosome position, description for all Ensembl genes located on chromosome 1, expressed in lung, associated with human homologues Dataset Attribute Filter
  • 100. BioMart - EnsMart • The first in line was EnsMart, a powerful data mining toolset for retrieving customized data sets from annotated genomes. EnsMart integrates data from Ensembl and various worldwide data sources. • EnsMart provides .... – Gene and protein annotation – Disease information – Cross-species analyses – SNPs affecting proteins – Allele frequency data – Retrieval by external identifiers – Retrieval by Gene Ontology – Customized sequence datasets – Microarray annotation tools
  • 101. Other BioMart implementations • Other data resources also implemented a BioMart interface: – Wormbase – Gramene – HapMap – DictyBase – euGenes
  • 103.
  • 104.
  • 105.
  • 106. BioBar • A toolbar for browsing biological data and databases http://biobar.mozdev.org/ • The following databases are included http://biobar.mozdev.org/Databases.ht ml • a toolbar for Mozilla-based browsers including Firefox and Netscape 7+
  • 107. Weblems Weblems Online (example posting) W2.1. Which isolate of Tabac was used in record accession Z71230, and human sample in the genbank entry with accession AJ311677 ? W2.2: Find all structures of GFP in the Protein Data Bank and draw a histogram of their dates of deposition ? W2.3: What is the chromosomal location of the human gene for insulin ? W2.4: How many different human NHR (nuclear hormone receptors) s exist ? How many of these are single exon genes ? Are there any drugs working on this class of receptors ? W2.5: The gene for Berardinelli-Seip syndrome was initially localized between two markers on chromosome band 11q13- D11S4191 and D11S987. a. How many base pairs are there in the interval between these two markers ? b. How many known genes are there ? c. List the gene ontology terms for that region ?