3eme chap 1

326 vues

Publié le

calcul littéral, développement, factorisation

Publié dans : Formation
0 commentaire
0 j’aime
Statistiques
Remarques
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

Aucun téléchargement
Vues
Nombre de vues
326
Sur SlideShare
0
Issues des intégrations
0
Intégrations
5
Actions
Partages
0
Téléchargements
5
Commentaires
0
J’aime
0
Intégrations 0
Aucune incorporation

Aucune remarque pour cette diapositive

3eme chap 1

  1. 1. 1 I.Développement II.Les identités remarquables Cours de mathématiques Calcul littéral, identités remarquables et factorisation X. GARDEIL 11 septembre 2013 Troisième de collège Collège de Bozel (Savoie)
  2. 2. 1 I.Développement II.Les identités remarquables I.Développement II.Les identités remarquables 2.1.Le carré d’une somme 2.2.Le carré d’une différence 2.3.Le produit d’une somme par une différence 2.4.Un peu de vocabulaire Troisième de collège Collège de Bozel (Savoie)
  3. 3. 1 I.Développement II.Les identités remarquables I.Développement II.Les identités remarquables 2.1.Le carré d’une somme 2.2.Le carré d’une différence 2.3.Le produit d’une somme par une différence 2.4.Un peu de vocabulaire Troisième de collège Collège de Bozel (Savoie)
  4. 4. 1 I.Développement II.Les identités remarquables 2.1.Le carré d’une somme I.Développement II.Les identités remarquables 2.1.Le carré d’une somme 2.2.Le carré d’une différence 2.3.Le produit d’une somme par une différence 2.4.Un peu de vocabulaire Troisième de collège Collège de Bozel (Savoie)
  5. 5. 1 I.Développement II.Les identités remarquables 2.1.Le carré d’une somme On désigne par a et b deux nombres. Propriété Troisième de collège Collège de Bozel (Savoie)
  6. 6. 1 I.Développement II.Les identités remarquables 2.1.Le carré d’une somme On désigne par a et b deux nombres. Propriété (a + b)2 = a2 + 2ab + b2 Le terme 2ab est appelé le double produit, c’est le double du produit de a et b. Troisième de collège Collège de Bozel (Savoie)
  7. 7. 1 I.Développement II.Les identités remarquables 2.1.Le carré d’une somme On désigne par a et b deux nombres. Propriété (a + b)2 = a2 + 2ab + b2 Le terme 2ab est appelé le double produit, c’est le double du produit de a et b. Exemple A = (x + 3)2 Troisième de collège Collège de Bozel (Savoie)
  8. 8. 1 I.Développement II.Les identités remarquables 2.1.Le carré d’une somme On désigne par a et b deux nombres. Propriété (a + b)2 = a2 + 2ab + b2 Le terme 2ab est appelé le double produit, c’est le double du produit de a et b. Exemple A = (x + 3)2 On reconnaît (a + b)2 avec a = x et b = 3 Troisième de collège Collège de Bozel (Savoie)
  9. 9. 1 I.Développement II.Les identités remarquables 2.1.Le carré d’une somme On désigne par a et b deux nombres. Propriété (a + b)2 = a2 + 2ab + b2 Le terme 2ab est appelé le double produit, c’est le double du produit de a et b. Exemple A = (x + 3)2 On reconnaît (a + b)2 avec a = x et b = 3 A = x2 + 2 ⇥ x ⇥ 3 + 32 On écrit a2 + 2ab + b2 Troisième de collège Collège de Bozel (Savoie)
  10. 10. 1 I.Développement II.Les identités remarquables 2.1.Le carré d’une somme On désigne par a et b deux nombres. Propriété (a + b)2 = a2 + 2ab + b2 Le terme 2ab est appelé le double produit, c’est le double du produit de a et b. Exemple A = (x + 3)2 On reconnaît (a + b)2 avec a = x et b = 3 A = x2 + 2 ⇥ x ⇥ 3 + 32 On écrit a2 + 2ab + b2 A = x2 + 6x + 9 On réduit l’expression Troisième de collège Collège de Bozel (Savoie)
  11. 11. 1 I.Développement II.Les identités remarquables 2.2.Le carré d’une différence I.Développement II.Les identités remarquables 2.1.Le carré d’une somme 2.2.Le carré d’une différence 2.3.Le produit d’une somme par une différence 2.4.Un peu de vocabulaire Troisième de collège Collège de Bozel (Savoie)
  12. 12. 1 I.Développement II.Les identités remarquables 2.2.Le carré d’une différence On désigne par a et b deux nombres. Propriété Troisième de collège Collège de Bozel (Savoie)
  13. 13. 1 I.Développement II.Les identités remarquables 2.2.Le carré d’une différence On désigne par a et b deux nombres. Propriété (a b)2 = a2 2ab + b2 On a toujours le double produit qui apparaît mais avec le signe Exemple B = (x 4)2 Troisième de collège Collège de Bozel (Savoie)
  14. 14. 1 I.Développement II.Les identités remarquables 2.2.Le carré d’une différence On désigne par a et b deux nombres. Propriété (a b)2 = a2 2ab + b2 On a toujours le double produit qui apparaît mais avec le signe Exemple B = (x 4)2 On reconnaît (a b)2 avec a = x et b = 4 Troisième de collège Collège de Bozel (Savoie)
  15. 15. 1 I.Développement II.Les identités remarquables 2.2.Le carré d’une différence On désigne par a et b deux nombres. Propriété (a b)2 = a2 2ab + b2 On a toujours le double produit qui apparaît mais avec le signe Exemple B = (x 4)2 On reconnaît (a b)2 avec a = x et b = 4 B = x2 2 ⇥ x ⇥ 4 + 42 On écrit a2 2ab + b2 Troisième de collège Collège de Bozel (Savoie)
  16. 16. 1 I.Développement II.Les identités remarquables 2.2.Le carré d’une différence On désigne par a et b deux nombres. Propriété (a b)2 = a2 2ab + b2 On a toujours le double produit qui apparaît mais avec le signe Exemple B = (x 4)2 On reconnaît (a b)2 avec a = x et b = 4 B = x2 2 ⇥ x ⇥ 4 + 42 On écrit a2 2ab + b2 B = x2 8x + 16 On réduit l’expression Troisième de collège Collège de Bozel (Savoie)
  17. 17. 1 I.Développement II.Les identités remarquables 2.3.Le produit d’une somme par une différence I.Développement II.Les identités remarquables 2.1.Le carré d’une somme 2.2.Le carré d’une différence 2.3.Le produit d’une somme par une différence 2.4.Un peu de vocabulaire Troisième de collège Collège de Bozel (Savoie)
  18. 18. 1 I.Développement II.Les identités remarquables 2.3.Le produit d’une somme par une différence On désigne par a et b deux nombres. Propriété Troisième de collège Collège de Bozel (Savoie)
  19. 19. 1 I.Développement II.Les identités remarquables 2.3.Le produit d’une somme par une différence On désigne par a et b deux nombres. Propriété (a + b)(a b) = a2 b2 Exemple A = (x + 2)(x 2) Troisième de collège Collège de Bozel (Savoie)
  20. 20. 1 I.Développement II.Les identités remarquables 2.3.Le produit d’une somme par une différence On désigne par a et b deux nombres. Propriété (a + b)(a b) = a2 b2 Exemple A = (x + 2)(x 2) On reconnaît (a + b)(a b) avec a = x et b = 2 Troisième de collège Collège de Bozel (Savoie)
  21. 21. 1 I.Développement II.Les identités remarquables 2.3.Le produit d’une somme par une différence On désigne par a et b deux nombres. Propriété (a + b)(a b) = a2 b2 Exemple A = (x + 2)(x 2) On reconnaît (a + b)(a b) avec a = x et b = 2 A = x2 22 On écrit a2 b2 Troisième de collège Collège de Bozel (Savoie)
  22. 22. 1 I.Développement II.Les identités remarquables 2.3.Le produit d’une somme par une différence On désigne par a et b deux nombres. Propriété (a + b)(a b) = a2 b2 Exemple A = (x + 2)(x 2) On reconnaît (a + b)(a b) avec a = x et b = 2 A = x2 22 On écrit a2 b2 A = x2 4 On réduit l’expression Troisième de collège Collège de Bozel (Savoie)
  23. 23. 1 I.Développement II.Les identités remarquables 2.4.Un peu de vocabulaire I.Développement II.Les identités remarquables 2.1.Le carré d’une somme 2.2.Le carré d’une différence 2.3.Le produit d’une somme par une différence 2.4.Un peu de vocabulaire Troisième de collège Collège de Bozel (Savoie)
  24. 24. 1 I.Développement II.Les identités remarquables 2.4.Un peu de vocabulaire Comme on l’a dit tout au long du cours le vocabulaire est très important pour que l’on parle tous de la même chose. On utilise un vocabulaire particulier pour désigner les différentes parties des identités remarquables. Troisième de collège Collège de Bozel (Savoie)
  25. 25. 1 I.Développement II.Les identités remarquables 2.4.Un peu de vocabulaire Carré de la somme (a + b)2 Carré de la différence (a b)2 Produit de la somme par la différence (a + b)(a b) Double produit 2ab Différence de deux carrés a2 b2 Somme de deux carrés a2 + b2 Troisième de collège Collège de Bozel (Savoie)

×