SlideShare une entreprise Scribd logo
1  sur  78
Télécharger pour lire hors ligne
Higher-order Segmentation Functionals:
Entropy, Color Consistency, Curvature, etc.
Yuri Boykov

jointly with

Andrew
Delong
M. Tang

C. Nieuwenhuis

I. Ben Ayed

E. Toppe

O. Veksler

C. Olsson

H. Isack

L. Gorelick

A. Osokin

A. Delong
Different surface representations
continuous
optimization

sp
mesh

combinatorial
optimization

s p {0,1}
level-sets

graph labeling
on complex

on grid

mixed
optimization

sp Z

p

point cloud
labeling
this talk
combinatorial
optimization

s p {0,1}
graph labeling

on grid
Implicit surfaces/bondary
Image segmentation
Basics
E(S)
E(S)

s p {0,1}

f, Sp s B(S)
f p
p

S
Pr(I | Fg)

Pr(I | Bg)

fp
I

Pr(Ip | fg)
ln
Pr(Ip |bg)
4
Linear (modular) appearance of region

R( S )

f,S

f p sp
p

Examples of potential functions
• Log-likelihoods

fp

• Chan-Vese

fp

• Ballooning

fp

ln Pr ( I p )

( I p c) 2
1
Basic boundary regularization for

B( S )

w [s p

sq ]
s p {0,1}

pq N
pair-wise discontinuities
Basic boundary regularization for

B( S )

w [s p

sq ]
s p {0,1}

pq N
second-order terms
[s p sq ]

s p (1 sq )

(1 s p ) sq

quadratic
Basic boundary regularization for

B( S )

wpq [s p

sq ]
s p {0,1}

pq N
second-order terms

Examples of discontinuity penalties
• Boundary length

wpq 1

• Image-weighted
boundary length

wpq

exp ( I p I q )2
Basic boundary regularization for

B( S )

wpq [s p

sq ]
s p {0,1}

pq N
second-order terms

• corresponds to boundary length | |
– grids [B&K, 2003], via integral geometry
– complexes [Sullivan 1994]

• submodular second-order energy
– can be minimized exactly via graph cuts

a cut
t
n-links
w pq

[Greig et al.’91, Sullivan’94, Boykov-Jolly’01]

s
Submodular set functions

any (binary) segmentation energy E(S)
is a set function E: 2

Ω

S
Submodular set functions
Set function

E:2

is submodular if for any

S, T

E ( S  T ) E ( S  T ) E ( S ) E (T )
Ω

S

T

Significance: any submodular set function can be
globally optimized in polynomial time
[Grotschel et al.1981,88, Schrijver 2000]

O( |

9

|)
Submodular set functions
an alternative equivalent definition providing intuitive interpretation: “diminishing returns”

Set function

E (T

E:2

is submodular if for any

{v}) E (T ) E (S

S

T

{v}) E (S )
Ω

S

T
S

Easily follows from the previous definition: E (T

v

v
T

S

T

S

{v}) E (S ) E (S

{v}) E(T)

Significance: any submodular set function can be
globally optimized in polynomial time
[Grotschel et al.1981,88, Schrijver 2000]

9

O( |

|)
Graph cuts for minimization of
submodular set functions
Assume set Ω and 2nd-order (quadratic) function

E ( s)

E pq ( s p , sq )
( pq ) N

Function E(S) is submodular if for any

s p , sq {0,1}
Indicator variables

( p , q) N

E pq (0,0) E pq (1,1) E pq (1,0) E pq (0,1)
Significance: submodular 2nd-order boolean (set) function
can be globally optimized in polynomial time by graph cuts
[Hammer 1968, Pickard&Ratliff 1973] O(| N | |
[Boros&Hammer 2000, Kolmogorov&Zabih2003]

|2 )
Global Optimization

Combinatorial
optimization
submodularity

Continuous
optimization

?

convexity
Graph cuts for minimization of
posterior energy (MRF)
Assume Gibbs distribution over binary random variables

Pr (s1 ,..., sn )

exp( E(S ))

for

s p {0,1}
S

{ p | sp

1}

Theorem [Boykov, Delong, Kolmogorov, Veksler in unpublished book 2014?]
All random variables

sp

are positively correlated iff set function

E(S)

That is, submodularity implies MRF with “smoothness” prior

is submodular
Basic segmentation energy

f p sp
p
segment region/appearance

wpq [ s p

sq ]

pq N
boundary smoothness
Higher-order binary segmentation
segment region/appearance
Appearance Entropy
Color consistency

boundary smoothness
this talk

(N-th order)
(N-th order)

Curvature (3-rd order)

Convexity

Cardinality potentials (N-th order)
Distribution consistency (N-th order)
Connectivity (N-th order)
Shape priors (N-th order)

(3-rd order)
Overview of this talk
high-order functionals

• From likelihoods to entropy

• From entropy to color consistency

optimization
block-coordinate descent
[Zhu&Yuille 96, GrabCut 04]

global minimum
[our work: One Cut 2014]

• Convex cardinality potentials
submodular approximations
• Distribution consistency
[our work: Trust Region 13, Auxiliary Cuts 13]
• From length to curvature
other extensions [arXiv13]
Given likelihood models
unary (linear) term

E( S| 0 , 1 )

ln Pr(I p|
p

assuming known

sp

)

pair-wise (quadratic) term

wpq [s p sq ]

s p {0,1}

pq N

guaranteed globally optimal S

• parametric models – e.g. Gaussian or GMM
• non-parametric models - histograms

I p RGB

image segmentation, graph cut
[Boykov&Jolly, ICCV2001]
Beyond fixed likelihood models
mixed optimization term

E( S , 0 , 1 )

ln Pr(I p|
p

extra variables
• parametric models – e.g. Gaussian or GMM
• non-parametric models - histograms

sp

)

pair-wise (quadratic) term

wpq [s p sq ]

s p {0,1}

pq N

NP hard mixed optimization!
[Vesente et al., ICCV’09]

I p RGB

Models 0 , 1
are iteratively
re-estimated
(from initial box)

iterative image segmentation, Grabcut
(block coordinate descent S
0, 1)
[Rother, et al. SIGGRAPH’2004]
Block-coordinate descent for

E(S , 0 , 1 )

• Minimize over segmentation S for fixed
E(S , 0 , 1 )

ln Pr(I p|

Sp

)

p

0

,

wpq [s p sq ]
pq N

optimal S is computed using graph cuts, as in [BJ 2001]

• Minimize over

0

,

1

for fixed labeling S
fixed for

E(S , 0 , 1 )

ln Pr( I p| 0 )
p :s p 0

ln Pr( I p| 1 )
p :s p 1

ˆ

0

pS

distribution of intensities in
current bkg. segment S ={p:Sp=0}

w pq [ s p
pq N

ˆ

1

S=const

pS

distribution of intensities in
current obj. segment S={p:Sp=1}

sq ]

1
Iterative learning of color models
(binary case s p {0,1})

• GrabCut: iterated graph cuts
E(S , 0 , 1 )

ln Pr(I p|
p

start from models 0 , 1
inside and outside some given box

Sp

)

[Rother et al., SIGGRAPH 04]

wpq [s p sq ]
pq N

iterate graph cuts and model re-estimation
until convergence to a local minimum

solution is sensitive to initial box
Iterative learning of color models
(binary case s p {0,1} )

E=1.410×106

E=1.39×106

E=2.41×106

E=2.37×106

BCD minimization of E ( S , 0 , 1 ) converges to a local minimum
(interactivity a la “snakes”)
Iterative learning of color models
(could be used for more than 2 labels s p {0,1,2,...})

• Unsupervised segmentation [Zhu&Yuille, 1996]
using level sets + merging heuristic

E ( S , 0 , 1 , 2 ...)

ln Pr(I p|
p

Sp

)

wpq [s p sq ]

| labels|

pq N

iterate segmentation
and model re-estimation
until convergence
models compete, stable result if sufficiently many

initialize models 0 , 1 , 2 ,
from many randomly sampled boxes
Iterative learning of color models
(could be used for more than 2 labels s p {0,1,2,...})

• Unsupervised segmentation [Delong et al., 2012]
using a-expansion (graph-cuts)

E ( S , 0 , 1 , 2 ...)

ln Pr(I p|
p

Sp

)

wpq [s p sq ]

| labels|

pq N

iterate segmentation
and model re-estimation
until convergence
models compete, stable result if sufficiently many

initialize models 0 , 1 , 2 ,
from many randomly sampled boxes
Iterative learning of other models
(could be used for more than 2 labels s p {0,1,2,...})

• Geometric multi-model fitting [Isack et al., 2012]
using a-expansion (graph-cuts)

E ( S , 0 , 1 , 2 ...)

p

Sp

p

initialize plane models 0 , 1 , 2 ,
from many randomly sampled SIFT matches
in 2 images of the same scene

-p

w pq [ s p

sq ]

| labels|

pq N

iterate segmentation
and model re-estimation
until convergence
models compete, stable result if sufficiently many
Iterative learning of other models
(could be used for more than 2 labels s p {0,1,2,...})

• Geometric multi-model fitting [Isack et al., 2012]
using a-expansion (graph-cuts)

E ( S , 0 , 1 , 2 ...)

p

Sp

p

-p

w pq [ s p

sq ]

| labels|

pq N

VIDEO
initialize Fundamental matrices 0 , 1 , 2 ,
from many randomly sampled SIFT matches
in 2 consecutive frames in video

iterate segmentation
and model re-estimation
until convergence
models compete, stable result if sufficiently many
From color model estimation
to entropy and color consistency

global optimization in One Cut
[Tang et al. ICCV 2013]
Interpretation of log-likelihoods:
entropy of segment intensities
ln Pr ( I p| )
Si { p S | I p

i}

given distribution
of intensities

=
| Si| ln pi

S2

i

=

S

Si

S3

S5
S4

piS ln pi

| S|
i

pis

| Si |
|S|

probability of
intensity i in S

= {p1 , p2 , ... , pn }

p S

pixels of color i in S

S1

where

S
S
S
p S { p1 , p2 ,..., pn }

distribution of intensities
observed at S

H(S| )
cross entropy
of distribution pS w.r.t.
Interpretation of log-likelihoods:
entropy of segment intensities
joint estimation of S and color models [Rother et al., SIGGRAPH’04, ICCV’09]

E(S , 0 , 1 )

ln Pr( I p | 0 )
p :S p 0

ln Pr( I p | 1 )
p :S p 1

| S| H ( S| 0 )

w pq [ s p

sq ]

pq N

| S| H ( S| 1 )

min

0, 1

cross-entropy

entropy

Note: H(P|Q) H(P) for any two distributions (equality when Q=P)
entropy of
intensities in

E(S )

| S | H (S )

S

entropy of
intensities in

S

| S | H (S )

wpq [s p
pq N

minimization of segments entropy [Tang et al, ICCV 2013]

sq ]
Interpretation of log-likelihoods:
entropy of segment intensities
[Rother et al., SIGGRAPH’04, ICCV’09]

mixed optimization

E(S , 0 , 1 )

ln Pr( I p | 0 )
p :S p 0

ln Pr( I p | 1 )
p :S p 1

| S| H ( S| 0 )

w pq [ s p

sq ]

pq N

| S| H ( S| 1 )

min

0, 1

cross-entropy

entropy

Note: H(P|Q) H(P) for any two distributions (equality when Q=P)
entropy of
intensities in

E(S )

| S | H (S )

S

entropy of
intensities in

S

| S | H (S )

wpq [s p
pq N

binary optimization

[Tang et al, ICCV 2013]

sq ]
Interpretation of log-likelihoods:
entropy of segment intensities
E(S , 0 , 1 )

ln Pr( I p | 0 )
p :S p 0

ln Pr( I p | 1 )
p :S p 1

| S| H ( S| 0 )

w pq [ s p

sq ]

pq N

| S| H ( S| 1 )

min

0, 1

cross-entropy

entropy

Note: H(P|Q) H(P) for any two distributions (equality when Q=P)
entropy of
intensities in

E(S )

| S | H (S )

S

entropy of
intensities in

S

| S | H (S )

wpq [s p
pq N

common energy for categorical clustering, e.g. [Li et al. ICML’04]

sq ]
Minimizing entropy of segments intensities
(intuitive motivation)
E(S )

| S | H (S )

| S | H (S )

wpq [s p

sq ]

pq N

break image into two coherent segments
with low entropy of intensities
high entropy segmentation

S

low entropy segmentation

S

S

S

S

S
S

unsupervised image segmentation (like in Chan-Vese)

S
Minimizing entropy of segments intensities
(intuitive motivation)
E(S )

| S | H (S )

| S | H (S )

wpq [s p

sq ]

pq N

S

break image into two coherent segments
with low entropy of intensities

S
S
more general than Chan-Vese (colors can vary within each segment)

S
From entropy
to color consistency
all pixels

i

2

1
i

4

5
3

Minimization of entropy encourages
pixels i of the same color bin i
to be segmented together
(proof: see next page)
From entropy
to color consistency
E(S )

| S | H (S )

| S | H (S )

wpq [s p

sq ]

Si = S

pq N

piS ln piS

|S |
i

i

| Si | ln

| Si |
|S |

i

| Si | ln | S |
i

Si

piS ln piS

|S|

| Si | ln

| Si |
|S |

i

| Si | ln | S |

| Si | ln | Si |
i

i

Si

i

S

S

| Si | ln | Si |
i

|S|

|S|

( | Si | ln | Si | | Si | ln | Si | )

| S | ln | S | | S | ln | S |
i

volume
balancing

pixels in each color bin i
prefer to be together
(either inside object
or background)
|S |

color consistency

|S|

i

i

i
From entropy
to color consistency
Si = S
segmentation S
with better
color consistency

i

S

S
( | Si | ln | Si | | Si | ln | Si | )

| S | ln | S | | S | ln | S |
i

volume
balancing

pixels in each color bin i
prefer to be together
(either inside object
or background)
|S |

color consistency

|S|

i

i

i
From entropy
to color consistency
In many applications, this term
can be either dropped or replaced
with simple unary ballooning
[Tang et al. ICCV 2013]

Si = S

Graph-cut constructions
for similar cardinality terms
(for superpixel consistency)
[Kohli et al. IJCV’09]

convex function of
cardinality |S|
(non-submodular)

i

S

concave function of
cardinality |Si|
(submodular)

S

( | Si | ln | Si | | Si | ln | Si | )

| S | ln | S | | S | ln | S |
i

volume
balancing

pixels in each color bin i
prefer to be together
(either inside object
or background)
|S |

color consistency

|S|

i

i

i
From entropy
to color consistency
L1 color separation
works better in practice
[Tang et al. ICCV 2013]
(also, simpler construction)

In many applications, this term
can be either dropped or replaced
with simple unary ballooning
[Tang et al. ICCV 2013]

connect pixels in each color bin
to corresponding auxiliary nodes

convex function of
cardinality |S|
(non-submodular)

|Si|

( | Si | ln | Si | | Si | ln | Si | )

| S | ln | S | | S | ln | S |
i

volume
balancing

wpq [s p

sq ]

pq N

boundary
smoothness

color consistency

|Si|

|S|
i

i


One Cut
[Tang, et al., ICCV’13]
guaranteed global minimum

box segmentation

smoothness + color consistency

connect pixels in each color bin
to corresponding auxiliary nodes

Grabcut is
sensitive to bin size

linear
ballooning
inside the box
One Cut
[Tang, et al., ICCV’13]

from seeds

guaranteed global minimum

connect pixels in each color bin
to corresponding auxiliary nodes

saliency-based
segmentation



box segmentation

smoothness + color consistency

linear
ballooning
inside the box

ballooning from
hard constraints

linear
ballooning from
saliency measure
photo-consistency +
smoothness + color consistency


Color consistency can be integrated into
binary stereo
photo-consistency+smoothness

+ color consistency

connect pixels in each color bin
to corresponding auxiliary nodes
Approximating:

- Convex cardinality potentials
- Distribution consistency
- Other high-order region terms
General Trust Region Approach
(overview)
E(S) H(S) B(S)
hard

d

submodular
(easy)

S0
Trust
region

~
min E(S) U0 (S) B(S)

||S S0 || d

1st-order approximation for H(S)
General Trust Region Approach
(overview)

• Constrained optimization
~
minimize E(S) U 0 (S) B(S)

s.t. || S S 0 || d
• Unconstrained Lagrangian Formulation
minimize Lλ (S) U0 (S) B(S) λ || S S0 ||
can be approximated with unary terms
[Boykov,Kolmogorov,Cremers,Delong, ECCV’06]

45
Approximating L2 distance || S S0 ||
dp - signed distance map from C0

dCs2 ds

dC ,dC
C0

2

d p dp
C

d p (s p s o )
p

2
p

unary potentials [Boykov et al. ECCV 2006]
Trust Region
Approximation
Linear approx.
at S0

non-submodular term

ln Pr(I p |

|S|
S0

submodular terms
Sp

)

p

appearance log-likelihoods

wpq [s p

sq ]

pq N

boundary length

volume constraint
trust
region
L2 distance to S0

d p (s p
p

so )
p

S0

submodular
approx.
Volume Constraint
for Vertebrae segmentation
Log-Lik. + length

48
Back to entropy-based segmentation
Approximations
(local minima near the box)

Interactive
segmentation
with box

global minimum

non-submodular term
volume
balancing

submodular terms
color consistency

|S|

boundary smoothness

+

|Si|
i

i

+

wpq [s p
pq N

sq ]
Trust Region
Approximation
Surprisingly, TR outperforms QPBO, DD, TRWS, BP, etc.
on many high-order [CVPR’13] and/or
non-submodular problems [arXiv13]
Curvature
Pair-wise smoothness: limitations
• discrete metrication errors
- resolved by higher connectivity
- continuous convex formulations

4-neighborhood

8-neighborhood

52
Pair-wise smoothness: limitations
• boundary over-smoothing

(a.k.a. shrinking bias)

53
Pair-wise smoothness: limitations
• boundary over-smoothing

(a.k.a. shrinking bias)

- needs higher-order smoothness
- curvature

multi-view reconstruction
[Vogiatzis et al. 2005]

54
Higher-order smoothness & curvature
for discrete regularization
• Geman and Geman 1983

(line process, simulated annealing)

• Second-order stereo and surface reconstruction
– Li & Zuker 2010
– Woodford et al. 2009
– Olsson et al. 2012-13

(loopy belief propagation)
(fusion of proposals, QPBO)
(fusion of planes, nearly submodular)

• Curvature in segmentation:
–
–
–
–
–
–

Schoenemann et al. 2009
(complex, LP relaxation, many extra variables)
Strandmark & Kahl 2011
(complex, LP relaxation,…)
El-Zehiry & Grady 2010
(grid, 3-clique, only 90 degree accurate, QPBO)
Shekhovtsov et al. 2012
(grid patches, approximately learned, QPBO)
Olsson et al. 2013
(grid patches, integral geometry, partial enumeration)
Nieuwenhuis et al 2014? (grid, 3-cliques, integral geometry, trust region)

this talk
good approximation of curvature, better and faster optimization

practical !
the rest of the talk:
• Absolute curvature regularization on a grid
[Olsson, Ulen, Boykov, Kolmogorov - ICCV 2013]

• Squared curvature regularization on a grid
[Nieuwenhuis, Toppe, Gorelick, Veksler, Boykov - arXiv 2013]
Absolute Curvature

| | ds
S
Motivating example: for any convex shape

| | ds
S

• no shrinking bias
• thin structures

2
Absolute Curvature

| | ds
S

n
n

easy to estimate
via approximating
polygons
polygons also work for
[Bruckstein et al. 2001]

p
curvature on a cell complex
(standard geometry)
/4

/2

4- or 3-cliques on a cell complex
• Schoenemann et al. 2009
• Strandmark & Kahl 2011

/4

/2

solved via LP relaxations
curvature on a cell complex
(standard geometry)
/4

/2

zero gap

cell-patch cliques on a complex
/4

• Olsson et al., ICCV 2013

partial enumeration + TRWS

/2

P1

P2

P3

P4

P5

P6

reduction to pair-wise
Constrain Satisfaction Problem

- new graph: patches are nodes
- curvature is a unary potential
- patches overlap, need consistency

- tighter LP relaxation
curvature on a cell complex
(standard geometry)

curvature on a pixel grid
(integral geometry)
A+F+G+H =

2A+B= /2

/4

/2

0

A

A
H

A
B

/4

G

0
0

D

A+C= /4

E

/2

F

representative cell-patches

/4

/2

/2

0

/4

0

D+E+F = /2

representative pixel-patches

/2

0

F

0

C

A

/4

A

B

C

D

E

F

G

H

0

0

0

0

0

0

0

0
integral approach to
absolute curvature
on a grid
2x2 patches

3x3 patches

zero gap

5x5 patches
integral approach to
absolute curvature
on a grid
2x2 patches

3x3 patches

zero gap

5x5 patches
Squared Curvature with 3-cliques
2
S

ds
Nieuwenhuis et al., arXiv 2013
general intuition example

3-cliques
p-

p

S
p+

with configurations
(0,1,0) and (1,0,1)

S

more responses where curvature is higher
N
2
n-1

C

…

( s ) ds

| n|

sn

n 1

n 1

3

n

Δ

n+1

…

N

2
n

rn

2

i

1

| n|

sn

i( n )

n+2
N

5x5 neighborhood
N-1

…

C

Δ
Δ

i
i

i

ci

i( n )
n

zoom-in

rn

d

r =1/

d3
R( , d ) | |
4
Thus, appropriately weighted 3-cliques estimate squared curvature integral
Experimental
evaluation
2
Circle( r )

ds

1
r

r
Experimental
evaluation
2
Circle( r )

ds

1
r

r
Model is OK on given segments.
But, how do we optimize non-submodular
3-cliques (010) and (101)?
1. Standard trick: convert to non-submodular
pair-wise binary optimization
2. Our observation: QPBO does not work
(unless non-submodular regularization is very weak)

Fast Trust Region [CVPR13, arXiv]
uses local submodular approximations
Segmentation
Examples

length-based regularization
Segmentation
Examples

elastica [Heber,Ranftl,Pock, 2012]
Segmentation
Examples

90-degree curvature [El-Zehiry&Grady, 2010]
Segmentation
Examples

7x7 neighborhood

our squared curvature
Segmentation
Examples

7x7 neighborhood

our squared curvature (stronger)
Segmentation
Examples

2x2 neighborhood

our squared curvature (stronger)
Binary inpainting
length

squared curvature
Conclusions
• Optimization of Entropy is a useful informationtheoretic interpretation of color model estimation
• L1 color separation is an easy-to-optimize objective
useful in its own right [ICCV 2013]
• Global optimization matters: one cut [ICCV13]
• Trust region, auxiliary cuts, partial enumeration
General approximation techniques
- for high-order energies [CVPR13]
- for non-submodular energies [arXiv’13]
outperforming state-of-the-art combinatorial optimization methods

Contenu connexe

Tendances

Tailored Bregman Ball Trees for Effective Nearest Neighbors
Tailored Bregman Ball Trees for Effective Nearest NeighborsTailored Bregman Ball Trees for Effective Nearest Neighbors
Tailored Bregman Ball Trees for Effective Nearest NeighborsFrank Nielsen
 
Clustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryClustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryFrank Nielsen
 
On the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansOn the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansFrank Nielsen
 
Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...
Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...
Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...jfrchicanog
 
comments on exponential ergodicity of the bouncy particle sampler
comments on exponential ergodicity of the bouncy particle samplercomments on exponential ergodicity of the bouncy particle sampler
comments on exponential ergodicity of the bouncy particle samplerChristian Robert
 
Big Data Analysis with Signal Processing on Graphs
Big Data Analysis with Signal Processing on GraphsBig Data Analysis with Signal Processing on Graphs
Big Data Analysis with Signal Processing on GraphsMohamed Seif
 
Bregman divergences from comparative convexity
Bregman divergences from comparative convexityBregman divergences from comparative convexity
Bregman divergences from comparative convexityFrank Nielsen
 
Clustering in Hilbert geometry for machine learning
Clustering in Hilbert geometry for machine learningClustering in Hilbert geometry for machine learning
Clustering in Hilbert geometry for machine learningFrank Nielsen
 
Iaetsd vlsi implementation of gabor filter based image edge detection
Iaetsd vlsi implementation of gabor filter based image edge detectionIaetsd vlsi implementation of gabor filter based image edge detection
Iaetsd vlsi implementation of gabor filter based image edge detectionIaetsd Iaetsd
 
ABC based on Wasserstein distances
ABC based on Wasserstein distancesABC based on Wasserstein distances
ABC based on Wasserstein distancesChristian Robert
 
ABC convergence under well- and mis-specified models
ABC convergence under well- and mis-specified modelsABC convergence under well- and mis-specified models
ABC convergence under well- and mis-specified modelsChristian Robert
 
Approximating Bayes Factors
Approximating Bayes FactorsApproximating Bayes Factors
Approximating Bayes FactorsChristian Robert
 
Paper Introduction: Combinatorial Model and Bounds for Target Set Selection
Paper Introduction: Combinatorial Model and Bounds for Target Set SelectionPaper Introduction: Combinatorial Model and Bounds for Target Set Selection
Paper Introduction: Combinatorial Model and Bounds for Target Set SelectionYu Liu
 
Meta-learning and the ELBO
Meta-learning and the ELBOMeta-learning and the ELBO
Meta-learning and the ELBOYoonho Lee
 

Tendances (20)

Tailored Bregman Ball Trees for Effective Nearest Neighbors
Tailored Bregman Ball Trees for Effective Nearest NeighborsTailored Bregman Ball Trees for Effective Nearest Neighbors
Tailored Bregman Ball Trees for Effective Nearest Neighbors
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Clustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryClustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometry
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
 Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli... Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
 
On the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansOn the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract means
 
Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...
Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...
Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...
 
comments on exponential ergodicity of the bouncy particle sampler
comments on exponential ergodicity of the bouncy particle samplercomments on exponential ergodicity of the bouncy particle sampler
comments on exponential ergodicity of the bouncy particle sampler
 
ABC-Gibbs
ABC-GibbsABC-Gibbs
ABC-Gibbs
 
Big Data Analysis with Signal Processing on Graphs
Big Data Analysis with Signal Processing on GraphsBig Data Analysis with Signal Processing on Graphs
Big Data Analysis with Signal Processing on Graphs
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Bregman divergences from comparative convexity
Bregman divergences from comparative convexityBregman divergences from comparative convexity
Bregman divergences from comparative convexity
 
Clustering in Hilbert geometry for machine learning
Clustering in Hilbert geometry for machine learningClustering in Hilbert geometry for machine learning
Clustering in Hilbert geometry for machine learning
 
Iaetsd vlsi implementation of gabor filter based image edge detection
Iaetsd vlsi implementation of gabor filter based image edge detectionIaetsd vlsi implementation of gabor filter based image edge detection
Iaetsd vlsi implementation of gabor filter based image edge detection
 
ABC-Gibbs
ABC-GibbsABC-Gibbs
ABC-Gibbs
 
ABC based on Wasserstein distances
ABC based on Wasserstein distancesABC based on Wasserstein distances
ABC based on Wasserstein distances
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
ABC convergence under well- and mis-specified models
ABC convergence under well- and mis-specified modelsABC convergence under well- and mis-specified models
ABC convergence under well- and mis-specified models
 
Approximating Bayes Factors
Approximating Bayes FactorsApproximating Bayes Factors
Approximating Bayes Factors
 
Paper Introduction: Combinatorial Model and Bounds for Target Set Selection
Paper Introduction: Combinatorial Model and Bounds for Target Set SelectionPaper Introduction: Combinatorial Model and Bounds for Target Set Selection
Paper Introduction: Combinatorial Model and Bounds for Target Set Selection
 
Meta-learning and the ELBO
Meta-learning and the ELBOMeta-learning and the ELBO
Meta-learning and the ELBO
 

Similaire à Yuri Boykov — Combinatorial optimization for higher-order segmentation functionals: Entropy, Color Consistency, Curvature, etc.

Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesFrank Nielsen
 
A MODIFIED DIRECTIONAL WEIGHTED CASCADED-MASK MEDIAN FILTER FOR REMOVAL OF RA...
A MODIFIED DIRECTIONAL WEIGHTED CASCADED-MASK MEDIAN FILTER FOR REMOVAL OF RA...A MODIFIED DIRECTIONAL WEIGHTED CASCADED-MASK MEDIAN FILTER FOR REMOVAL OF RA...
A MODIFIED DIRECTIONAL WEIGHTED CASCADED-MASK MEDIAN FILTER FOR REMOVAL OF RA...cscpconf
 
Randomized Algorithms for Higher-Order Voronoi Diagrams
Randomized Algorithms for Higher-Order Voronoi DiagramsRandomized Algorithms for Higher-Order Voronoi Diagrams
Randomized Algorithms for Higher-Order Voronoi DiagramsMaksym Zavershynskyi
 
Chapter 2 Image Processing: Pixel Relation
Chapter 2 Image Processing: Pixel RelationChapter 2 Image Processing: Pixel Relation
Chapter 2 Image Processing: Pixel RelationVarun Ojha
 
Volume and edge skeleton computation in high dimensions
Volume and edge skeleton computation in high dimensionsVolume and edge skeleton computation in high dimensions
Volume and edge skeleton computation in high dimensionsVissarion Fisikopoulos
 
Algorithm Design and Complexity - Course 11
Algorithm Design and Complexity - Course 11Algorithm Design and Complexity - Course 11
Algorithm Design and Complexity - Course 11Traian Rebedea
 
ABC with Wasserstein distances
ABC with Wasserstein distancesABC with Wasserstein distances
ABC with Wasserstein distancesChristian Robert
 
ALEXANDER FRACTIONAL INTEGRAL FILTERING OF WAVELET COEFFICIENTS FOR IMAGE DEN...
ALEXANDER FRACTIONAL INTEGRAL FILTERING OF WAVELET COEFFICIENTS FOR IMAGE DEN...ALEXANDER FRACTIONAL INTEGRAL FILTERING OF WAVELET COEFFICIENTS FOR IMAGE DEN...
ALEXANDER FRACTIONAL INTEGRAL FILTERING OF WAVELET COEFFICIENTS FOR IMAGE DEN...sipij
 
Complexity Classes and the Graph Isomorphism Problem
Complexity Classes and the Graph Isomorphism ProblemComplexity Classes and the Graph Isomorphism Problem
Complexity Classes and the Graph Isomorphism Problemcseiitgn
 
FURTHER RESULTS ON THE DIRAC DELTA APPROXIMATION AND THE MOMENT GENERATING FU...
FURTHER RESULTS ON THE DIRAC DELTA APPROXIMATION AND THE MOMENT GENERATING FU...FURTHER RESULTS ON THE DIRAC DELTA APPROXIMATION AND THE MOMENT GENERATING FU...
FURTHER RESULTS ON THE DIRAC DELTA APPROXIMATION AND THE MOMENT GENERATING FU...IJCNC
 
Fine Grained Complexity of Rainbow Coloring and its Variants
Fine Grained Complexity of Rainbow Coloring and its VariantsFine Grained Complexity of Rainbow Coloring and its Variants
Fine Grained Complexity of Rainbow Coloring and its VariantsAkankshaAgrawal55
 
Image Acquisition and Representation
Image Acquisition and RepresentationImage Acquisition and Representation
Image Acquisition and RepresentationAmnaakhaan
 
Simplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsSimplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsPK Lehre
 
Simplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsSimplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsPer Kristian Lehre
 
Kolev skalna2018 article-exact_solutiontoa_parametricline
Kolev skalna2018 article-exact_solutiontoa_parametriclineKolev skalna2018 article-exact_solutiontoa_parametricline
Kolev skalna2018 article-exact_solutiontoa_parametriclineAlina Barbulescu
 

Similaire à Yuri Boykov — Combinatorial optimization for higher-order segmentation functionals: Entropy, Color Consistency, Curvature, etc. (20)

Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective Divergences
 
A MODIFIED DIRECTIONAL WEIGHTED CASCADED-MASK MEDIAN FILTER FOR REMOVAL OF RA...
A MODIFIED DIRECTIONAL WEIGHTED CASCADED-MASK MEDIAN FILTER FOR REMOVAL OF RA...A MODIFIED DIRECTIONAL WEIGHTED CASCADED-MASK MEDIAN FILTER FOR REMOVAL OF RA...
A MODIFIED DIRECTIONAL WEIGHTED CASCADED-MASK MEDIAN FILTER FOR REMOVAL OF RA...
 
Randomized Algorithms for Higher-Order Voronoi Diagrams
Randomized Algorithms for Higher-Order Voronoi DiagramsRandomized Algorithms for Higher-Order Voronoi Diagrams
Randomized Algorithms for Higher-Order Voronoi Diagrams
 
A05920109
A05920109A05920109
A05920109
 
Volume computation and applications
Volume computation and applications Volume computation and applications
Volume computation and applications
 
Chapter 2 Image Processing: Pixel Relation
Chapter 2 Image Processing: Pixel RelationChapter 2 Image Processing: Pixel Relation
Chapter 2 Image Processing: Pixel Relation
 
Volume and edge skeleton computation in high dimensions
Volume and edge skeleton computation in high dimensionsVolume and edge skeleton computation in high dimensions
Volume and edge skeleton computation in high dimensions
 
Algorithm Design and Complexity - Course 11
Algorithm Design and Complexity - Course 11Algorithm Design and Complexity - Course 11
Algorithm Design and Complexity - Course 11
 
ABC with Wasserstein distances
ABC with Wasserstein distancesABC with Wasserstein distances
ABC with Wasserstein distances
 
ALEXANDER FRACTIONAL INTEGRAL FILTERING OF WAVELET COEFFICIENTS FOR IMAGE DEN...
ALEXANDER FRACTIONAL INTEGRAL FILTERING OF WAVELET COEFFICIENTS FOR IMAGE DEN...ALEXANDER FRACTIONAL INTEGRAL FILTERING OF WAVELET COEFFICIENTS FOR IMAGE DEN...
ALEXANDER FRACTIONAL INTEGRAL FILTERING OF WAVELET COEFFICIENTS FOR IMAGE DEN...
 
Complexity Classes and the Graph Isomorphism Problem
Complexity Classes and the Graph Isomorphism ProblemComplexity Classes and the Graph Isomorphism Problem
Complexity Classes and the Graph Isomorphism Problem
 
FURTHER RESULTS ON THE DIRAC DELTA APPROXIMATION AND THE MOMENT GENERATING FU...
FURTHER RESULTS ON THE DIRAC DELTA APPROXIMATION AND THE MOMENT GENERATING FU...FURTHER RESULTS ON THE DIRAC DELTA APPROXIMATION AND THE MOMENT GENERATING FU...
FURTHER RESULTS ON THE DIRAC DELTA APPROXIMATION AND THE MOMENT GENERATING FU...
 
Digital Image Processing
Digital Image ProcessingDigital Image Processing
Digital Image Processing
 
Fine Grained Complexity of Rainbow Coloring and its Variants
Fine Grained Complexity of Rainbow Coloring and its VariantsFine Grained Complexity of Rainbow Coloring and its Variants
Fine Grained Complexity of Rainbow Coloring and its Variants
 
Image Acquisition and Representation
Image Acquisition and RepresentationImage Acquisition and Representation
Image Acquisition and Representation
 
Simplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsSimplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution Algorithms
 
Simplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsSimplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution Algorithms
 
Week 4
Week 4Week 4
Week 4
 
Kolev skalna2018 article-exact_solutiontoa_parametricline
Kolev skalna2018 article-exact_solutiontoa_parametriclineKolev skalna2018 article-exact_solutiontoa_parametricline
Kolev skalna2018 article-exact_solutiontoa_parametricline
 
ABC-Gibbs
ABC-GibbsABC-Gibbs
ABC-Gibbs
 

Plus de Yandex

Предсказание оттока игроков из World of Tanks
Предсказание оттока игроков из World of TanksПредсказание оттока игроков из World of Tanks
Предсказание оттока игроков из World of TanksYandex
 
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...Yandex
 
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров Яндекса
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров ЯндексаСтруктурированные данные, Юлия Тихоход, лекция в Школе вебмастеров Яндекса
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров ЯндексаYandex
 
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров Яндекса
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров ЯндексаПредставление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров Яндекса
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров ЯндексаYandex
 
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...Yandex
 
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...Yandex
 
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...Yandex
 
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...Yandex
 
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...Yandex
 
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...Yandex
 
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...Yandex
 
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...Yandex
 
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеров
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеровКак защитить свой сайт, Пётр Волков, лекция в Школе вебмастеров
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеровYandex
 
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...Yandex
 
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...Yandex
 
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...Yandex
 
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...Yandex
 
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...Yandex
 
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...Yandex
 
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...Yandex
 

Plus de Yandex (20)

Предсказание оттока игроков из World of Tanks
Предсказание оттока игроков из World of TanksПредсказание оттока игроков из World of Tanks
Предсказание оттока игроков из World of Tanks
 
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...
 
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров Яндекса
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров ЯндексаСтруктурированные данные, Юлия Тихоход, лекция в Школе вебмастеров Яндекса
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров Яндекса
 
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров Яндекса
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров ЯндексаПредставление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров Яндекса
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров Яндекса
 
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...
 
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...
 
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...
 
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...
 
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...
 
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...
 
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...
 
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...
 
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеров
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеровКак защитить свой сайт, Пётр Волков, лекция в Школе вебмастеров
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеров
 
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...
 
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...
 
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...
 
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...
 
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...
 
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...
 
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...
 

Dernier

From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 

Dernier (20)

From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 

Yuri Boykov — Combinatorial optimization for higher-order segmentation functionals: Entropy, Color Consistency, Curvature, etc.

  • 1. Higher-order Segmentation Functionals: Entropy, Color Consistency, Curvature, etc. Yuri Boykov jointly with Andrew Delong M. Tang C. Nieuwenhuis I. Ben Ayed E. Toppe O. Veksler C. Olsson H. Isack L. Gorelick A. Osokin A. Delong
  • 2. Different surface representations continuous optimization sp mesh combinatorial optimization s p {0,1} level-sets graph labeling on complex on grid mixed optimization sp Z p point cloud labeling
  • 3. this talk combinatorial optimization s p {0,1} graph labeling on grid Implicit surfaces/bondary
  • 4. Image segmentation Basics E(S) E(S) s p {0,1} f, Sp s B(S) f p p S Pr(I | Fg) Pr(I | Bg) fp I Pr(Ip | fg) ln Pr(Ip |bg) 4
  • 5. Linear (modular) appearance of region R( S ) f,S f p sp p Examples of potential functions • Log-likelihoods fp • Chan-Vese fp • Ballooning fp ln Pr ( I p ) ( I p c) 2 1
  • 6. Basic boundary regularization for B( S ) w [s p sq ] s p {0,1} pq N pair-wise discontinuities
  • 7. Basic boundary regularization for B( S ) w [s p sq ] s p {0,1} pq N second-order terms [s p sq ] s p (1 sq ) (1 s p ) sq quadratic
  • 8. Basic boundary regularization for B( S ) wpq [s p sq ] s p {0,1} pq N second-order terms Examples of discontinuity penalties • Boundary length wpq 1 • Image-weighted boundary length wpq exp ( I p I q )2
  • 9. Basic boundary regularization for B( S ) wpq [s p sq ] s p {0,1} pq N second-order terms • corresponds to boundary length | | – grids [B&K, 2003], via integral geometry – complexes [Sullivan 1994] • submodular second-order energy – can be minimized exactly via graph cuts a cut t n-links w pq [Greig et al.’91, Sullivan’94, Boykov-Jolly’01] s
  • 10. Submodular set functions any (binary) segmentation energy E(S) is a set function E: 2 Ω S
  • 11. Submodular set functions Set function E:2 is submodular if for any S, T E ( S  T ) E ( S  T ) E ( S ) E (T ) Ω S T Significance: any submodular set function can be globally optimized in polynomial time [Grotschel et al.1981,88, Schrijver 2000] O( | 9 |)
  • 12. Submodular set functions an alternative equivalent definition providing intuitive interpretation: “diminishing returns” Set function E (T E:2 is submodular if for any {v}) E (T ) E (S S T {v}) E (S ) Ω S T S Easily follows from the previous definition: E (T v v T S T S {v}) E (S ) E (S {v}) E(T) Significance: any submodular set function can be globally optimized in polynomial time [Grotschel et al.1981,88, Schrijver 2000] 9 O( | |)
  • 13. Graph cuts for minimization of submodular set functions Assume set Ω and 2nd-order (quadratic) function E ( s) E pq ( s p , sq ) ( pq ) N Function E(S) is submodular if for any s p , sq {0,1} Indicator variables ( p , q) N E pq (0,0) E pq (1,1) E pq (1,0) E pq (0,1) Significance: submodular 2nd-order boolean (set) function can be globally optimized in polynomial time by graph cuts [Hammer 1968, Pickard&Ratliff 1973] O(| N | | [Boros&Hammer 2000, Kolmogorov&Zabih2003] |2 )
  • 15. Graph cuts for minimization of posterior energy (MRF) Assume Gibbs distribution over binary random variables Pr (s1 ,..., sn ) exp( E(S )) for s p {0,1} S { p | sp 1} Theorem [Boykov, Delong, Kolmogorov, Veksler in unpublished book 2014?] All random variables sp are positively correlated iff set function E(S) That is, submodularity implies MRF with “smoothness” prior is submodular
  • 16. Basic segmentation energy f p sp p segment region/appearance wpq [ s p sq ] pq N boundary smoothness
  • 17. Higher-order binary segmentation segment region/appearance Appearance Entropy Color consistency boundary smoothness this talk (N-th order) (N-th order) Curvature (3-rd order) Convexity Cardinality potentials (N-th order) Distribution consistency (N-th order) Connectivity (N-th order) Shape priors (N-th order) (3-rd order)
  • 18. Overview of this talk high-order functionals • From likelihoods to entropy • From entropy to color consistency optimization block-coordinate descent [Zhu&Yuille 96, GrabCut 04] global minimum [our work: One Cut 2014] • Convex cardinality potentials submodular approximations • Distribution consistency [our work: Trust Region 13, Auxiliary Cuts 13] • From length to curvature other extensions [arXiv13]
  • 19. Given likelihood models unary (linear) term E( S| 0 , 1 ) ln Pr(I p| p assuming known sp ) pair-wise (quadratic) term wpq [s p sq ] s p {0,1} pq N guaranteed globally optimal S • parametric models – e.g. Gaussian or GMM • non-parametric models - histograms I p RGB image segmentation, graph cut [Boykov&Jolly, ICCV2001]
  • 20. Beyond fixed likelihood models mixed optimization term E( S , 0 , 1 ) ln Pr(I p| p extra variables • parametric models – e.g. Gaussian or GMM • non-parametric models - histograms sp ) pair-wise (quadratic) term wpq [s p sq ] s p {0,1} pq N NP hard mixed optimization! [Vesente et al., ICCV’09] I p RGB Models 0 , 1 are iteratively re-estimated (from initial box) iterative image segmentation, Grabcut (block coordinate descent S 0, 1) [Rother, et al. SIGGRAPH’2004]
  • 21. Block-coordinate descent for E(S , 0 , 1 ) • Minimize over segmentation S for fixed E(S , 0 , 1 ) ln Pr(I p| Sp ) p 0 , wpq [s p sq ] pq N optimal S is computed using graph cuts, as in [BJ 2001] • Minimize over 0 , 1 for fixed labeling S fixed for E(S , 0 , 1 ) ln Pr( I p| 0 ) p :s p 0 ln Pr( I p| 1 ) p :s p 1 ˆ 0 pS distribution of intensities in current bkg. segment S ={p:Sp=0} w pq [ s p pq N ˆ 1 S=const pS distribution of intensities in current obj. segment S={p:Sp=1} sq ] 1
  • 22. Iterative learning of color models (binary case s p {0,1}) • GrabCut: iterated graph cuts E(S , 0 , 1 ) ln Pr(I p| p start from models 0 , 1 inside and outside some given box Sp ) [Rother et al., SIGGRAPH 04] wpq [s p sq ] pq N iterate graph cuts and model re-estimation until convergence to a local minimum solution is sensitive to initial box
  • 23. Iterative learning of color models (binary case s p {0,1} ) E=1.410×106 E=1.39×106 E=2.41×106 E=2.37×106 BCD minimization of E ( S , 0 , 1 ) converges to a local minimum (interactivity a la “snakes”)
  • 24. Iterative learning of color models (could be used for more than 2 labels s p {0,1,2,...}) • Unsupervised segmentation [Zhu&Yuille, 1996] using level sets + merging heuristic E ( S , 0 , 1 , 2 ...) ln Pr(I p| p Sp ) wpq [s p sq ] | labels| pq N iterate segmentation and model re-estimation until convergence models compete, stable result if sufficiently many initialize models 0 , 1 , 2 , from many randomly sampled boxes
  • 25. Iterative learning of color models (could be used for more than 2 labels s p {0,1,2,...}) • Unsupervised segmentation [Delong et al., 2012] using a-expansion (graph-cuts) E ( S , 0 , 1 , 2 ...) ln Pr(I p| p Sp ) wpq [s p sq ] | labels| pq N iterate segmentation and model re-estimation until convergence models compete, stable result if sufficiently many initialize models 0 , 1 , 2 , from many randomly sampled boxes
  • 26. Iterative learning of other models (could be used for more than 2 labels s p {0,1,2,...}) • Geometric multi-model fitting [Isack et al., 2012] using a-expansion (graph-cuts) E ( S , 0 , 1 , 2 ...) p Sp p initialize plane models 0 , 1 , 2 , from many randomly sampled SIFT matches in 2 images of the same scene -p w pq [ s p sq ] | labels| pq N iterate segmentation and model re-estimation until convergence models compete, stable result if sufficiently many
  • 27. Iterative learning of other models (could be used for more than 2 labels s p {0,1,2,...}) • Geometric multi-model fitting [Isack et al., 2012] using a-expansion (graph-cuts) E ( S , 0 , 1 , 2 ...) p Sp p -p w pq [ s p sq ] | labels| pq N VIDEO initialize Fundamental matrices 0 , 1 , 2 , from many randomly sampled SIFT matches in 2 consecutive frames in video iterate segmentation and model re-estimation until convergence models compete, stable result if sufficiently many
  • 28. From color model estimation to entropy and color consistency global optimization in One Cut [Tang et al. ICCV 2013]
  • 29. Interpretation of log-likelihoods: entropy of segment intensities ln Pr ( I p| ) Si { p S | I p i} given distribution of intensities = | Si| ln pi S2 i = S Si S3 S5 S4 piS ln pi | S| i pis | Si | |S| probability of intensity i in S = {p1 , p2 , ... , pn } p S pixels of color i in S S1 where S S S p S { p1 , p2 ,..., pn } distribution of intensities observed at S H(S| ) cross entropy of distribution pS w.r.t.
  • 30. Interpretation of log-likelihoods: entropy of segment intensities joint estimation of S and color models [Rother et al., SIGGRAPH’04, ICCV’09] E(S , 0 , 1 ) ln Pr( I p | 0 ) p :S p 0 ln Pr( I p | 1 ) p :S p 1 | S| H ( S| 0 ) w pq [ s p sq ] pq N | S| H ( S| 1 ) min 0, 1 cross-entropy entropy Note: H(P|Q) H(P) for any two distributions (equality when Q=P) entropy of intensities in E(S ) | S | H (S ) S entropy of intensities in S | S | H (S ) wpq [s p pq N minimization of segments entropy [Tang et al, ICCV 2013] sq ]
  • 31. Interpretation of log-likelihoods: entropy of segment intensities [Rother et al., SIGGRAPH’04, ICCV’09] mixed optimization E(S , 0 , 1 ) ln Pr( I p | 0 ) p :S p 0 ln Pr( I p | 1 ) p :S p 1 | S| H ( S| 0 ) w pq [ s p sq ] pq N | S| H ( S| 1 ) min 0, 1 cross-entropy entropy Note: H(P|Q) H(P) for any two distributions (equality when Q=P) entropy of intensities in E(S ) | S | H (S ) S entropy of intensities in S | S | H (S ) wpq [s p pq N binary optimization [Tang et al, ICCV 2013] sq ]
  • 32. Interpretation of log-likelihoods: entropy of segment intensities E(S , 0 , 1 ) ln Pr( I p | 0 ) p :S p 0 ln Pr( I p | 1 ) p :S p 1 | S| H ( S| 0 ) w pq [ s p sq ] pq N | S| H ( S| 1 ) min 0, 1 cross-entropy entropy Note: H(P|Q) H(P) for any two distributions (equality when Q=P) entropy of intensities in E(S ) | S | H (S ) S entropy of intensities in S | S | H (S ) wpq [s p pq N common energy for categorical clustering, e.g. [Li et al. ICML’04] sq ]
  • 33. Minimizing entropy of segments intensities (intuitive motivation) E(S ) | S | H (S ) | S | H (S ) wpq [s p sq ] pq N break image into two coherent segments with low entropy of intensities high entropy segmentation S low entropy segmentation S S S S S S unsupervised image segmentation (like in Chan-Vese) S
  • 34. Minimizing entropy of segments intensities (intuitive motivation) E(S ) | S | H (S ) | S | H (S ) wpq [s p sq ] pq N S break image into two coherent segments with low entropy of intensities S S more general than Chan-Vese (colors can vary within each segment) S
  • 35. From entropy to color consistency all pixels i 2 1 i 4 5 3 Minimization of entropy encourages pixels i of the same color bin i to be segmented together (proof: see next page)
  • 36. From entropy to color consistency E(S ) | S | H (S ) | S | H (S ) wpq [s p sq ] Si = S pq N piS ln piS |S | i i | Si | ln | Si | |S | i | Si | ln | S | i Si piS ln piS |S| | Si | ln | Si | |S | i | Si | ln | S | | Si | ln | Si | i i Si i S S | Si | ln | Si | i |S| |S| ( | Si | ln | Si | | Si | ln | Si | ) | S | ln | S | | S | ln | S | i volume balancing pixels in each color bin i prefer to be together (either inside object or background) |S | color consistency |S| i i i
  • 37. From entropy to color consistency Si = S segmentation S with better color consistency i S S ( | Si | ln | Si | | Si | ln | Si | ) | S | ln | S | | S | ln | S | i volume balancing pixels in each color bin i prefer to be together (either inside object or background) |S | color consistency |S| i i i
  • 38. From entropy to color consistency In many applications, this term can be either dropped or replaced with simple unary ballooning [Tang et al. ICCV 2013] Si = S Graph-cut constructions for similar cardinality terms (for superpixel consistency) [Kohli et al. IJCV’09] convex function of cardinality |S| (non-submodular) i S concave function of cardinality |Si| (submodular) S ( | Si | ln | Si | | Si | ln | Si | ) | S | ln | S | | S | ln | S | i volume balancing pixels in each color bin i prefer to be together (either inside object or background) |S | color consistency |S| i i i
  • 39. From entropy to color consistency L1 color separation works better in practice [Tang et al. ICCV 2013] (also, simpler construction) In many applications, this term can be either dropped or replaced with simple unary ballooning [Tang et al. ICCV 2013] connect pixels in each color bin to corresponding auxiliary nodes convex function of cardinality |S| (non-submodular) |Si| ( | Si | ln | Si | | Si | ln | Si | ) | S | ln | S | | S | ln | S | i volume balancing wpq [s p sq ] pq N boundary smoothness color consistency |Si| |S| i i
  • 40.  One Cut [Tang, et al., ICCV’13] guaranteed global minimum box segmentation smoothness + color consistency connect pixels in each color bin to corresponding auxiliary nodes Grabcut is sensitive to bin size linear ballooning inside the box
  • 41. One Cut [Tang, et al., ICCV’13] from seeds guaranteed global minimum connect pixels in each color bin to corresponding auxiliary nodes saliency-based segmentation  box segmentation smoothness + color consistency linear ballooning inside the box ballooning from hard constraints linear ballooning from saliency measure
  • 42. photo-consistency + smoothness + color consistency  Color consistency can be integrated into binary stereo photo-consistency+smoothness + color consistency connect pixels in each color bin to corresponding auxiliary nodes
  • 43. Approximating: - Convex cardinality potentials - Distribution consistency - Other high-order region terms
  • 44. General Trust Region Approach (overview) E(S) H(S) B(S) hard d submodular (easy) S0 Trust region ~ min E(S) U0 (S) B(S) ||S S0 || d 1st-order approximation for H(S)
  • 45. General Trust Region Approach (overview) • Constrained optimization ~ minimize E(S) U 0 (S) B(S) s.t. || S S 0 || d • Unconstrained Lagrangian Formulation minimize Lλ (S) U0 (S) B(S) λ || S S0 || can be approximated with unary terms [Boykov,Kolmogorov,Cremers,Delong, ECCV’06] 45
  • 46. Approximating L2 distance || S S0 || dp - signed distance map from C0 dCs2 ds dC ,dC C0 2 d p dp C d p (s p s o ) p 2 p unary potentials [Boykov et al. ECCV 2006]
  • 47. Trust Region Approximation Linear approx. at S0 non-submodular term ln Pr(I p | |S| S0 submodular terms Sp ) p appearance log-likelihoods wpq [s p sq ] pq N boundary length volume constraint trust region L2 distance to S0 d p (s p p so ) p S0 submodular approx.
  • 48. Volume Constraint for Vertebrae segmentation Log-Lik. + length 48
  • 49. Back to entropy-based segmentation Approximations (local minima near the box) Interactive segmentation with box global minimum non-submodular term volume balancing submodular terms color consistency |S| boundary smoothness + |Si| i i + wpq [s p pq N sq ]
  • 50. Trust Region Approximation Surprisingly, TR outperforms QPBO, DD, TRWS, BP, etc. on many high-order [CVPR’13] and/or non-submodular problems [arXiv13]
  • 52. Pair-wise smoothness: limitations • discrete metrication errors - resolved by higher connectivity - continuous convex formulations 4-neighborhood 8-neighborhood 52
  • 53. Pair-wise smoothness: limitations • boundary over-smoothing (a.k.a. shrinking bias) 53
  • 54. Pair-wise smoothness: limitations • boundary over-smoothing (a.k.a. shrinking bias) - needs higher-order smoothness - curvature multi-view reconstruction [Vogiatzis et al. 2005] 54
  • 55. Higher-order smoothness & curvature for discrete regularization • Geman and Geman 1983 (line process, simulated annealing) • Second-order stereo and surface reconstruction – Li & Zuker 2010 – Woodford et al. 2009 – Olsson et al. 2012-13 (loopy belief propagation) (fusion of proposals, QPBO) (fusion of planes, nearly submodular) • Curvature in segmentation: – – – – – – Schoenemann et al. 2009 (complex, LP relaxation, many extra variables) Strandmark & Kahl 2011 (complex, LP relaxation,…) El-Zehiry & Grady 2010 (grid, 3-clique, only 90 degree accurate, QPBO) Shekhovtsov et al. 2012 (grid patches, approximately learned, QPBO) Olsson et al. 2013 (grid patches, integral geometry, partial enumeration) Nieuwenhuis et al 2014? (grid, 3-cliques, integral geometry, trust region) this talk good approximation of curvature, better and faster optimization practical !
  • 56. the rest of the talk: • Absolute curvature regularization on a grid [Olsson, Ulen, Boykov, Kolmogorov - ICCV 2013] • Squared curvature regularization on a grid [Nieuwenhuis, Toppe, Gorelick, Veksler, Boykov - arXiv 2013]
  • 57. Absolute Curvature | | ds S Motivating example: for any convex shape | | ds S • no shrinking bias • thin structures 2
  • 58. Absolute Curvature | | ds S n n easy to estimate via approximating polygons polygons also work for [Bruckstein et al. 2001] p
  • 59. curvature on a cell complex (standard geometry) /4 /2 4- or 3-cliques on a cell complex • Schoenemann et al. 2009 • Strandmark & Kahl 2011 /4 /2 solved via LP relaxations
  • 60. curvature on a cell complex (standard geometry) /4 /2 zero gap cell-patch cliques on a complex /4 • Olsson et al., ICCV 2013 partial enumeration + TRWS /2 P1 P2 P3 P4 P5 P6 reduction to pair-wise Constrain Satisfaction Problem - new graph: patches are nodes - curvature is a unary potential - patches overlap, need consistency - tighter LP relaxation
  • 61. curvature on a cell complex (standard geometry) curvature on a pixel grid (integral geometry) A+F+G+H = 2A+B= /2 /4 /2 0 A A H A B /4 G 0 0 D A+C= /4 E /2 F representative cell-patches /4 /2 /2 0 /4 0 D+E+F = /2 representative pixel-patches /2 0 F 0 C A /4 A B C D E F G H 0 0 0 0 0 0 0 0
  • 62. integral approach to absolute curvature on a grid 2x2 patches 3x3 patches zero gap 5x5 patches
  • 63. integral approach to absolute curvature on a grid 2x2 patches 3x3 patches zero gap 5x5 patches
  • 64. Squared Curvature with 3-cliques 2 S ds
  • 65. Nieuwenhuis et al., arXiv 2013 general intuition example 3-cliques p- p S p+ with configurations (0,1,0) and (1,0,1) S more responses where curvature is higher
  • 66. N 2 n-1 C … ( s ) ds | n| sn n 1 n 1 3 n Δ n+1 … N 2 n rn 2 i 1 | n| sn i( n ) n+2 N 5x5 neighborhood N-1 … C Δ Δ i i i ci i( n )
  • 67. n zoom-in rn d r =1/ d3 R( , d ) | | 4 Thus, appropriately weighted 3-cliques estimate squared curvature integral
  • 70. Model is OK on given segments. But, how do we optimize non-submodular 3-cliques (010) and (101)? 1. Standard trick: convert to non-submodular pair-wise binary optimization 2. Our observation: QPBO does not work (unless non-submodular regularization is very weak) Fast Trust Region [CVPR13, arXiv] uses local submodular approximations
  • 78. Conclusions • Optimization of Entropy is a useful informationtheoretic interpretation of color model estimation • L1 color separation is an easy-to-optimize objective useful in its own right [ICCV 2013] • Global optimization matters: one cut [ICCV13] • Trust region, auxiliary cuts, partial enumeration General approximation techniques - for high-order energies [CVPR13] - for non-submodular energies [arXiv’13] outperforming state-of-the-art combinatorial optimization methods

Notes de l'éditeur

  1. Grabcut energy is NP-hard and is therefore optimized iteratively, resulting in local minimum.Analysis of the energy shows that it can be decomposed into three terms:Volume Balancing – which is supermodular and therefore NP-hardColor separation – which is submodular and easy to optimize Boundary length – easy to optimize as well.We propose to replace the NP-hard term with application dependent unary termsAnd advocate an even simpler color separation term.The resulting energy is submodular and global minimum is guaranteed in one graph-cut.We show state-of-the art results in several applications.
  2. Grabcut energy is NP-hard and is therefore optimized iteratively, resulting in local minimum.Analysis of the energy shows that it can be decomposed into three terms:Volume Balancing – which is supermodular and therefore NP-hardColor separation – which is submodular and easy to optimize Boundary length – easy to optimize as well.We propose to replace the NP-hard term with application dependent unary termsAnd advocate an even simpler color separation term.The resulting energy is submodular and global minimum is guaranteed in one graph-cut.We show state-of-the art results in several applications.
  3. Grabcut energy is NP-hard and is therefore optimized iteratively, resulting in local minimum.Analysis of the energy shows that it can be decomposed into three terms:Volume Balancing – which is supermodular and therefore NP-hardColor separation – which is submodular and easy to optimize Boundary length – easy to optimize as well.We propose to replace the NP-hard term with application dependent unary termsAnd advocate an even simpler color separation term.The resulting energy is submodular and global minimum is guaranteed in one graph-cut.We show state-of-the art results in several applications.
  4. Grabcut energy is NP-hard and is therefore optimized iteratively, resulting in local minimum.Analysis of the energy shows that it can be decomposed into three terms:Volume Balancing – which is supermodular and therefore NP-hardColor separation – which is submodular and easy to optimize Boundary length – easy to optimize as well.We propose to replace the NP-hard term with application dependent unary termsAnd advocate an even simpler color separation term.The resulting energy is submodular and global minimum is guaranteed in one graph-cut.We show state-of-the art results in several applications.
  5. Grabcut energy is NP-hard and is therefore optimized iteratively, resulting in local minimum.Analysis of the energy shows that it can be decomposed into three terms:Volume Balancing – which is supermodular and therefore NP-hardColor separation – which is submodular and easy to optimize Boundary length – easy to optimize as well.We propose to replace the NP-hard term with application dependent unary termsAnd advocate an even simpler color separation term.The resulting energy is submodular and global minimum is guaranteed in one graph-cut.We show state-of-the art results in several applications.
  6. Iterative optimization algorithm Approximation model is constructed near current solutionThe model is only “trusted” locally within a small radius around the current solution – trust regionThe approximate model is globally optimized within the current trust region – trust region sub-problem.The size of the trust region is adjusted