SlideShare une entreprise Scribd logo
1  sur  23
Télécharger pour lire hors ligne
Search of miRNAs critical for medulloblastoma
      formation using MiRaGE method

○Y-h. Taguchi(Dept. Phys., Chuo Univ.)
          Jun Yasuda(Tohoku Univ.)
              Present address:
              Cancer Research Inst.
              Ariake, Tokyo
Experiments
 microRNA vs tumor
      Computer oriented prediction
              (uncertain)


  Target genes     genom
                   e


  microRNA                           mRN
                                     A
  microRNA                           mRNA   2
3
miRNA target gene list




                          Gene8
                          Gene7
                          Gene6
                          Gene5
                          Gene4
                          Gene3
                          Gene2
                          Gene1
(計算機による予測)
simple seed match
                  miRNA1 ○ × ○ ○ ○ ○ × ×
                  miRNA2 ○ × ○ ○ × × ○ ○
                  miRNA3 × ○ ○ × ○ ○ × ×
  予               miRNA4 ○ ○ ○ × ○ ○ × ×
  測
                     VS
                     miRNA1
  gene1             Murine Medulloblastoma(MB)
                       (Dr. Tetsuo Noda’ group
  gene2             (The JFCR-Cancer Institute)).

  gene3
                                              4
Materials

P6=6 days after birth, normal but growing
P6
P30=30 days after birth, normal and not
P30
growing
MB=a few month after birth, malignant
MB
neoplasm
30% of the Ptc1 +/- mice suffers from MB.


                                        5
mRNA/miRNA expression by
Array: Agilent
at
P6, P30 and MB

    log(xg[mRNA/miRNA:MB or P6])
                  vs
       log(xg[mRNA/miRNA:P30])

       xg: mRNA/miRNA expression

Target gene list: simple seed match   6
t te s t fo r m iRNA e x p re s s io n



             log(xg[miRNA:P6/MB]) vs
                log(miRNA:xg[P30])
               of considered miRNA(*)

  (*) each miRNA is measured by multiple
                  probe

                                           7
t test for miRNA target genes (MiRaGE method)


log(xg[mRNA:P6/MB]) – log(xg[mRNA:P30])
in target genes of considered miRNA

                   VS

log(xg[mRNA:P6/MB]) – log(xg[mRNA:P30])
           in target genes of
          any of other miRNA

                                                8
P30         P6/MB




Gether the information of miRNA targets


   Compare the expressions of targets
   for each miRNAs

  Calculate False Discovery Rate

         Generate ranking
                                          9
MiRaGE
   miRNA   Targets         Dow n        P-value        FDR
   miR-a              54            3            0.5           0.4
   miR-b             120           54         0.0001         0.005
   miR-c              36            1            0.5           0.7
   ...     ...             ...          ...            ...
   miR-X              60           18          0.001         0.007

  Reject miR-a & c because the FDR > 0.05



Filtrate with miRNA expression profiles


                 Ranking                                             10
selected by
miRNA miRNA expression / MiRaGE
                                          miRNA   P30< MB
   1 mmu-miR-25             1      1      target gene P30> MB
   2 m m u-m iR-466i-5p     1      1
   3 mmu-miR-92a          0.75     1
   4 mmu-miR-19a            1    0.69   miR-17~92 cluster family
   5 mmu-miR-19b            1    0.69   members are ranked in top 5
   6 m m u-m iR-3082-5p     1    0.56   by combination of MiRaGE
   7 m m u-m iR-130a        1     0.5   methods and miRNA
   8 m m u-m iR-130b        1     0.5
                                        expression profiling.
   9 m m u-m iR-15b         1     0.5
  10 m m u-m iR-2861        1     0.5
  11 m m u-m iR-3096-5p     1     0.5
  12 m m u-m iR-32         0.5     1
  13 m m u-m iR-322         1     0.5
  14 m m u-m iR-721         1     0.5
  15 m m u-m iR-149*       0.5   0.88
  16 m m u-m iR-3081*       1    0.38
  17 m m u-m iR-574-5p      1    0.31
  18 m m u-m iR-669n       0.5   0.81   suggested contribution   11
  19 m m u-m iR-1187        1    0.25   to cancer formation
selected by
                                        miRNA   P30> MB
miRNA miRNA expression / MiRaGE
                                        target gene P30< MB
mmu-miR-100          1            1
mmu-miR-126-3p       1            1
mmu-miR-29c          1            1   Some of the neuron-
mmu-miR-376a         1            1   specific miRNAs and
                                                 miRNA
mmu-miR-451          1            1   tumor-suppressive
mmu-miR-99b          1            1   miRNAs seem to contribute
mmu-miR-136*         1     0.9375     to the gene expression
mmu-miR-299*       0.75           1   profiles of P30.
mmu-miR-26a          1        0.5
mmu-miR-26b          1        0.5
mmu-miR-29a         0.5           1
mmu-miR-7a-1*        1        0.5
mmu-miR-3107         1     0.4375
mmu-miR-340-5p       1     0.3125
mmu-miR-369-5p       1     0.3125
mmu-let-7a           1       0.25
mmu-let-7e           1       0.25
                                      tumor-suppressive miRNAs
mmu-let-7g           1       0.25      neuron-specific miRNAs
                                                           12

mmu-let-7i           1       0.25
selected by
miRNA miRNA expression / MiRaGE
                                           miRNA   P30< P6
   1 mmu-miR-106b         1.00   1.00
                                           target gene P30> P6
   2 m m u-m iR-130a      1.00   1.00
   3 m m u-m iR-130b      1.00   1.00
   4 m m u-m iR-15b       1.00   1.00   miR-17~92, mir-106b-25 ,
   5 mmu-miR-17           1.00   1.00   mir-106a-363
   6 mmu-miR-20a          1.00   1.00
                                        cluster family members are
                                        ranked in top 5 by combination of
   7 mmu-miR-20b          1.00   1.00
                                        MiRaGE methods and miRNA
   8 m m u-m iR-301b      1.00   1.00   expression profiling.
   9 m m u-m iR-322       1.00   1.00
  10 m m u-m iR-721       1.00   1.00
  11 mmu-miR-93           1.00   1.00
  12 m m u-m iR-542-3p    1.00   0.94
  13 m m u-m iR-3081*     1.00   0.88
  14 m m u-m iR-335-3p    1.00   0.88
  15 m m u-m iR-199a-5p   1.00   0.81
  16 m m u-m iR-199b*     1.00   0.81
  17 mmu-miR-19a          1.00   0.81
                                                                   13
  18 mmu-miR-1 9 b        1.00   0.81
selected by
miRNA miRNA expression / MiRaGE       miRNA   P30> P6
m m u-m iR-29c        1.00   1.00     target gene P30< P6
mmu-miR-376a          1.00   1.00
m m u-m iR-451        1.00   1.00
                                    Some of the neuron-
mmu-let-7b            1.00   0.94
                                    specific miRNAs and
                                               miRNA
mmu-let-7e            1.00   0.94
                                    tumor-suppressive
mmu-let-7g            1.00   0.94   miRNAs seem to contribute
mmu-let-7i            1.00   0.94   to the gene expression
m m u-m iR-98         1.00   0.94   profiles of P30.
m m u-m iR-126-3p     0.75   1.00
m m u-m iR-299*       0.75   1.00
m m u-m iR-29a        0.75   1.00
mmu-let-7a            0.75   0.94
m m u-m iR-3070b-3p   1.00   0.69
m m u-m iR-138        1.00   0.63
m m u-m iR-3107       1.00   0.56
m m u-m iR-181a-1*    0.50   1.00   tumor-suppressive miRNAs
mmu-let-7d            0.50   0.94
                                     neuron-specific miRNAs
                                                         14
m m u-m iR-1937b      0.25   1.00
MiRaGE method + miRNA expression
successfully pick up biologically important
miRNAs. Further (wet) experiments which
supress miRNA expression with tiny LNA is
now planed.

If it is successful, our method can find miRNAs
which control tumor formation.




                                           15
Significance of reciprocal relationship
 between miRNA and its target genes.
〈 log 1 0 P〉
                          t.test of P-values between
                          top n miRNAs and others:
                                    P30 → MB
                          P(mRNA:down|miRNA:up)
           P=0.05         P(mRNA:up|miRNA:down)
                          P(miRNA:down|mRNA:up)
                          P(miRNA:up|mRNA:down)




                                                16
             n
Significance of reciprocal relationship
between miRNA and its target genes.
〈 log 1 0 P〉
                          t.test of P-values between
               P=0.05     top n miRNAs and others:
                                    P30 → P6
                          P(mRNA:down|miRNA:up)
                          P(mRNA:up|miRNA:down)
                          P(miRNA:down|mRNA:up)
                          P(miRNA:up|mRNA:down)




                                                17
                n
MiRaGE method + miRNA expression satisfy
reciprocal relationship very well. In our
knowledge, this is for the first time to do this for
such a large number of miRNAs




                                                       18
Discussion:
What causes successful achievement?

Point 1:
Usage of “good” maicroarry
Affymetric ☓
Agilent ○

Point 2:
Negative set = genes not targeted by
considered miRNA but done by other miRNAs
                                      19
let-7a transfection (Taguchi & Yasuda, 2010)

As for Points:
Although we do
not know the
reason, off-
target genes
targeted by
other miRNAs
are more
expressive.

                     off target         target
                                                  20
Conclusion:

MiRaGE (MiRNA Ranking by Gene Expression)
method is very simple, but

1) can successfully pickup biologically important
genes

and

2) can detect reciprocal relationship between
miRNAs and their target genes (mRNA).

                                                    21
Acknowledgements:
 We thank Drs. Tetsuo Noda
and Katsuyuki Yaginuma for
    providing reagents.
These works were supported
 by KAKENHI (23300357) .


                             22
Related Talk:
Tomorrow

(38)/SIG-BIO 15:30 - 15:45
Gene expression regulation during
differentiation from murine ES cells due to
microRNA
○Masato Yoshizawa,Y-h. Taguchi(Chuo Univ.)



                                         23

Contenu connexe

Similaire à Search of miRNAs critical for medulloblastoma formation using MiRaGE method

MiRaGE: Inference of gene expression regulation via microRNA transfection II
MiRaGE: Inference of gene expression regulation via microRNA transfection IIMiRaGE: Inference of gene expression regulation via microRNA transfection II
MiRaGE: Inference of gene expression regulation via microRNA transfection IIY-h Taguchi
 
miRNAs endogenous regulator of gene expression
miRNAs endogenous regulator of gene expressionmiRNAs endogenous regulator of gene expression
miRNAs endogenous regulator of gene expressionHari Om Pandey
 
Bro gef mi_rna_0212_lr
Bro gef mi_rna_0212_lrBro gef mi_rna_0212_lr
Bro gef mi_rna_0212_lrElsa von Licy
 
Rt2 micrornapcr arrayswhitepaper
Rt2 micrornapcr arrayswhitepaperRt2 micrornapcr arrayswhitepaper
Rt2 micrornapcr arrayswhitepaperElsa von Licy
 
Non coding RNA as targets in drug discovery.pptx
Non coding RNA as targets in drug discovery.pptxNon coding RNA as targets in drug discovery.pptx
Non coding RNA as targets in drug discovery.pptxLijoMani
 
Meeting the challenges of miRNA research: miRNA and its Role in Human Disease...
Meeting the challenges of miRNA research: miRNA and its Role in Human Disease...Meeting the challenges of miRNA research: miRNA and its Role in Human Disease...
Meeting the challenges of miRNA research: miRNA and its Role in Human Disease...QIAGEN
 
An gef mi_scriptffpe
An gef mi_scriptffpeAn gef mi_scriptffpe
An gef mi_scriptffpeElsa von Licy
 
Mi rna functional analysis 2013
Mi rna functional analysis 2013Mi rna functional analysis 2013
Mi rna functional analysis 2013Elsa von Licy
 
Role of MicroRNA in Phosphorus Defficiency
Role of MicroRNA in Phosphorus DefficiencyRole of MicroRNA in Phosphorus Defficiency
Role of MicroRNA in Phosphorus DefficiencyHarsh Kishore Mishra
 
mi RNA en route to the clinic
mi RNA en route to the   clinic mi RNA en route to the   clinic
mi RNA en route to the clinic dr_ekbalabohashem
 
Micro RNA (miRNA) en route to the clinic as next generation medicine
Micro RNA (miRNA) en route to the clinic as next generation medicineMicro RNA (miRNA) en route to the clinic as next generation medicine
Micro RNA (miRNA) en route to the clinic as next generation medicinedr_ekbalabohashem
 

Similaire à Search of miRNAs critical for medulloblastoma formation using MiRaGE method (20)

MiRaGE: Inference of gene expression regulation via microRNA transfection II
MiRaGE: Inference of gene expression regulation via microRNA transfection IIMiRaGE: Inference of gene expression regulation via microRNA transfection II
MiRaGE: Inference of gene expression regulation via microRNA transfection II
 
Scheibner
ScheibnerScheibner
Scheibner
 
miRNAs endogenous regulator of gene expression
miRNAs endogenous regulator of gene expressionmiRNAs endogenous regulator of gene expression
miRNAs endogenous regulator of gene expression
 
Mi rna brochure_set
Mi rna brochure_setMi rna brochure_set
Mi rna brochure_set
 
Mi rna toss_set
Mi rna toss_setMi rna toss_set
Mi rna toss_set
 
Bro gef mi_rna_0212_lr
Bro gef mi_rna_0212_lrBro gef mi_rna_0212_lr
Bro gef mi_rna_0212_lr
 
An mi script-serum
An mi script-serumAn mi script-serum
An mi script-serum
 
Mi rna assays 2012
Mi rna assays 2012Mi rna assays 2012
Mi rna assays 2012
 
Mirna and its applications
Mirna and its applicationsMirna and its applications
Mirna and its applications
 
Mirnapcrarray
MirnapcrarrayMirnapcrarray
Mirnapcrarray
 
20140710 5 k_thompson_ercc2.0_workshop
20140710 5 k_thompson_ercc2.0_workshop20140710 5 k_thompson_ercc2.0_workshop
20140710 5 k_thompson_ercc2.0_workshop
 
Mi rna part ii_2013
Mi rna part ii_2013Mi rna part ii_2013
Mi rna part ii_2013
 
Rt2 micrornapcr arrayswhitepaper
Rt2 micrornapcr arrayswhitepaperRt2 micrornapcr arrayswhitepaper
Rt2 micrornapcr arrayswhitepaper
 
Non coding RNA as targets in drug discovery.pptx
Non coding RNA as targets in drug discovery.pptxNon coding RNA as targets in drug discovery.pptx
Non coding RNA as targets in drug discovery.pptx
 
Meeting the challenges of miRNA research: miRNA and its Role in Human Disease...
Meeting the challenges of miRNA research: miRNA and its Role in Human Disease...Meeting the challenges of miRNA research: miRNA and its Role in Human Disease...
Meeting the challenges of miRNA research: miRNA and its Role in Human Disease...
 
An gef mi_scriptffpe
An gef mi_scriptffpeAn gef mi_scriptffpe
An gef mi_scriptffpe
 
Mi rna functional analysis 2013
Mi rna functional analysis 2013Mi rna functional analysis 2013
Mi rna functional analysis 2013
 
Role of MicroRNA in Phosphorus Defficiency
Role of MicroRNA in Phosphorus DefficiencyRole of MicroRNA in Phosphorus Defficiency
Role of MicroRNA in Phosphorus Defficiency
 
mi RNA en route to the clinic
mi RNA en route to the   clinic mi RNA en route to the   clinic
mi RNA en route to the clinic
 
Micro RNA (miRNA) en route to the clinic as next generation medicine
Micro RNA (miRNA) en route to the clinic as next generation medicineMicro RNA (miRNA) en route to the clinic as next generation medicine
Micro RNA (miRNA) en route to the clinic as next generation medicine
 

Plus de Y-h Taguchi

Tensor decomposition based and principal component analysis based unsupervise...
Tensor decomposition based and principal component analysis based unsupervise...Tensor decomposition based and principal component analysis based unsupervise...
Tensor decomposition based and principal component analysis based unsupervise...Y-h Taguchi
 
主成分分析を用いた教師なし学習による筋萎縮性側索硬化症とがんの遺伝的関連性の解明
主成分分析を用いた教師なし学習による筋萎縮性側索硬化症とがんの遺伝的関連性の解明主成分分析を用いた教師なし学習による筋萎縮性側索硬化症とがんの遺伝的関連性の解明
主成分分析を用いた教師なし学習による筋萎縮性側索硬化症とがんの遺伝的関連性の解明Y-h Taguchi
 
Tensor decomposition­based unsupervised feature extraction identified the un...
Tensor decomposition­based unsupervised  feature extraction identified the un...Tensor decomposition­based unsupervised  feature extraction identified the un...
Tensor decomposition­based unsupervised feature extraction identified the un...Y-h Taguchi
 
Tensor decomposition ­based unsupervised feature extraction applied to matrix...
Tensor decomposition ­based unsupervised feature extraction applied to matrix...Tensor decomposition ­based unsupervised feature extraction applied to matrix...
Tensor decomposition ­based unsupervised feature extraction applied to matrix...Y-h Taguchi
 
遺伝子発現プロファイルからの 薬剤標的タンパクの統計的推定法の開発
遺伝子発現プロファイルからの 薬剤標的タンパクの統計的推定法の開発遺伝子発現プロファイルからの 薬剤標的タンパクの統計的推定法の開発
遺伝子発現プロファイルからの 薬剤標的タンパクの統計的推定法の開発Y-h Taguchi
 
Identification of Candidate Drugs for Heart Failure using Tensor Decompositio...
Identification of Candidate Drugs for Heart Failure using Tensor Decompositio...Identification of Candidate Drugs for Heart Failure using Tensor Decompositio...
Identification of Candidate Drugs for Heart Failure using Tensor Decompositio...Y-h Taguchi
 
Rectified factor networks for biclustering of omics data
Rectified factor networks for biclustering of omics dataRectified factor networks for biclustering of omics data
Rectified factor networks for biclustering of omics dataY-h Taguchi
 
テンソル分解を用いた教師なし学習による変数選択
テンソル分解を用いた教師なし学習による変数選択テンソル分解を用いた教師なし学習による変数選択
テンソル分解を用いた教師なし学習による変数選択Y-h Taguchi
 
主成分分析を用いた教師なし学習による変数選択を用いたヒストン脱アセチル化酵素阻害剤の機能探索
主成分分析を用いた教師なし学習による変数選択を用いたヒストン脱アセチル化酵素阻害剤の機能探索主成分分析を用いた教師なし学習による変数選択を用いたヒストン脱アセチル化酵素阻害剤の機能探索
主成分分析を用いた教師なし学習による変数選択を用いたヒストン脱アセチル化酵素阻害剤の機能探索Y-h Taguchi
 
『主成分分析を用いた教師なし学習による変数選択』 を用いたデング出血熱原因遺伝子の推定
『主成分分析を用いた教師なし学習による変数選択』 を用いたデング出血熱原因遺伝子の推定『主成分分析を用いた教師なし学習による変数選択』 を用いたデング出血熱原因遺伝子の推定
『主成分分析を用いた教師なし学習による変数選択』 を用いたデング出血熱原因遺伝子の推定Y-h Taguchi
 
miRNA-mRNA相互作用同定を用いた 腎芽腫関連遺伝子の推定
miRNA-mRNA相互作用同定を用いた 腎芽腫関連遺伝子の推定miRNA-mRNA相互作用同定を用いた 腎芽腫関連遺伝子の推定
miRNA-mRNA相互作用同定を用いた 腎芽腫関連遺伝子の推定Y-h Taguchi
 
Principal component analysis based unsupervised feature extraction applied to...
Principal component analysis based unsupervised feature extraction applied to...Principal component analysis based unsupervised feature extraction applied to...
Principal component analysis based unsupervised feature extraction applied to...Y-h Taguchi
 
microRNA-mRNA interaction identification in Wilms tumor using principal compo...
microRNA-mRNA interaction identification in Wilms tumor using principal compo...microRNA-mRNA interaction identification in Wilms tumor using principal compo...
microRNA-mRNA interaction identification in Wilms tumor using principal compo...Y-h Taguchi
 
Comprehensive analysis of transcriptome andmetabolome analysis in Intrahepati...
Comprehensive analysis of transcriptome andmetabolome analysis in Intrahepati...Comprehensive analysis of transcriptome andmetabolome analysis in Intrahepati...
Comprehensive analysis of transcriptome andmetabolome analysis in Intrahepati...Y-h Taguchi
 
主成分分析を用いた教師なし学習による出芽酵母 の時間周期遺伝子発現プロファイルの解析
主成分分析を用いた教師なし学習による出芽酵母 の時間周期遺伝子発現プロファイルの解析主成分分析を用いた教師なし学習による出芽酵母 の時間周期遺伝子発現プロファイルの解析
主成分分析を用いた教師なし学習による出芽酵母 の時間周期遺伝子発現プロファイルの解析Y-h Taguchi
 
PCAを用いた2群の有意差検定
PCAを用いた2群の有意差検定PCAを用いた2群の有意差検定
PCAを用いた2群の有意差検定Y-h Taguchi
 
SFRP1 is a possible candidate for epigenetic therapy in non­small cell lung ...
SFRP1 is a possible candidate for epigenetic  therapy in non­small cell lung ...SFRP1 is a possible candidate for epigenetic  therapy in non­small cell lung ...
SFRP1 is a possible candidate for epigenetic therapy in non­small cell lung ...Y-h Taguchi
 
A cross-species bi-clustering approach to identifying conserved co-regulated ...
A cross-species bi-clustering approach to identifying conserved co-regulated ...A cross-species bi-clustering approach to identifying conserved co-regulated ...
A cross-species bi-clustering approach to identifying conserved co-regulated ...Y-h Taguchi
 
主成分分析を用いた教師なし学習による変数選択法を用いたがんにおけるmRNA-miRNA相互作用のより信頼性のある同定
主成分分析を用いた教師なし学習による変数選択法を用いたがんにおけるmRNA-miRNA相互作用のより信頼性のある同定主成分分析を用いた教師なし学習による変数選択法を用いたがんにおけるmRNA-miRNA相互作用のより信頼性のある同定
主成分分析を用いた教師なし学習による変数選択法を用いたがんにおけるmRNA-miRNA相互作用のより信頼性のある同定Y-h Taguchi
 
Identification of aberrant gene expression associated with aberrant promoter ...
Identification of aberrant gene expression associated with aberrant promoter ...Identification of aberrant gene expression associated with aberrant promoter ...
Identification of aberrant gene expression associated with aberrant promoter ...Y-h Taguchi
 

Plus de Y-h Taguchi (20)

Tensor decomposition based and principal component analysis based unsupervise...
Tensor decomposition based and principal component analysis based unsupervise...Tensor decomposition based and principal component analysis based unsupervise...
Tensor decomposition based and principal component analysis based unsupervise...
 
主成分分析を用いた教師なし学習による筋萎縮性側索硬化症とがんの遺伝的関連性の解明
主成分分析を用いた教師なし学習による筋萎縮性側索硬化症とがんの遺伝的関連性の解明主成分分析を用いた教師なし学習による筋萎縮性側索硬化症とがんの遺伝的関連性の解明
主成分分析を用いた教師なし学習による筋萎縮性側索硬化症とがんの遺伝的関連性の解明
 
Tensor decomposition­based unsupervised feature extraction identified the un...
Tensor decomposition­based unsupervised  feature extraction identified the un...Tensor decomposition­based unsupervised  feature extraction identified the un...
Tensor decomposition­based unsupervised feature extraction identified the un...
 
Tensor decomposition ­based unsupervised feature extraction applied to matrix...
Tensor decomposition ­based unsupervised feature extraction applied to matrix...Tensor decomposition ­based unsupervised feature extraction applied to matrix...
Tensor decomposition ­based unsupervised feature extraction applied to matrix...
 
遺伝子発現プロファイルからの 薬剤標的タンパクの統計的推定法の開発
遺伝子発現プロファイルからの 薬剤標的タンパクの統計的推定法の開発遺伝子発現プロファイルからの 薬剤標的タンパクの統計的推定法の開発
遺伝子発現プロファイルからの 薬剤標的タンパクの統計的推定法の開発
 
Identification of Candidate Drugs for Heart Failure using Tensor Decompositio...
Identification of Candidate Drugs for Heart Failure using Tensor Decompositio...Identification of Candidate Drugs for Heart Failure using Tensor Decompositio...
Identification of Candidate Drugs for Heart Failure using Tensor Decompositio...
 
Rectified factor networks for biclustering of omics data
Rectified factor networks for biclustering of omics dataRectified factor networks for biclustering of omics data
Rectified factor networks for biclustering of omics data
 
テンソル分解を用いた教師なし学習による変数選択
テンソル分解を用いた教師なし学習による変数選択テンソル分解を用いた教師なし学習による変数選択
テンソル分解を用いた教師なし学習による変数選択
 
主成分分析を用いた教師なし学習による変数選択を用いたヒストン脱アセチル化酵素阻害剤の機能探索
主成分分析を用いた教師なし学習による変数選択を用いたヒストン脱アセチル化酵素阻害剤の機能探索主成分分析を用いた教師なし学習による変数選択を用いたヒストン脱アセチル化酵素阻害剤の機能探索
主成分分析を用いた教師なし学習による変数選択を用いたヒストン脱アセチル化酵素阻害剤の機能探索
 
『主成分分析を用いた教師なし学習による変数選択』 を用いたデング出血熱原因遺伝子の推定
『主成分分析を用いた教師なし学習による変数選択』 を用いたデング出血熱原因遺伝子の推定『主成分分析を用いた教師なし学習による変数選択』 を用いたデング出血熱原因遺伝子の推定
『主成分分析を用いた教師なし学習による変数選択』 を用いたデング出血熱原因遺伝子の推定
 
miRNA-mRNA相互作用同定を用いた 腎芽腫関連遺伝子の推定
miRNA-mRNA相互作用同定を用いた 腎芽腫関連遺伝子の推定miRNA-mRNA相互作用同定を用いた 腎芽腫関連遺伝子の推定
miRNA-mRNA相互作用同定を用いた 腎芽腫関連遺伝子の推定
 
Principal component analysis based unsupervised feature extraction applied to...
Principal component analysis based unsupervised feature extraction applied to...Principal component analysis based unsupervised feature extraction applied to...
Principal component analysis based unsupervised feature extraction applied to...
 
microRNA-mRNA interaction identification in Wilms tumor using principal compo...
microRNA-mRNA interaction identification in Wilms tumor using principal compo...microRNA-mRNA interaction identification in Wilms tumor using principal compo...
microRNA-mRNA interaction identification in Wilms tumor using principal compo...
 
Comprehensive analysis of transcriptome andmetabolome analysis in Intrahepati...
Comprehensive analysis of transcriptome andmetabolome analysis in Intrahepati...Comprehensive analysis of transcriptome andmetabolome analysis in Intrahepati...
Comprehensive analysis of transcriptome andmetabolome analysis in Intrahepati...
 
主成分分析を用いた教師なし学習による出芽酵母 の時間周期遺伝子発現プロファイルの解析
主成分分析を用いた教師なし学習による出芽酵母 の時間周期遺伝子発現プロファイルの解析主成分分析を用いた教師なし学習による出芽酵母 の時間周期遺伝子発現プロファイルの解析
主成分分析を用いた教師なし学習による出芽酵母 の時間周期遺伝子発現プロファイルの解析
 
PCAを用いた2群の有意差検定
PCAを用いた2群の有意差検定PCAを用いた2群の有意差検定
PCAを用いた2群の有意差検定
 
SFRP1 is a possible candidate for epigenetic therapy in non­small cell lung ...
SFRP1 is a possible candidate for epigenetic  therapy in non­small cell lung ...SFRP1 is a possible candidate for epigenetic  therapy in non­small cell lung ...
SFRP1 is a possible candidate for epigenetic therapy in non­small cell lung ...
 
A cross-species bi-clustering approach to identifying conserved co-regulated ...
A cross-species bi-clustering approach to identifying conserved co-regulated ...A cross-species bi-clustering approach to identifying conserved co-regulated ...
A cross-species bi-clustering approach to identifying conserved co-regulated ...
 
主成分分析を用いた教師なし学習による変数選択法を用いたがんにおけるmRNA-miRNA相互作用のより信頼性のある同定
主成分分析を用いた教師なし学習による変数選択法を用いたがんにおけるmRNA-miRNA相互作用のより信頼性のある同定主成分分析を用いた教師なし学習による変数選択法を用いたがんにおけるmRNA-miRNA相互作用のより信頼性のある同定
主成分分析を用いた教師なし学習による変数選択法を用いたがんにおけるmRNA-miRNA相互作用のより信頼性のある同定
 
Identification of aberrant gene expression associated with aberrant promoter ...
Identification of aberrant gene expression associated with aberrant promoter ...Identification of aberrant gene expression associated with aberrant promoter ...
Identification of aberrant gene expression associated with aberrant promoter ...
 

Search of miRNAs critical for medulloblastoma formation using MiRaGE method

  • 1. Search of miRNAs critical for medulloblastoma formation using MiRaGE method ○Y-h. Taguchi(Dept. Phys., Chuo Univ.) Jun Yasuda(Tohoku Univ.) Present address: Cancer Research Inst. Ariake, Tokyo
  • 2. Experiments  microRNA vs tumor Computer oriented prediction (uncertain) Target genes genom e microRNA mRN A microRNA mRNA 2
  • 3. 3
  • 4. miRNA target gene list Gene8 Gene7 Gene6 Gene5 Gene4 Gene3 Gene2 Gene1 (計算機による予測) simple seed match miRNA1 ○ × ○ ○ ○ ○ × × miRNA2 ○ × ○ ○ × × ○ ○ miRNA3 × ○ ○ × ○ ○ × × 予 miRNA4 ○ ○ ○ × ○ ○ × × 測 VS miRNA1 gene1 Murine Medulloblastoma(MB) (Dr. Tetsuo Noda’ group gene2 (The JFCR-Cancer Institute)). gene3 4
  • 5. Materials P6=6 days after birth, normal but growing P6 P30=30 days after birth, normal and not P30 growing MB=a few month after birth, malignant MB neoplasm 30% of the Ptc1 +/- mice suffers from MB. 5
  • 6. mRNA/miRNA expression by Array: Agilent at P6, P30 and MB log(xg[mRNA/miRNA:MB or P6]) vs log(xg[mRNA/miRNA:P30]) xg: mRNA/miRNA expression Target gene list: simple seed match 6
  • 7. t te s t fo r m iRNA e x p re s s io n log(xg[miRNA:P6/MB]) vs log(miRNA:xg[P30]) of considered miRNA(*) (*) each miRNA is measured by multiple probe 7
  • 8. t test for miRNA target genes (MiRaGE method) log(xg[mRNA:P6/MB]) – log(xg[mRNA:P30]) in target genes of considered miRNA VS log(xg[mRNA:P6/MB]) – log(xg[mRNA:P30]) in target genes of any of other miRNA 8
  • 9. P30 P6/MB Gether the information of miRNA targets Compare the expressions of targets for each miRNAs Calculate False Discovery Rate Generate ranking 9
  • 10. MiRaGE miRNA Targets Dow n P-value FDR miR-a 54 3 0.5 0.4 miR-b 120 54 0.0001 0.005 miR-c 36 1 0.5 0.7 ... ... ... ... ... miR-X 60 18 0.001 0.007 Reject miR-a & c because the FDR > 0.05 Filtrate with miRNA expression profiles Ranking 10
  • 11. selected by miRNA miRNA expression / MiRaGE miRNA   P30< MB 1 mmu-miR-25 1 1 target gene P30> MB 2 m m u-m iR-466i-5p 1 1 3 mmu-miR-92a 0.75 1 4 mmu-miR-19a 1 0.69 miR-17~92 cluster family 5 mmu-miR-19b 1 0.69 members are ranked in top 5 6 m m u-m iR-3082-5p 1 0.56 by combination of MiRaGE 7 m m u-m iR-130a 1 0.5 methods and miRNA 8 m m u-m iR-130b 1 0.5 expression profiling. 9 m m u-m iR-15b 1 0.5 10 m m u-m iR-2861 1 0.5 11 m m u-m iR-3096-5p 1 0.5 12 m m u-m iR-32 0.5 1 13 m m u-m iR-322 1 0.5 14 m m u-m iR-721 1 0.5 15 m m u-m iR-149* 0.5 0.88 16 m m u-m iR-3081* 1 0.38 17 m m u-m iR-574-5p 1 0.31 18 m m u-m iR-669n 0.5 0.81 suggested contribution 11 19 m m u-m iR-1187 1 0.25 to cancer formation
  • 12. selected by miRNA   P30> MB miRNA miRNA expression / MiRaGE target gene P30< MB mmu-miR-100 1 1 mmu-miR-126-3p 1 1 mmu-miR-29c 1 1 Some of the neuron- mmu-miR-376a 1 1 specific miRNAs and miRNA mmu-miR-451 1 1 tumor-suppressive mmu-miR-99b 1 1 miRNAs seem to contribute mmu-miR-136* 1 0.9375 to the gene expression mmu-miR-299* 0.75 1 profiles of P30. mmu-miR-26a 1 0.5 mmu-miR-26b 1 0.5 mmu-miR-29a 0.5 1 mmu-miR-7a-1* 1 0.5 mmu-miR-3107 1 0.4375 mmu-miR-340-5p 1 0.3125 mmu-miR-369-5p 1 0.3125 mmu-let-7a 1 0.25 mmu-let-7e 1 0.25 tumor-suppressive miRNAs mmu-let-7g 1 0.25 neuron-specific miRNAs 12 mmu-let-7i 1 0.25
  • 13. selected by miRNA miRNA expression / MiRaGE miRNA   P30< P6 1 mmu-miR-106b 1.00 1.00 target gene P30> P6 2 m m u-m iR-130a 1.00 1.00 3 m m u-m iR-130b 1.00 1.00 4 m m u-m iR-15b 1.00 1.00 miR-17~92, mir-106b-25 , 5 mmu-miR-17 1.00 1.00 mir-106a-363 6 mmu-miR-20a 1.00 1.00 cluster family members are ranked in top 5 by combination of 7 mmu-miR-20b 1.00 1.00 MiRaGE methods and miRNA 8 m m u-m iR-301b 1.00 1.00 expression profiling. 9 m m u-m iR-322 1.00 1.00 10 m m u-m iR-721 1.00 1.00 11 mmu-miR-93 1.00 1.00 12 m m u-m iR-542-3p 1.00 0.94 13 m m u-m iR-3081* 1.00 0.88 14 m m u-m iR-335-3p 1.00 0.88 15 m m u-m iR-199a-5p 1.00 0.81 16 m m u-m iR-199b* 1.00 0.81 17 mmu-miR-19a 1.00 0.81 13 18 mmu-miR-1 9 b 1.00 0.81
  • 14. selected by miRNA miRNA expression / MiRaGE miRNA   P30> P6 m m u-m iR-29c 1.00 1.00 target gene P30< P6 mmu-miR-376a 1.00 1.00 m m u-m iR-451 1.00 1.00 Some of the neuron- mmu-let-7b 1.00 0.94 specific miRNAs and miRNA mmu-let-7e 1.00 0.94 tumor-suppressive mmu-let-7g 1.00 0.94 miRNAs seem to contribute mmu-let-7i 1.00 0.94 to the gene expression m m u-m iR-98 1.00 0.94 profiles of P30. m m u-m iR-126-3p 0.75 1.00 m m u-m iR-299* 0.75 1.00 m m u-m iR-29a 0.75 1.00 mmu-let-7a 0.75 0.94 m m u-m iR-3070b-3p 1.00 0.69 m m u-m iR-138 1.00 0.63 m m u-m iR-3107 1.00 0.56 m m u-m iR-181a-1* 0.50 1.00 tumor-suppressive miRNAs mmu-let-7d 0.50 0.94 neuron-specific miRNAs 14 m m u-m iR-1937b 0.25 1.00
  • 15. MiRaGE method + miRNA expression successfully pick up biologically important miRNAs. Further (wet) experiments which supress miRNA expression with tiny LNA is now planed. If it is successful, our method can find miRNAs which control tumor formation. 15
  • 16. Significance of reciprocal relationship between miRNA and its target genes. 〈 log 1 0 P〉 t.test of P-values between top n miRNAs and others: P30 → MB P(mRNA:down|miRNA:up) P=0.05 P(mRNA:up|miRNA:down) P(miRNA:down|mRNA:up) P(miRNA:up|mRNA:down) 16 n
  • 17. Significance of reciprocal relationship between miRNA and its target genes. 〈 log 1 0 P〉 t.test of P-values between P=0.05 top n miRNAs and others: P30 → P6 P(mRNA:down|miRNA:up) P(mRNA:up|miRNA:down) P(miRNA:down|mRNA:up) P(miRNA:up|mRNA:down) 17 n
  • 18. MiRaGE method + miRNA expression satisfy reciprocal relationship very well. In our knowledge, this is for the first time to do this for such a large number of miRNAs 18
  • 19. Discussion: What causes successful achievement? Point 1: Usage of “good” maicroarry Affymetric ☓ Agilent ○ Point 2: Negative set = genes not targeted by considered miRNA but done by other miRNAs 19
  • 20. let-7a transfection (Taguchi & Yasuda, 2010) As for Points: Although we do not know the reason, off- target genes targeted by other miRNAs are more expressive. off target target 20
  • 21. Conclusion: MiRaGE (MiRNA Ranking by Gene Expression) method is very simple, but 1) can successfully pickup biologically important genes and 2) can detect reciprocal relationship between miRNAs and their target genes (mRNA). 21
  • 22. Acknowledgements: We thank Drs. Tetsuo Noda and Katsuyuki Yaginuma for providing reagents. These works were supported by KAKENHI (23300357) . 22
  • 23. Related Talk: Tomorrow (38)/SIG-BIO 15:30 - 15:45 Gene expression regulation during differentiation from murine ES cells due to microRNA ○Masato Yoshizawa,Y-h. Taguchi(Chuo Univ.) 23