SlideShare une entreprise Scribd logo
1  sur  52
Télécharger pour lire hors ligne
Core Technologies for 4G: OFDM
Prof. Chung G. Kang
KOREA University
ccgkang@korea.ac.kr
4G Mobile (IMT Advanced) System and Applications
OFDM: Overview
• High-speed wireless transmission technology
• Implemented as a useful means of multiple access to
support the multi-user communication, as OFDMA
(Orthogonal Frequency Division Multiple Access)
• Adopted for the candidate radio interface technologies
for IMT-Advanced in ITU-R
• Rayleigh Fading Channel Model
• Time Dispersion due to Multi-path Fading
MOBILE Moving directionRoad
Buildings
i
2 ( cos )
1
( ) Re ( ) c d i i
n
j f f t
R i
i
s t As t e    

 
  
 

cd f
c
v
f where
RMS Delay Spread
(t)
t
t
( )t ( )t
Ideal
Channel
Non-ideal
Channel
Broadband Wireless Channel (1)
• Ideal Channel vs. Non-ideal Channel
+( )s t ( )s t
( )n t
( )h t
- Ideal channel
( )h t | ( ) |H f
- Non-ideal channel
ft
( )h t | ( ) |H f
ft
( )t ( )t
( )t
Broadband Wireless Channel (2)
• Delay Spread and Inter-Symbol Interference (ISI)
Symbol 1
Ts
s < Ts
0 1 2 3
Symbol 1
1
2
3
Symbol 2
s >> Ts
Ts
0 1 2 3
1
2
3
( ) 0 1 1 2 2 3 3, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )h t t t t t= + - + - + -% % % % %t a d t a d t t a d t t a d t t
Broadband Wireless Channel (3)
Higher-speed
transmission suffers
from the more
multipath fading
(more ISI)!
• Delay Spread and Frequency Selectivity
( )h t | ( ) |H f
ft
1( )t ( )t
( )h t
t
1( )t ( )t 2( )t 
| ( ) |H f
f
Bc
Bc
~ s
~ s
Bs
- Frequency flat
- Frequency selective
Bs
Bs : Signal Bandwidth
Bc: Coherence Bandwidth
Broadband Wireless Channel (4)
Ts
Ts
( ) 1 2 2, ( ) ( ) ( ) ( )h t t tt a d t a d t t= + -% % %
• General Fading Channel
Broadband Wireless Channel (5)
Channel varies with
both frequency and
time, i.e., frequency
selectivity varies with
the times, depending
on the mobile speed
Equalizer
Channel Equalization
0 T
( )h t
{ }nx
{ }ny
0h 1h
2 0 2 1 1
3 0 3 1 2
y h x h x n
y h x h x n
  
  
• Optimum Channel Equalization
- Maximum likelihood sequence equalization (MLSE)
+
n
2 3 0 1
2 3
Given { , } and { , },
determine { , }
y y h h
x x
 2 3
2* * 2
2 3 2 0 2 1 1 3 0 3 1 2
( , )
ˆ ˆ( , ) min ( ) { ( )}
x x S
x x y h x h x y h x h x

      
 
- Illustrative example
{1, 1}nx  
ˆ{ }nx
where {(1,1),(1, 1),( 1,1),( 1, 1)}S      
2
| | 2 4S  
In general, | | L
S M where M is the number of symbols and
L is the number of multi-paths
Too
complex!
Discrete Fourier Transform (DFT)
2
( ) ( ) j ft
X f x t e dt


 
( )X f
( )x t
( )
n s
n
X f X f
T



 
  
 

( )X f
nx
sT
1/ sT
2
0
kN j n
N
k n
n
X x e


 
nx
N
N
kX
f
f
k
DFT:
Serial
to
Parallel
Conv.
x
x
x
+
Modulator
RF
• Transmitter
sT
0cos2 f t
1cos2 f t
1cos2 Nf t 
OFDM: Basic Concept (1)
sN T
1/s sR T
sN T
{ }nx
0x
1x
1Nx 
sN T
( )b t ( )s t
Orthogonality:
  0
cos2 cos2 0
sNT
i jf t f t dt  
for all i j
1
0
( ) cos2
N
n n
n
s t x f t


 
OFDM
symbol
• Receiver
OFDM: Basic Concept (2)
( )s t Down
Conv. x
0cos2 f t
sN T
x
x
1cos2 f t
1cos2 Nf t 
1x
1Nx 
Serial
to
Parallel
Conv.
De-
modulator
0x
0
0 0
1 1
2 ( )cos(2 )
2 cos(2 ) cos(2 )
2 cos(2 ) cos(2 )
2 cos(2 ) cos(2 )
sNT
n
n
n n n
N N n
n
s t f t dt
x f t f t
x f t f t
x f t f t
x

 
 
  
  
  
 







Too many carriers….
How to implement this?
0f
• OFDM = N Parallel Narrowband Channels
0x
OFDM: Basic Concept (3)
1f 3f2f
1x 2x
OFDM: Basic Concept (4)
0
• Time Domain: OFDM Symbol
• Frequency Domain: Subcarriers
( ) cos(2 ) (0, )n n ns t x f t rect T 
( ) ( )*sinc( )
sinc( ( ))
n n n
n n
S f x f f fT
x f f
 

 
 
(0, )rect T
T
sT N T 
0x 1x 1Nx 
0 t T 
1cos(2 )f t
2cos(2 )f t
3cos(2 )f t
OFDM: Implementation (1)
• Block Diagram
1
2 ( / )
0
N
j k N n
n k
k
x X e 


 
1 2 ( / )
0
1 2 ( / )
0
N j k N n
k nk
N j k N n
n kk
Y y e
a x e aX


 

 


 


{ }kX { }kY
0x
1x
1Nx 
- Illustration: single-path channel
ˆ/k kX Y a
• Block Diagram
kX kH kY
?k k kY H X
{ }kX { }kY
0x
1x
1Nx 
- Illustration: multi-path channel
OFDM: Implementation (2)
Cyclic Prefix (1)
1
0
2
exp
2
k n
n
H h jk n


 
  
 

0
1
2
0
H
H


2
0
2
exp
3
k n
n
X x jk n


 
  
 

0
1
2
3
0
0
X
X
X



2
0
2
exp
3
k n
n
Y y jk n


 
  
 

0
1
2
5
1 2 3
1- 2 3
Y
Y
Y

 

k k kY H X
• Effect of Multi-path Channel
- Illustrating example
1
0
2
exp
2
k n
n
H h jk n


 
  
 

0
1
2
0
H
H


2
0
2
exp
3
k n
n
X x jk n


 
  
 
 







2
0 3
2
exp][
n
n njkykY

0
1
2
6
0
0
Y
Y
Y



, 1,2k k kY H X k 
0
1
2
3
0
0
X
X
X



Cyclic Prefix (2)
• Effect of Multi-path Channel
- Illustrating example
Cyclic
prefix
• Guard Interval vs. Cyclic Prefix
- Inter-symbol Interference (ISI) & guard Interval
- Inter-carrier Interference & cyclic prefix

Zero-valued guard interval
FFT interval
Guard
interval
Cyclic prefix
Guard
interval

FFT interval
No ICI
and no ISI
No ISI
but ICI
Guard
interval
Cyclic Prefix (3)
subTGT
sym sub GT T T 
No guard interval
Orthogonality
maintained by
inserting CP
ISI can be avoided
by the guard
interval
Cyclic Prefix (4)
• Effect of CP: Illustration
FFT period FFT periodGI
Subcarrier #1
Subcarrier #2
CP
Delayed
Subcarrier #2
f
t
Effective
BW
FFT
size
Guard
interval
TG
Effective
symbol duration
Tsub
copy
1 1 0 1 2 1 1{ , , , , , , , , , }N L N N N L N L N NX X X X X X X X X X       
0x
1x
1Nx 
OFDM: Overall Picture
• OFDM Symbol in 3D
OFDM Symbol
OFDM: Performance
• Effect of Delay Spread
(b) Delay exceeds guard time by 3% of the FFT interval.
(c) Delay exceeds guard time by 10% of the FFT interval.
- What if delay exceeds the guard time (CP)?
Windowing
• Power Spectrum Density
- The side-lobe of spectrum decreases with the
larger number of subcarriers
- The out-of-band spectrum decreases slowly,
due to a sinc function
- Raised cosine windowing
Guard Band Guard BandData Subcarrier BandGuard Band Guard BandData Subcarrier Band
- Adjacent Channel Interference (ACI)
- Guard Band
Guard Band & ACI
• Illustrative Example: N = 1024 (IEEE 802.16e)
Channel 1 Channel 2 Channel 3
Adjacent channel
interference
Channel 2
Unused
Subcarriers for
guard band
SNR
Coded OFDM
- Some subcarriers suffered by frequency selective fading must be protected
by forward error correction (FEC) coding
• Why Coded OFDM?
OFDM: Block Diagram
• Overall Block Diagram
Water-filling (1)
{ }kX { }kY
0x
1x
1Nx 
• System Model
, 1,2, , 1n n n ny h x n N   
- The frequency selective channel transformed to a parallel channel
• AWGN Capacity
21
0 0
| |
log 1
N
n
n
P h
C
N


 
  
 

- Total capacity = sum capacity of each channel
where
2
{| | }, 0,1,2, , 1nP E x n N  
What if we allocate the
different power to each
subcarrier?
Water-filling (2)
• Power Allocation Problem for a Parallel Channel
- Assume that each subcarrier is allocated with power Pn.
- Problem statement
- Optimal power allocation:
where the Lagrange multiplier is chosen such that the power constraint is
met:
0 1
2
1
,...,
0 0
m ax log 1 ,
c
c
N c
N
n n
N
P P
n
P h
C
N


 
  
 
 


1,...,0,0,
1
0



cnc
N
n
n NnPPNP
c











 2
0*
~
1
n
n
h
N
P

.~
11 1
0
2
0
P
h
N
N
cN
n
n
c















 
subject to
Water-filling (3)
• Water-filling Interpretation
- If P units of water per sub-carrier are filled into the vessel, the depth of the
water at subcarrier n is the power allocated to that sub-carrier
Height of the water surface
- Optimal power allocation:
The better a channel,
the more power!
Inverse of
Channel gain











 2
0*
~
1
n
n
h
N
P

• Illustrative Example
x x
Rb bps/Wb Hz
Digital
Modulation
Base
Station
x x
Digital
Demodulation
Information bits
for User 1
Rc >> Rb bps
x
+
C1
C2
Rb bps/Wb Hz
User 1
User 2
Multiple Access: CDMA (1)
C1
• Processing Gain & Interference
0
b b
required required
EC R
I N W

  
   
   
1
b
b
R
T

1
c
W
T

Processing Gain =
b
b c
W T
R T

0
6
10 3
(dB) (dB)
1.2288 10
6 10 log 6 21.1 15.1dB
9.6 10
b
required brequired
EC W
I N R
  
   
   
 
      
 
- Example:  0
9,600Hz; 1.2288MHz; / 6dBb b required
R W E N  
Multiple Access: CDMA (2)
• Processing Gain & Data Rate
- Processing gain varies with the data rate for the fixed chip rate system
- Example: Rc = 1.2288Mcps
 The higher the data rate is, the lower the processing gain is!
 To maintain the processing gain, more bandwidth is required for higher data rate
Rb = 9.6kbps  PG = 128
Rb = 4.8kbps  PG = 256
- Example: For W = 20Mbps with PG = 128,
Rb = W/PG ~ 150kbps
 The maximum possible data is limited to
150kbps with CDMA!
Rc
Rb
2Rb
Multiple Access: CDMA (3)
• Illustrative Example
Chip
Serial to
Parallel
Converter
X
X
X
+
Modulator
RF
sT
0cos2 f t
1cos2 f t
1cos2 Nf t 
sNT
sNT
sNT
• Orthogonal Frequency Division Multiplexing (OFDM)
X
X
X
+ RF
)(ts
0cos2 f t
1cos2 f t
1cos2 Nf t 
sNT
• Orthogonal Frequency Division Multiple Access (OFDMA)
sNT
User 0
User 1
User N-1
Modulator
Modulator
Modulator
Multiple Access: OFDMA (1)
0x
1x
1Nx 
( )s t
0x
1x
1Nx 
User #2
User #1
• OFDMA Concept  Multiuser OFDM (OFDM + FDMA)
- Subchannel: a set of subcarrier as a basic resource allocation unit
- Why OFDMA?
Multiple Access: OFDMA (2)
• Multiple Access with OFDM
- Resource units: Subchannels or Resource Block
Frequency
Time OFDM symbol
Subchannel
Multiple Access: OFDMA (3)
Subframe
Subcarrier
User 1
User 2
User
3
User 4
By assigning different time/frequency slots to
users, they can be kept orthogonal, no matter
how much the delay spread is….
Cellular OFDMA (1)
0
max max 0 0
2
max
( )
( ) ( )
( ) ( )
( )u u k k
k k k
k
P d
N N d dC
PNI N d p d
d
N

 
  
 
  
• Co-channel Interference in OFDMA Network
max
uN
p
N

maxN
Cell F0 Cell F1
Fully loaded Loading factor = p
uN
0
bEC R
I N W
 
cf) CDMA 1/Processing Gain
0( )d
1( )d
2( )d
- C/I ratio for subcarrier
P
-500 0 500
-800
-600
-400
-200
0
200
400
600
800
in meter
inmeter
10
20
30
40
50
60
- Downlink
• Subcarrier Allocation for Interference Averaging
- Example
x1
x2
X1 X2
Without
frequency
hopping
With
frequency
hopping
- Interference averaging with frequency hopping
 interference diversity
Cellular OFDMA (2)
• Hopping Pattern for Subcarrier Allocation
- To design the hopping patterns with a period of Nc OFDM symbols
that are as apart as possible for neighbor BSs (Nc: prime number)
 Every user hops over all the sub-carriers in each period  frequency diversity
 Each user occupies different sub-carriers in any OFDM symbol time
- Latin square  Nc x Nc matrix
 Example: Nc = 5
Cellular OFDMA (3)
• Orthogonal Latin Squares
- Latin squares that gives exactly one time/sub-carrier collision for every pair
of virtual channels of two base stations
 Ra and Rb are orthogonal if a is not equal to b
- Generation rule:
 Example: a = 2 & Nc = 5
• Inter-BS Synchronization
- OFDM symbol-level synchronization required
Cellular OFDMA (4)
• OFDM Parameters: Numerology (TDD)
Nominal Channel Bandwidth (W) 8.75MHz
Over-sampling Factor (n) 8/7
Sampling Frequency (Fs) 10 MHz
FFT Size (Nfft) 1,024
Sub-Carrier Spacing ( f) 9.765625kHz
Useful Symbol Time (Tb ) 102.4 µs
Cyclic Prefix (CP)
Tg=1/8 Tb
Symbol Time (Ts ) 115.2 µs
TDD
Number of OFDM
symbols per Frame
42
TTG + RTG (µs) 161.6
Number of
Guard Sub-Carriers
Left 80
Right 79
Number of Used Sub-Carriers 865
IEEE 802.16e: PHY Parameters
Tg Tb
Ts
sF nW
1/bT f 
/s fftf F N 
1/ 9.765625 kHzbf T  
2 8.75MHz 9.765625kHz 896m
fftN    1024fftN 
 (9.765625)(1024) 10MHzs fftF f N   
/ 10/8.75 8/ 7sn F W  

102.4 μsbT 
• TDD Frame Structure
115.2us
IEEE 802.16e: Frame Structure
24 symbols 12 symbols
• Downlink
Syntax Value Notes
Total # of subcarriers 768 768 = 24 bands * 4 bins/band * 8 subcarriers/bin
# of frames / sec 200 1 / 5 ms/frame = 200 (frames/sec)
OFDM symbols / frame 42 42 symbols = 27 DL symbols + 15 UL symbols
OFDM symbol rate 5400 200 (frames/sec) * 27 (symbols/frame) = 5400 (symbols/sec)
Data subcarrier rate 4.1472 5400 (symbols/sec)* 768 (subcarriers/symbol) = 4.1472 (Msubcarriers/sec)
Max. bits/subcarrier
Min. bits/subcarrier
5
5/36
MAX: R = 5/6 coding & 64 QAM  5/6 * log2(64) = 5 (bits/subcarrier)
MIN: R = 1/12 coding & QPSK  1/12 * log2(4) = 5/36 (bits/subcarrier)
Max. data rate (Mbps)
Min. data rate (Mbps)
20.736
0.576
4.1472 (Msubcarriers/sec) * 5 (bits/subcarrier) = 20.736 (Mbps)
4.1472 (Msubcarriers/sec) * 5/36 (bits/subcarrier) = 576 (kbps)
IEEE 802.16e: Data Rate
• Uplink
Syntax Value Notes
OFDM symbol rate 3000 200 (frames/sec) * 15 (symbols/frame) = 3000 (symbols/sec)
Data subcarrier rate 2.3040 3000 (symbols/sec)* 768 (subcarriers/symbol) = 2.304 (Msubcarriers/sec)
Max. bits/subcarrier
Min. bits/subcarrier
10/3
5/36
MAX: R = 5/6 coding & 16 QAM  5/6 * log2(16) = 10/3 (bits/subcarrier)
MIN: R = 1/12 coding & QPSK  1/12 * log2(4) = 5/36 (bits/subcarrier)
Max. data rate (Mbps)
Min. data rate (Mbps)
7.68
0.320
2.304 (Msubcarriers/sec) * 10/3 (bits/subcarrier) = 7.68 (Mbps)
2.304 (Msubcarriers/sec) * 5/36 = 320 (kbps)
IEEE 802.16m (1)
• Basic Frame Structure
- The number of OFDMA symbols varies
with the length of CP.
- Type-1, type-2, type-3, type-4 subframes
IEEE 802.16m (2)
• Frame Structure with Type-1 Subframe (FDD)
- 5MHz, 10MHz, 20MHz bandwidth
IEEE 802.16m (3)
• Frame Structure with Type-1 Subframe (TDD)
• OFDM Parameters: Numerology (FDD)
Nominal Channel Bandwidth (MHz) 5 7 8.75 10 20
Over-sampling Factor 28/25 8/7 8/7 28/25 28/25
Sampling Frequency (MHz) 5.6 8 10 11.2 22.4
FFT Size 512 1024 1024 1024 2048
Sub-Carrier Spacing (kHz) 10.937500 7.812500 9.765625 10.937500 10.937500
Useful Symbol Time Tu (µs) 91.429 128 102.4 91.429 91.429
Cyclic Prefix (CP)
Tg=1/8 Tu
Symbol Time Ts (µs) 102.857 144 115.2 102.857 102.857
FDD
Number of OFDM
symbols per Frame
48 34 43 48 48
Idle time (µs) 62.857 104 46.40 62.857 62.857
Cyclic Prefix (CP)
Tg=1/16 Tu
Symbol Time Ts (µs) 97.143 136 108.8 97.143 97.143
FDD
Number of OFDM
symbols per Frame
51 36 45 51 51
Idle time (µs) 45.71 104 104 45.71 45.71
Cyclic Prefix (CP)
Tg=1/4 Tu
Symbol Time Ts (µs) 114.286 160 128 114.286 114.286
FDD
Number of OFDM
symbols per Frame
43 31 39 43 43
Idle time (µs) 85.694 40 8 85.694 85.694
Number of
Guard Sub-Carriers
Left 40 80 80 80 160
Right 39 79 79 79 159
Number of Used Sub-Carriers 433 865 865 865 1729
Number of Physical Resource Unit (18x6)
in a type-1 sub-frame
24 48 48 48 96
IEEE 802.16m (4)
• OFDM Parameters: Numerology (TDD)
Nominal Channel Bandwidth (MHz) 5 7 8.75 10 20
Over-sampling Factor 28/25 8/7 8/7 28/25 28/25
Sampling Frequency (MHz) 5.6 8 10 11.2 22.4
FFT Size 512 1024 1024 1024 2048
Sub-Carrier Spacing (kHz) 10.937500 7.812500 9.765625 10.937500 10.937500
Useful Symbol Time Tu (µs) 91.429 128 102.4 91.429 91.429
Cyclic Prefix (CP)
Tg=1/8 Tu
Symbol Time Ts (µs) 102.857 144 115.2 102.857 102.857
TDD
Number of OFDM
symbols per Frame
47 33 42 47 47
TTG + RTG (µs) 165.714 248 161.6 165.714 165.714
Cyclic Prefix (CP)
Tg=1/16 Tu
Symbol Time Ts (µs) 97.143 136 108.8 97.143 97.143
TDD
Number of OFDM
symbols per Frame
50 35 44 50 50
TTG + RTG (µs) 142.853 240 212.8 142.853 142.853
Cyclic Prefix (CP)
Tg=1/4 Tu
Symbol Time Ts (µs) 114.286 160 128 114.286 114.286
TDD
Number of OFDM
symbols per Frame
42 30 38 42 42
TTG + RTG (µs) 199.98 200 136 199.98 199.98
Number of
Guard Sub-Carriers
Left 40 80 80 80 160
Right 39 79 79 79 159
Number of Used Sub-Carriers 433 865 865 865 1729
Number of Physical Resource Units (18x6)
in a type-1 sub-frame
24 48 48 48 96
IEEE 802.16m (5)
• Frame Structure
- FDD
- TDD
3GPP LTE (1)
Subframe
#0
DwPTS
Subframe
#2
Subframe
#3
Subframe
#4
Subframe
#5
Subframe
#7
Subframe
#8
Subframe
#9
GP
UwPTS
DwPTS
GP
UwPTS
Subframe
#0
DwPTS
Subframe
#2
Subframe
#3
Subframe
#4
Subframe
#5
Subframe
#7
Subframe
#8
Subframe
#9
GP
UwPTS
Subframe
#6
One radio frame (10 ms)
10 ms switch-point
periodicty
5 ms switch-point
periodicty
: DL subframe : UL subframe
DwPTS
GP
UwPTS
: Special subframe
Configuration
0
1
2
3
4
5
5
Switch-point periodicity
5 ms
5 ms
5 ms
10 ms
10 ms
10 ms
10 ms
Subframe number
0 1 2 3 4 5 6 7 8 9
D
D
D
D
D
D
D
S
S
S
S
S
S
S
U
U
U
U
U
U
U
U
U
D
U
U
D
U
U
D
D
U
D
D
U
D
D
D
D
D
D
D
S
S
S
D
D
D
S
U
U
U
D
D
D
U
U
U
D
D
D
D
U
U
D
D
D
D
D
D
Uplink-downlink allocations
• Periodic Switch-Point Operation for TDD Frame Structure
3GPP LTE (2)
DL
symbN
slotT
0l 1DL
symb  Nl
RB
sc
DL
RBNN
RB
scN
RB
sc
DL
symb NN 
),( lk
0k
1RB
sc
DL
RB  NNk
• Slot Structure
and Physical Resource Element: Downlink
( , )k l
RB
sc
DL
RB NN
- Resource grid
subcarriers and
DL
symbN OFDM symbols
- Resource element
Each element in the resource grid,
uniquely defined by the index pair
- Resource block
RB
scNDL
symbN
To describe the mapping of certain physical
channels to resource elements, in terms of
OFDM symbols and consecutive subcarriers
3GPP LTE (3)
Nominal Channel Bandwidth (MHz) 1.4 3 5 10 15 20
Over-sampling Factor 48/35 96/75 43/28 43/28 43/28 43/28
Sampling Frequency (MHz) 1.92 3.84 7.68 15.36 23.04 30.72
FFT Size 128 256 512 1024 1536 2048
Sub-Carrier Spacing (kHz) 15 15 15 15 15 15
Useful Symbol Time Tu (µs) 66.7 66.7 66.7 66.7 66.7 66.7
Normal
Cyclic Prefix (CP)
Tg=4.7us
Symbol Time Ts (µs) 71.4 71.4 71.4 71.4 71.4 71.4
FDD
Number of OFDM
symbols per
Half Frame
70 70 70 70 70 70
Idle time (µs) . . . . . .
Extended
Cyclic Prefix (CP)
Tg=16.7us
Symbol Time Ts (µs) 83.4 83.4 83.4 83.4 83.4 83.4
FDD
Number of OFDM
symbols per
Half Frame
60 60 60 60 60 60
Idle time (µs) . . . . . .
Number of
Guard Sub-Carriers
Left 28 38 106 212 318 424
Right 28 38 106 212 318 424
Number of Used Sub-Carriers 72 180 300 600 900 1200
Number of Physical Resource elements (12x7)
in a resource block
6 15 25 50 75 100
• OFDM Parameters: FDD
3GPP LTE (1)
Nominal Channel Bandwidth (MHz) 1.4 3 5 10 15 20
Over-sampling Factor 48/35 96/75 43/28 43/28 43/28 43/28
Sampling Frequency (MHz) 1.92 3.84 7.68 15.36 23.04 30.72
FFT Size 128 256 512 1024 1536 2048
Sub-Carrier Spacing (kHz) 15 15 15 15 15 15
Useful Symbol Time Tu (µs) 66.7 66.7 66.7 66.7 66.7 66.7
Normal
Cyclic Prefix (CP)
Tg=4.7us
Symbol Time Ts (µs) 71.4 71.4 71.4 71.4 71.4 71.4
TDD
Number of OFDM
symbols per
Half Frame
68 68 68 68 68 68
GP (µs) 142.8 142.8 142.8 142.8 142.8 142.8
Extended
Cyclic Prefix (CP)
Tg=16.7us
Symbol Time Ts (µs) 83.4 83.4 83.4 83.4 83.4 83.4
TDD
Number of OFDM
symbols per
Half Frame
59 59 59 59 59 59
GP (µs) 83.4 83.4 83.4 83.4 83.4 83.4
Number of
Guard Sub-Carriers
Left 28 38 106 212 318 424
Right 28 38 106 212 318 424
Number of Used Sub-Carriers 72 180 300 600 900 1200
Number of Physical Resource elements (12x7)
in a resource block
6 15 25 50 75 100
• OFDM Parameters: TDD
3GPP LTE (2)

Contenu connexe

Tendances

What is the main difference between single carrier and ofdm yahoo! answers
What is the main difference between single carrier and ofdm    yahoo! answersWhat is the main difference between single carrier and ofdm    yahoo! answers
What is the main difference between single carrier and ofdm yahoo! answers
en_maruf78
 
Lte tutorial april 2009 ver1.1
Lte tutorial april 2009 ver1.1Lte tutorial april 2009 ver1.1
Lte tutorial april 2009 ver1.1
Gerti Windhuber
 
Ofdm tutorial fuyun_ling_rev1
Ofdm tutorial fuyun_ling_rev1Ofdm tutorial fuyun_ling_rev1
Ofdm tutorial fuyun_ling_rev1
Fuyun Ling
 

Tendances (20)

OFDM based baseband Receiver
OFDM based baseband ReceiverOFDM based baseband Receiver
OFDM based baseband Receiver
 
Performance and Analysis of OFDM Signal Using Matlab Simulink
Performance and Analysis of OFDM Signal Using Matlab  SimulinkPerformance and Analysis of OFDM Signal Using Matlab  Simulink
Performance and Analysis of OFDM Signal Using Matlab Simulink
 
Introduction to OFDM
Introduction to OFDMIntroduction to OFDM
Introduction to OFDM
 
What is the main difference between single carrier and ofdm yahoo! answers
What is the main difference between single carrier and ofdm    yahoo! answersWhat is the main difference between single carrier and ofdm    yahoo! answers
What is the main difference between single carrier and ofdm yahoo! answers
 
Tdd Versus Fdd
Tdd Versus FddTdd Versus Fdd
Tdd Versus Fdd
 
LTE physical layer
LTE physical layerLTE physical layer
LTE physical layer
 
3 gpp lte radio layer 2
3 gpp lte radio layer 23 gpp lte radio layer 2
3 gpp lte radio layer 2
 
Fdd vs tdd lte
Fdd vs tdd lteFdd vs tdd lte
Fdd vs tdd lte
 
Bit Error rate of QAM
Bit Error rate of QAMBit Error rate of QAM
Bit Error rate of QAM
 
OFDM
OFDMOFDM
OFDM
 
Lte tutorial april 2009 ver1.1
Lte tutorial april 2009 ver1.1Lte tutorial april 2009 ver1.1
Lte tutorial april 2009 ver1.1
 
OFDM for LTE
OFDM for LTEOFDM for LTE
OFDM for LTE
 
(Ofdm)
(Ofdm)(Ofdm)
(Ofdm)
 
LTE Vs. 3G
LTE Vs. 3GLTE Vs. 3G
LTE Vs. 3G
 
5G
5G5G
5G
 
2015 08-31 kofidis
2015 08-31 kofidis2015 08-31 kofidis
2015 08-31 kofidis
 
Ofdma
OfdmaOfdma
Ofdma
 
Ofdm tutorial fuyun_ling_rev1
Ofdm tutorial fuyun_ling_rev1Ofdm tutorial fuyun_ling_rev1
Ofdm tutorial fuyun_ling_rev1
 
03 6420 e-utra layer 1 key aspects and ofdm(a) principles_e05
03 6420 e-utra layer 1 key aspects and ofdm(a) principles_e0503 6420 e-utra layer 1 key aspects and ofdm(a) principles_e05
03 6420 e-utra layer 1 key aspects and ofdm(a) principles_e05
 
Orthogonal Frequency Division Multiplexing (OFDM)
Orthogonal Frequency Division Multiplexing (OFDM)Orthogonal Frequency Division Multiplexing (OFDM)
Orthogonal Frequency Division Multiplexing (OFDM)
 

En vedette

9 16 05 Karim Hassib Wi Max
9 16 05 Karim Hassib   Wi Max9 16 05 Karim Hassib   Wi Max
9 16 05 Karim Hassib Wi Max
sai srikar
 
Presentación 3gpp y lte
Presentación 3gpp y ltePresentación 3gpp y lte
Presentación 3gpp y lte
Juan Contreras
 
Ttalteoverview 100923032416 Phpapp01 (1)
Ttalteoverview 100923032416 Phpapp01 (1)Ttalteoverview 100923032416 Phpapp01 (1)
Ttalteoverview 100923032416 Phpapp01 (1)
Deepak Sharma
 
5g technology UPDATED 21 FEB -ankush 19 feb 2014 WITH EFFECT
5g technology UPDATED 21 FEB -ankush  19 feb 2014 WITH EFFECT5g technology UPDATED 21 FEB -ankush  19 feb 2014 WITH EFFECT
5g technology UPDATED 21 FEB -ankush 19 feb 2014 WITH EFFECT
ANKUSH PRAJAPAT
 

En vedette (13)

Lte Tutorial
Lte TutorialLte Tutorial
Lte Tutorial
 
Wi max
Wi maxWi max
Wi max
 
9 16 05 Karim Hassib Wi Max
9 16 05 Karim Hassib   Wi Max9 16 05 Karim Hassib   Wi Max
9 16 05 Karim Hassib Wi Max
 
Presentación 3gpp y lte
Presentación 3gpp y ltePresentación 3gpp y lte
Presentación 3gpp y lte
 
Analysis Of Ofdm Parameters Using Cyclostationary Spectrum Sensing
Analysis Of Ofdm Parameters Using Cyclostationary Spectrum SensingAnalysis Of Ofdm Parameters Using Cyclostationary Spectrum Sensing
Analysis Of Ofdm Parameters Using Cyclostationary Spectrum Sensing
 
Definiciones de mac, protocolo, ip, mascara
Definiciones de mac, protocolo, ip, mascaraDefiniciones de mac, protocolo, ip, mascara
Definiciones de mac, protocolo, ip, mascara
 
Ttalteoverview 100923032416 Phpapp01 (1)
Ttalteoverview 100923032416 Phpapp01 (1)Ttalteoverview 100923032416 Phpapp01 (1)
Ttalteoverview 100923032416 Phpapp01 (1)
 
5g technology UPDATED 21 FEB -ankush 19 feb 2014 WITH EFFECT
5g technology UPDATED 21 FEB -ankush  19 feb 2014 WITH EFFECT5g technology UPDATED 21 FEB -ankush  19 feb 2014 WITH EFFECT
5g technology UPDATED 21 FEB -ankush 19 feb 2014 WITH EFFECT
 
Lte presentation
Lte presentationLte presentation
Lte presentation
 
AIRCOM LTE Webinar 2 - Air Interface
AIRCOM LTE Webinar 2 - Air InterfaceAIRCOM LTE Webinar 2 - Air Interface
AIRCOM LTE Webinar 2 - Air Interface
 
OFDM Orthogonal Frequency Division Multiplexing
OFDM Orthogonal Frequency Division MultiplexingOFDM Orthogonal Frequency Division Multiplexing
OFDM Orthogonal Frequency Division Multiplexing
 
LTE Evolution: From Release 8 to Release 10
LTE Evolution: From Release 8 to Release 10LTE Evolution: From Release 8 to Release 10
LTE Evolution: From Release 8 to Release 10
 
Lte mac presentation
Lte mac presentationLte mac presentation
Lte mac presentation
 

Similaire à IMT Advanced

Digital communication
Digital communicationDigital communication
Digital communication
meashi
 

Similaire à IMT Advanced (20)

ofdm
ofdmofdm
ofdm
 
디지털통신 7
디지털통신 7디지털통신 7
디지털통신 7
 
Lecture intro to_wcdma
Lecture intro to_wcdmaLecture intro to_wcdma
Lecture intro to_wcdma
 
Introduction to OFDM.ppt
Introduction to  OFDM.pptIntroduction to  OFDM.ppt
Introduction to OFDM.ppt
 
GPS Signals (1)
GPS Signals (1)GPS Signals (1)
GPS Signals (1)
 
Chap2 ofdm basics
Chap2 ofdm basicsChap2 ofdm basics
Chap2 ofdm basics
 
synthetic aperture radar
synthetic aperture radarsynthetic aperture radar
synthetic aperture radar
 
Multi-Carrier Transmission over Mobile Radio Channels.ppt
Multi-Carrier Transmission over Mobile Radio Channels.pptMulti-Carrier Transmission over Mobile Radio Channels.ppt
Multi-Carrier Transmission over Mobile Radio Channels.ppt
 
Lecture#5 21 4-2013
Lecture#5 21 4-2013Lecture#5 21 4-2013
Lecture#5 21 4-2013
 
OFDM Basics.ppt
OFDM Basics.pptOFDM Basics.ppt
OFDM Basics.ppt
 
Digital communication
Digital communicationDigital communication
Digital communication
 
Course-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdfCourse-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdf
 
Advanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdfAdvanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdf
 
Channel Estimation In The STTC For OFDM Using MIMO With 4G System
Channel Estimation In The STTC For OFDM Using MIMO With 4G SystemChannel Estimation In The STTC For OFDM Using MIMO With 4G System
Channel Estimation In The STTC For OFDM Using MIMO With 4G System
 
I010125056
I010125056I010125056
I010125056
 
Sistec ppt
Sistec pptSistec ppt
Sistec ppt
 
Spacecraft RF Communications Course Sampler
Spacecraft RF Communications Course SamplerSpacecraft RF Communications Course Sampler
Spacecraft RF Communications Course Sampler
 
Frequency modulation
Frequency modulationFrequency modulation
Frequency modulation
 
Introduction to OFDM
Introduction to OFDMIntroduction to OFDM
Introduction to OFDM
 
wireless communications
wireless communications wireless communications
wireless communications
 

Dernier

Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Victor Rentea
 

Dernier (20)

Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelMcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital Adaptability
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 

IMT Advanced

  • 1. Core Technologies for 4G: OFDM Prof. Chung G. Kang KOREA University ccgkang@korea.ac.kr 4G Mobile (IMT Advanced) System and Applications
  • 2. OFDM: Overview • High-speed wireless transmission technology • Implemented as a useful means of multiple access to support the multi-user communication, as OFDMA (Orthogonal Frequency Division Multiple Access) • Adopted for the candidate radio interface technologies for IMT-Advanced in ITU-R
  • 3. • Rayleigh Fading Channel Model • Time Dispersion due to Multi-path Fading MOBILE Moving directionRoad Buildings i 2 ( cos ) 1 ( ) Re ( ) c d i i n j f f t R i i s t As t e              cd f c v f where RMS Delay Spread (t) t t ( )t ( )t Ideal Channel Non-ideal Channel Broadband Wireless Channel (1)
  • 4. • Ideal Channel vs. Non-ideal Channel +( )s t ( )s t ( )n t ( )h t - Ideal channel ( )h t | ( ) |H f - Non-ideal channel ft ( )h t | ( ) |H f ft ( )t ( )t ( )t Broadband Wireless Channel (2)
  • 5. • Delay Spread and Inter-Symbol Interference (ISI) Symbol 1 Ts s < Ts 0 1 2 3 Symbol 1 1 2 3 Symbol 2 s >> Ts Ts 0 1 2 3 1 2 3 ( ) 0 1 1 2 2 3 3, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )h t t t t t= + - + - + -% % % % %t a d t a d t t a d t t a d t t Broadband Wireless Channel (3) Higher-speed transmission suffers from the more multipath fading (more ISI)!
  • 6. • Delay Spread and Frequency Selectivity ( )h t | ( ) |H f ft 1( )t ( )t ( )h t t 1( )t ( )t 2( )t  | ( ) |H f f Bc Bc ~ s ~ s Bs - Frequency flat - Frequency selective Bs Bs : Signal Bandwidth Bc: Coherence Bandwidth Broadband Wireless Channel (4) Ts Ts
  • 7. ( ) 1 2 2, ( ) ( ) ( ) ( )h t t tt a d t a d t t= + -% % % • General Fading Channel Broadband Wireless Channel (5) Channel varies with both frequency and time, i.e., frequency selectivity varies with the times, depending on the mobile speed
  • 8. Equalizer Channel Equalization 0 T ( )h t { }nx { }ny 0h 1h 2 0 2 1 1 3 0 3 1 2 y h x h x n y h x h x n       • Optimum Channel Equalization - Maximum likelihood sequence equalization (MLSE) + n 2 3 0 1 2 3 Given { , } and { , }, determine { , } y y h h x x  2 3 2* * 2 2 3 2 0 2 1 1 3 0 3 1 2 ( , ) ˆ ˆ( , ) min ( ) { ( )} x x S x x y h x h x y h x h x           - Illustrative example {1, 1}nx   ˆ{ }nx where {(1,1),(1, 1),( 1,1),( 1, 1)}S       2 | | 2 4S   In general, | | L S M where M is the number of symbols and L is the number of multi-paths Too complex!
  • 9. Discrete Fourier Transform (DFT) 2 ( ) ( ) j ft X f x t e dt     ( )X f ( )x t ( ) n s n X f X f T            ( )X f nx sT 1/ sT 2 0 kN j n N k n n X x e     nx N N kX f f k DFT:
  • 10. Serial to Parallel Conv. x x x + Modulator RF • Transmitter sT 0cos2 f t 1cos2 f t 1cos2 Nf t  OFDM: Basic Concept (1) sN T 1/s sR T sN T { }nx 0x 1x 1Nx  sN T ( )b t ( )s t Orthogonality:   0 cos2 cos2 0 sNT i jf t f t dt   for all i j 1 0 ( ) cos2 N n n n s t x f t     OFDM symbol
  • 11. • Receiver OFDM: Basic Concept (2) ( )s t Down Conv. x 0cos2 f t sN T x x 1cos2 f t 1cos2 Nf t  1x 1Nx  Serial to Parallel Conv. De- modulator 0x 0 0 0 1 1 2 ( )cos(2 ) 2 cos(2 ) cos(2 ) 2 cos(2 ) cos(2 ) 2 cos(2 ) cos(2 ) sNT n n n n n N N n n s t f t dt x f t f t x f t f t x f t f t x                        Too many carriers…. How to implement this?
  • 12. 0f • OFDM = N Parallel Narrowband Channels 0x OFDM: Basic Concept (3) 1f 3f2f 1x 2x
  • 13. OFDM: Basic Concept (4) 0 • Time Domain: OFDM Symbol • Frequency Domain: Subcarriers ( ) cos(2 ) (0, )n n ns t x f t rect T  ( ) ( )*sinc( ) sinc( ( )) n n n n n S f x f f fT x f f        (0, )rect T T sT N T  0x 1x 1Nx  0 t T  1cos(2 )f t 2cos(2 )f t 3cos(2 )f t
  • 14. OFDM: Implementation (1) • Block Diagram 1 2 ( / ) 0 N j k N n n k k x X e      1 2 ( / ) 0 1 2 ( / ) 0 N j k N n k nk N j k N n n kk Y y e a x e aX              { }kX { }kY 0x 1x 1Nx  - Illustration: single-path channel ˆ/k kX Y a
  • 15. • Block Diagram kX kH kY ?k k kY H X { }kX { }kY 0x 1x 1Nx  - Illustration: multi-path channel OFDM: Implementation (2)
  • 16. Cyclic Prefix (1) 1 0 2 exp 2 k n n H h jk n           0 1 2 0 H H   2 0 2 exp 3 k n n X x jk n           0 1 2 3 0 0 X X X    2 0 2 exp 3 k n n Y y jk n           0 1 2 5 1 2 3 1- 2 3 Y Y Y     k k kY H X • Effect of Multi-path Channel - Illustrating example
  • 17. 1 0 2 exp 2 k n n H h jk n           0 1 2 0 H H   2 0 2 exp 3 k n n X x jk n                   2 0 3 2 exp][ n n njkykY  0 1 2 6 0 0 Y Y Y    , 1,2k k kY H X k  0 1 2 3 0 0 X X X    Cyclic Prefix (2) • Effect of Multi-path Channel - Illustrating example Cyclic prefix
  • 18. • Guard Interval vs. Cyclic Prefix - Inter-symbol Interference (ISI) & guard Interval - Inter-carrier Interference & cyclic prefix  Zero-valued guard interval FFT interval Guard interval Cyclic prefix Guard interval  FFT interval No ICI and no ISI No ISI but ICI Guard interval Cyclic Prefix (3)
  • 19. subTGT sym sub GT T T  No guard interval Orthogonality maintained by inserting CP ISI can be avoided by the guard interval Cyclic Prefix (4) • Effect of CP: Illustration
  • 20. FFT period FFT periodGI Subcarrier #1 Subcarrier #2 CP Delayed Subcarrier #2
  • 21. f t Effective BW FFT size Guard interval TG Effective symbol duration Tsub copy 1 1 0 1 2 1 1{ , , , , , , , , , }N L N N N L N L N NX X X X X X X X X X        0x 1x 1Nx  OFDM: Overall Picture • OFDM Symbol in 3D OFDM Symbol
  • 22. OFDM: Performance • Effect of Delay Spread (b) Delay exceeds guard time by 3% of the FFT interval. (c) Delay exceeds guard time by 10% of the FFT interval. - What if delay exceeds the guard time (CP)?
  • 23. Windowing • Power Spectrum Density - The side-lobe of spectrum decreases with the larger number of subcarriers - The out-of-band spectrum decreases slowly, due to a sinc function - Raised cosine windowing
  • 24. Guard Band Guard BandData Subcarrier BandGuard Band Guard BandData Subcarrier Band - Adjacent Channel Interference (ACI) - Guard Band Guard Band & ACI • Illustrative Example: N = 1024 (IEEE 802.16e) Channel 1 Channel 2 Channel 3 Adjacent channel interference Channel 2 Unused Subcarriers for guard band
  • 25. SNR Coded OFDM - Some subcarriers suffered by frequency selective fading must be protected by forward error correction (FEC) coding • Why Coded OFDM?
  • 26. OFDM: Block Diagram • Overall Block Diagram
  • 27. Water-filling (1) { }kX { }kY 0x 1x 1Nx  • System Model , 1,2, , 1n n n ny h x n N    - The frequency selective channel transformed to a parallel channel • AWGN Capacity 21 0 0 | | log 1 N n n P h C N           - Total capacity = sum capacity of each channel where 2 {| | }, 0,1,2, , 1nP E x n N   What if we allocate the different power to each subcarrier?
  • 28. Water-filling (2) • Power Allocation Problem for a Parallel Channel - Assume that each subcarrier is allocated with power Pn. - Problem statement - Optimal power allocation: where the Lagrange multiplier is chosen such that the power constraint is met: 0 1 2 1 ,..., 0 0 m ax log 1 , c c N c N n n N P P n P h C N              1,...,0,0, 1 0    cnc N n n NnPPNP c             2 0* ~ 1 n n h N P  .~ 11 1 0 2 0 P h N N cN n n c                  subject to
  • 29. Water-filling (3) • Water-filling Interpretation - If P units of water per sub-carrier are filled into the vessel, the depth of the water at subcarrier n is the power allocated to that sub-carrier Height of the water surface - Optimal power allocation: The better a channel, the more power! Inverse of Channel gain             2 0* ~ 1 n n h N P 
  • 30. • Illustrative Example x x Rb bps/Wb Hz Digital Modulation Base Station x x Digital Demodulation Information bits for User 1 Rc >> Rb bps x + C1 C2 Rb bps/Wb Hz User 1 User 2 Multiple Access: CDMA (1) C1
  • 31. • Processing Gain & Interference 0 b b required required EC R I N W             1 b b R T  1 c W T  Processing Gain = b b c W T R T  0 6 10 3 (dB) (dB) 1.2288 10 6 10 log 6 21.1 15.1dB 9.6 10 b required brequired EC W I N R                       - Example:  0 9,600Hz; 1.2288MHz; / 6dBb b required R W E N   Multiple Access: CDMA (2)
  • 32. • Processing Gain & Data Rate - Processing gain varies with the data rate for the fixed chip rate system - Example: Rc = 1.2288Mcps  The higher the data rate is, the lower the processing gain is!  To maintain the processing gain, more bandwidth is required for higher data rate Rb = 9.6kbps  PG = 128 Rb = 4.8kbps  PG = 256 - Example: For W = 20Mbps with PG = 128, Rb = W/PG ~ 150kbps  The maximum possible data is limited to 150kbps with CDMA! Rc Rb 2Rb Multiple Access: CDMA (3) • Illustrative Example Chip
  • 33. Serial to Parallel Converter X X X + Modulator RF sT 0cos2 f t 1cos2 f t 1cos2 Nf t  sNT sNT sNT • Orthogonal Frequency Division Multiplexing (OFDM) X X X + RF )(ts 0cos2 f t 1cos2 f t 1cos2 Nf t  sNT • Orthogonal Frequency Division Multiple Access (OFDMA) sNT User 0 User 1 User N-1 Modulator Modulator Modulator Multiple Access: OFDMA (1) 0x 1x 1Nx  ( )s t 0x 1x 1Nx 
  • 34. User #2 User #1 • OFDMA Concept  Multiuser OFDM (OFDM + FDMA) - Subchannel: a set of subcarrier as a basic resource allocation unit - Why OFDMA? Multiple Access: OFDMA (2)
  • 35. • Multiple Access with OFDM - Resource units: Subchannels or Resource Block Frequency Time OFDM symbol Subchannel Multiple Access: OFDMA (3) Subframe Subcarrier User 1 User 2 User 3 User 4 By assigning different time/frequency slots to users, they can be kept orthogonal, no matter how much the delay spread is….
  • 36. Cellular OFDMA (1) 0 max max 0 0 2 max ( ) ( ) ( ) ( ) ( ) ( )u u k k k k k k P d N N d dC PNI N d p d d N            • Co-channel Interference in OFDMA Network max uN p N  maxN Cell F0 Cell F1 Fully loaded Loading factor = p uN 0 bEC R I N W   cf) CDMA 1/Processing Gain 0( )d 1( )d 2( )d - C/I ratio for subcarrier P -500 0 500 -800 -600 -400 -200 0 200 400 600 800 in meter inmeter 10 20 30 40 50 60 - Downlink
  • 37. • Subcarrier Allocation for Interference Averaging - Example x1 x2 X1 X2 Without frequency hopping With frequency hopping - Interference averaging with frequency hopping  interference diversity Cellular OFDMA (2)
  • 38. • Hopping Pattern for Subcarrier Allocation - To design the hopping patterns with a period of Nc OFDM symbols that are as apart as possible for neighbor BSs (Nc: prime number)  Every user hops over all the sub-carriers in each period  frequency diversity  Each user occupies different sub-carriers in any OFDM symbol time - Latin square  Nc x Nc matrix  Example: Nc = 5 Cellular OFDMA (3)
  • 39. • Orthogonal Latin Squares - Latin squares that gives exactly one time/sub-carrier collision for every pair of virtual channels of two base stations  Ra and Rb are orthogonal if a is not equal to b - Generation rule:  Example: a = 2 & Nc = 5 • Inter-BS Synchronization - OFDM symbol-level synchronization required Cellular OFDMA (4)
  • 40. • OFDM Parameters: Numerology (TDD) Nominal Channel Bandwidth (W) 8.75MHz Over-sampling Factor (n) 8/7 Sampling Frequency (Fs) 10 MHz FFT Size (Nfft) 1,024 Sub-Carrier Spacing ( f) 9.765625kHz Useful Symbol Time (Tb ) 102.4 µs Cyclic Prefix (CP) Tg=1/8 Tb Symbol Time (Ts ) 115.2 µs TDD Number of OFDM symbols per Frame 42 TTG + RTG (µs) 161.6 Number of Guard Sub-Carriers Left 80 Right 79 Number of Used Sub-Carriers 865 IEEE 802.16e: PHY Parameters Tg Tb Ts sF nW 1/bT f  /s fftf F N  1/ 9.765625 kHzbf T   2 8.75MHz 9.765625kHz 896m fftN    1024fftN   (9.765625)(1024) 10MHzs fftF f N    / 10/8.75 8/ 7sn F W    102.4 μsbT 
  • 41. • TDD Frame Structure 115.2us IEEE 802.16e: Frame Structure 24 symbols 12 symbols
  • 42. • Downlink Syntax Value Notes Total # of subcarriers 768 768 = 24 bands * 4 bins/band * 8 subcarriers/bin # of frames / sec 200 1 / 5 ms/frame = 200 (frames/sec) OFDM symbols / frame 42 42 symbols = 27 DL symbols + 15 UL symbols OFDM symbol rate 5400 200 (frames/sec) * 27 (symbols/frame) = 5400 (symbols/sec) Data subcarrier rate 4.1472 5400 (symbols/sec)* 768 (subcarriers/symbol) = 4.1472 (Msubcarriers/sec) Max. bits/subcarrier Min. bits/subcarrier 5 5/36 MAX: R = 5/6 coding & 64 QAM  5/6 * log2(64) = 5 (bits/subcarrier) MIN: R = 1/12 coding & QPSK  1/12 * log2(4) = 5/36 (bits/subcarrier) Max. data rate (Mbps) Min. data rate (Mbps) 20.736 0.576 4.1472 (Msubcarriers/sec) * 5 (bits/subcarrier) = 20.736 (Mbps) 4.1472 (Msubcarriers/sec) * 5/36 (bits/subcarrier) = 576 (kbps) IEEE 802.16e: Data Rate • Uplink Syntax Value Notes OFDM symbol rate 3000 200 (frames/sec) * 15 (symbols/frame) = 3000 (symbols/sec) Data subcarrier rate 2.3040 3000 (symbols/sec)* 768 (subcarriers/symbol) = 2.304 (Msubcarriers/sec) Max. bits/subcarrier Min. bits/subcarrier 10/3 5/36 MAX: R = 5/6 coding & 16 QAM  5/6 * log2(16) = 10/3 (bits/subcarrier) MIN: R = 1/12 coding & QPSK  1/12 * log2(4) = 5/36 (bits/subcarrier) Max. data rate (Mbps) Min. data rate (Mbps) 7.68 0.320 2.304 (Msubcarriers/sec) * 10/3 (bits/subcarrier) = 7.68 (Mbps) 2.304 (Msubcarriers/sec) * 5/36 = 320 (kbps)
  • 43. IEEE 802.16m (1) • Basic Frame Structure - The number of OFDMA symbols varies with the length of CP. - Type-1, type-2, type-3, type-4 subframes
  • 44. IEEE 802.16m (2) • Frame Structure with Type-1 Subframe (FDD) - 5MHz, 10MHz, 20MHz bandwidth
  • 45. IEEE 802.16m (3) • Frame Structure with Type-1 Subframe (TDD)
  • 46. • OFDM Parameters: Numerology (FDD) Nominal Channel Bandwidth (MHz) 5 7 8.75 10 20 Over-sampling Factor 28/25 8/7 8/7 28/25 28/25 Sampling Frequency (MHz) 5.6 8 10 11.2 22.4 FFT Size 512 1024 1024 1024 2048 Sub-Carrier Spacing (kHz) 10.937500 7.812500 9.765625 10.937500 10.937500 Useful Symbol Time Tu (µs) 91.429 128 102.4 91.429 91.429 Cyclic Prefix (CP) Tg=1/8 Tu Symbol Time Ts (µs) 102.857 144 115.2 102.857 102.857 FDD Number of OFDM symbols per Frame 48 34 43 48 48 Idle time (µs) 62.857 104 46.40 62.857 62.857 Cyclic Prefix (CP) Tg=1/16 Tu Symbol Time Ts (µs) 97.143 136 108.8 97.143 97.143 FDD Number of OFDM symbols per Frame 51 36 45 51 51 Idle time (µs) 45.71 104 104 45.71 45.71 Cyclic Prefix (CP) Tg=1/4 Tu Symbol Time Ts (µs) 114.286 160 128 114.286 114.286 FDD Number of OFDM symbols per Frame 43 31 39 43 43 Idle time (µs) 85.694 40 8 85.694 85.694 Number of Guard Sub-Carriers Left 40 80 80 80 160 Right 39 79 79 79 159 Number of Used Sub-Carriers 433 865 865 865 1729 Number of Physical Resource Unit (18x6) in a type-1 sub-frame 24 48 48 48 96 IEEE 802.16m (4)
  • 47. • OFDM Parameters: Numerology (TDD) Nominal Channel Bandwidth (MHz) 5 7 8.75 10 20 Over-sampling Factor 28/25 8/7 8/7 28/25 28/25 Sampling Frequency (MHz) 5.6 8 10 11.2 22.4 FFT Size 512 1024 1024 1024 2048 Sub-Carrier Spacing (kHz) 10.937500 7.812500 9.765625 10.937500 10.937500 Useful Symbol Time Tu (µs) 91.429 128 102.4 91.429 91.429 Cyclic Prefix (CP) Tg=1/8 Tu Symbol Time Ts (µs) 102.857 144 115.2 102.857 102.857 TDD Number of OFDM symbols per Frame 47 33 42 47 47 TTG + RTG (µs) 165.714 248 161.6 165.714 165.714 Cyclic Prefix (CP) Tg=1/16 Tu Symbol Time Ts (µs) 97.143 136 108.8 97.143 97.143 TDD Number of OFDM symbols per Frame 50 35 44 50 50 TTG + RTG (µs) 142.853 240 212.8 142.853 142.853 Cyclic Prefix (CP) Tg=1/4 Tu Symbol Time Ts (µs) 114.286 160 128 114.286 114.286 TDD Number of OFDM symbols per Frame 42 30 38 42 42 TTG + RTG (µs) 199.98 200 136 199.98 199.98 Number of Guard Sub-Carriers Left 40 80 80 80 160 Right 39 79 79 79 159 Number of Used Sub-Carriers 433 865 865 865 1729 Number of Physical Resource Units (18x6) in a type-1 sub-frame 24 48 48 48 96 IEEE 802.16m (5)
  • 48. • Frame Structure - FDD - TDD 3GPP LTE (1)
  • 49. Subframe #0 DwPTS Subframe #2 Subframe #3 Subframe #4 Subframe #5 Subframe #7 Subframe #8 Subframe #9 GP UwPTS DwPTS GP UwPTS Subframe #0 DwPTS Subframe #2 Subframe #3 Subframe #4 Subframe #5 Subframe #7 Subframe #8 Subframe #9 GP UwPTS Subframe #6 One radio frame (10 ms) 10 ms switch-point periodicty 5 ms switch-point periodicty : DL subframe : UL subframe DwPTS GP UwPTS : Special subframe Configuration 0 1 2 3 4 5 5 Switch-point periodicity 5 ms 5 ms 5 ms 10 ms 10 ms 10 ms 10 ms Subframe number 0 1 2 3 4 5 6 7 8 9 D D D D D D D S S S S S S S U U U U U U U U U D U U D U U D D U D D U D D D D D D D S S S D D D S U U U D D D U U U D D D D U U D D D D D D Uplink-downlink allocations • Periodic Switch-Point Operation for TDD Frame Structure 3GPP LTE (2)
  • 50. DL symbN slotT 0l 1DL symb  Nl RB sc DL RBNN RB scN RB sc DL symb NN  ),( lk 0k 1RB sc DL RB  NNk • Slot Structure and Physical Resource Element: Downlink ( , )k l RB sc DL RB NN - Resource grid subcarriers and DL symbN OFDM symbols - Resource element Each element in the resource grid, uniquely defined by the index pair - Resource block RB scNDL symbN To describe the mapping of certain physical channels to resource elements, in terms of OFDM symbols and consecutive subcarriers 3GPP LTE (3)
  • 51. Nominal Channel Bandwidth (MHz) 1.4 3 5 10 15 20 Over-sampling Factor 48/35 96/75 43/28 43/28 43/28 43/28 Sampling Frequency (MHz) 1.92 3.84 7.68 15.36 23.04 30.72 FFT Size 128 256 512 1024 1536 2048 Sub-Carrier Spacing (kHz) 15 15 15 15 15 15 Useful Symbol Time Tu (µs) 66.7 66.7 66.7 66.7 66.7 66.7 Normal Cyclic Prefix (CP) Tg=4.7us Symbol Time Ts (µs) 71.4 71.4 71.4 71.4 71.4 71.4 FDD Number of OFDM symbols per Half Frame 70 70 70 70 70 70 Idle time (µs) . . . . . . Extended Cyclic Prefix (CP) Tg=16.7us Symbol Time Ts (µs) 83.4 83.4 83.4 83.4 83.4 83.4 FDD Number of OFDM symbols per Half Frame 60 60 60 60 60 60 Idle time (µs) . . . . . . Number of Guard Sub-Carriers Left 28 38 106 212 318 424 Right 28 38 106 212 318 424 Number of Used Sub-Carriers 72 180 300 600 900 1200 Number of Physical Resource elements (12x7) in a resource block 6 15 25 50 75 100 • OFDM Parameters: FDD 3GPP LTE (1)
  • 52. Nominal Channel Bandwidth (MHz) 1.4 3 5 10 15 20 Over-sampling Factor 48/35 96/75 43/28 43/28 43/28 43/28 Sampling Frequency (MHz) 1.92 3.84 7.68 15.36 23.04 30.72 FFT Size 128 256 512 1024 1536 2048 Sub-Carrier Spacing (kHz) 15 15 15 15 15 15 Useful Symbol Time Tu (µs) 66.7 66.7 66.7 66.7 66.7 66.7 Normal Cyclic Prefix (CP) Tg=4.7us Symbol Time Ts (µs) 71.4 71.4 71.4 71.4 71.4 71.4 TDD Number of OFDM symbols per Half Frame 68 68 68 68 68 68 GP (µs) 142.8 142.8 142.8 142.8 142.8 142.8 Extended Cyclic Prefix (CP) Tg=16.7us Symbol Time Ts (µs) 83.4 83.4 83.4 83.4 83.4 83.4 TDD Number of OFDM symbols per Half Frame 59 59 59 59 59 59 GP (µs) 83.4 83.4 83.4 83.4 83.4 83.4 Number of Guard Sub-Carriers Left 28 38 106 212 318 424 Right 28 38 106 212 318 424 Number of Used Sub-Carriers 72 180 300 600 900 1200 Number of Physical Resource elements (12x7) in a resource block 6 15 25 50 75 100 • OFDM Parameters: TDD 3GPP LTE (2)