SlideShare a Scribd company logo
1 of 26
Air or Gas Compressors:  A steady-state, steady flow machine that is used to compressed air or gas to final pressure exceeding 241.25 Kpa gage. Types of Compressor: 1. Centrifugal Compressors:  For low pressure and high capacity   applications. 2. Rotary Compressors: For medium pressure and low capacity  application. 3. Reciprocating Compressors: For high pressure and low capacity application. Uses of compressed air: 1. Operation of small engines 2. Pneumatic tools 3. Air hoists 4. Industrial cleaning by air blast 5. Tire inflation  6. Paint Spraying
7. Air lifting of liquids 8. Manufacture of plastics and other industrial products 9. To supply air in mine tunnels 10. Other specialized industrial applications Analysis of Centrifugal and Rotary Type 1   Suction 2   Discharge W   (Work) Assumption  KE = 0    PE = 0   For a compressor, work is done on the system  W =   h - Q  ,[object Object],[object Object],[object Object],P V P 2 P 1 PV k  = C
Where: m – mass flow rate in kg/sec  C p  – constant pressure specific heat in KJ/kg-  C or KJ/kg-  K
2. Polytropic compression: PV n  = C  P V P 2 P 1 PV n  = C
3. Isothermal Compression: PV = C Analysis of Reciprocating Type Compressor (Piston-in-cylinder type): piston Valves cylinder Piston rod P V P 2 P 1 PV = C
Pressure-Volume Diagram (PV) HE – head end CE – Crank end L – length of stroke P 1  – suction pressure P 2  – discharge pressure V 1’  – volume flow rate at intake V D  – displacement volume CV D  – clearance volume CV D  = V 3 V D L HE CE P V 1 2 3 4 P 2 P 1 V 1’ V D CV D
1. Isentropic Compression: PV k  = C Where: V1’ – volume flow rate at intake, m 3 /sec m – mass flow rate corresponding V 1’ P 1  – suction pressure, Kpa P 2  – discharge pressure, Kpa T 1  – suction temperature,   K T 2  – discharge temperature,   K W – work, KW 2. Polytropic Compression: PV n  = C
3. Isothermal Compression: PV = C Percent Clearance : Ratio of the clearance volume to the displacement   volume. Note: For compressor design values of C ranges from 3 to 10 percent.
Pressure Ratio:  Ratio of the discharge pressure to suction pressure. Volumetric Efficiency:  Ratio of the volume flow rate at intake to the  displacement volume. 1. For Isentropic Compression and Expansion process: PV k  = C
2. For Polytropic Compression and Expansion process: PV n  = C 2. For Isothermal Compression and Expansion process: PV = C Actual Volumetric Efficiency : Ratio of the actual volume of air drawn in by the   compressor to the displacement volume.
For an air compressor handling ambient air where pressure drop and  heating of air occurs due to fluid friction and irreversibilities of fluid flow, less amount of air is being drawn by the cylinder. The actual  volumetric efficiency is: Where: P O  – ambient air pressure in Kpa T O  – ambient air temperature in   K Displacement Volume:  Volume of air occupying the highest stroke L of the piston within the cylinder. The length of stroke L is the dis- tance from the HE (head end) to the CE (crank end).
[object Object],[object Object],[object Object],[object Object],a. Without considering the volume of the piston rod. b. Considering the volume of the piston rod.
Where: D – diameter of piston in meters d – diameter of piston rod in meters N – no. of RPM n’ – no. of cylinders Piston Speed : It is the linear speed of the piston. Compressor Performance Factor: 1. Compression Efficiency:  Ratio of Ideal Work to Indicated Work.
2. Mechanical Efficiency:  Ratio of Indicated Work to Brake or Shaft Work. 3. Compressor Efficiency:  Ratio of Ideal Work to Brake or Shaft Work.
MULTISTAGE COMPRESSION: Multi staging is simply the compression of air or gas in two or more cylinders  in place of a single cylinder compressor. It is used in reciprocating compressors  when pressure of 300 KPa and above are desired, in order to: 1) Save power 2) Limit the gas discharge temperature 3) Limit the pressure differential per cylinder 4) Prevent vaporization of lubricating oil and to prevent its ignition if the tem- perature becomes too high. It is a common practice for multi-staging to cool the air or gas between stages  of compression in an intercooler, and it is this cooling that affects considerable  saving in   power.
For an ideal multistage compressor, with perfect inter-cooling and minimum work, the cylinder were properly designed  so that: a) the work at each stage are equal b) the air in the intercooler is cooled back to the initial temperature c) no pressure drop  occurs in the intercooler 2 Stage Compressor without pressure drop in the intercooler :  1 2 3 4 Suction Discharge Qx Intercooler 1 st  stage 2 nd  stage
Work of 1 st  stage cylinder ( W 1 ) :  Assuming Polytropic compression on  both stages. Work of 2 nd  stage cylinder ( W 2 ) :  Assuming Polytropic compression on  both stages.
For perfect inter-cooling and minimum work: W 1  = W 2 T 1  = T 3 W = W 1  + W 2 W = 2W 1 P 2  = P 3  = P x therefore P 1 V 1’  = P 3 V 3’ Where:  Px – optimum intercooler  pressure or interstage  pressure P V P 4 P 1 P x 1 4 3 2 5 6 7 8 PV n  = C W 1 W 2 S T 4 3 2 1 P 4 P x P 1 Q x
Then the work W for an ideal  2-stage compressor is: ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
With pressure drop in the intercooler: T 1     T 3  and P 2     P 3 W = W 1  + W 2 P 1 V 1’     P 3 V 3’ 2 Stage Compressor with pressure drop in the intercooler :  1 2 3 4 Suction Discharge Qx Intercooler 1 st  stage 2 nd  stage
P V P 4 P 1 P 3 1 4 3 2 5 6 7 8 PV n  = C W 1 W 2 S T 4 3 2 1 P 4 P 1 Q x P 2 P 2 P 3 3 Stage Compressor without pressure drop in the intercooler :  1 2 3 4 Suction Discharge Qx LP Intercooler 1 st  stage 2 nd  stage 3 rd  stage 5 6 Qy HP Intercooler
S T 4 3 2 1 P 6 P x P 1 Q x P y 5 6 Q y For perfect inter-cooling and minimum work: T 1  = T 3  = T 5 P x  = P 2  = P 3   W 1  = W 2  = W 3 P y  = P 4  = P 5 W = 3W1 P 1 V 1’  = P 3 V 3’  = P 5 V 5’ mRT 1  = mRT 3  = mRT 5 Therefore:  r P1  = r P2  = r P3 P V P 6 P 1 P x 1 4 3 2 5 6 7 12 PV n  = C W 1 W 2 P y 9 10 11 8 W 3
Work for each stage: 1 st  Stage: 2 nd  Stage: 3 rd  Stage: Intercooler Pressures:
Heat Losses during compression : Q 1  = mC n (T 2  – T 1 ) Q 2  = mC n (T 4  – T 3 ) Q 3  = mC n (T 6  – T 5 ) Heat loss in the LP and HP intercoolers: LP Intercooler Qx = mC p (T 2  – T 3 ) HP Intercooler Qy = mC p (T 4  – T 5 ) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Total Work: W = 3W 1
For  multistage compression with minimum work and perfect inter-cooling  and no pressure drop that occurs in the inter-coolers between stages, the  following conditions apply: 1. the work at each stage are equal 2. the pressure ratio between stages are equal 3. the air temperature in the inter-coolers are cooled to the original temperature T 1 4. the total work W is equal to Where: s – is the number of  stages. Note: For multistage compressor with pressure drop in the intercoolers the equation of W above cannot be applied. The total work is equal to the sum of the work for each stage that is computed separately.
 

More Related Content

What's hot

What's hot (20)

GAS DYNAMICS AND JET PROPULSION
GAS DYNAMICS AND JET PROPULSIONGAS DYNAMICS AND JET PROPULSION
GAS DYNAMICS AND JET PROPULSION
 
Ideal reheat rankine cycle
Ideal reheat rankine cycleIdeal reheat rankine cycle
Ideal reheat rankine cycle
 
compressor
compressorcompressor
compressor
 
Basics of refrigeration_lect_1
Basics of refrigeration_lect_1Basics of refrigeration_lect_1
Basics of refrigeration_lect_1
 
Nozzle
NozzleNozzle
Nozzle
 
LECTURE Notes on compressor
LECTURE Notes on compressorLECTURE Notes on compressor
LECTURE Notes on compressor
 
Refrigeration and Air conditioning
Refrigeration and Air conditioningRefrigeration and Air conditioning
Refrigeration and Air conditioning
 
Reciprocating Compressor
Reciprocating CompressorReciprocating Compressor
Reciprocating Compressor
 
Multistage Compression
Multistage CompressionMultistage Compression
Multistage Compression
 
Vapour compression refrigeration system
Vapour compression refrigeration systemVapour compression refrigeration system
Vapour compression refrigeration system
 
Reciprocating Compressor
Reciprocating CompressorReciprocating Compressor
Reciprocating Compressor
 
Lec 10-11 - Refrigeration cycle
Lec 10-11 - Refrigeration cycle Lec 10-11 - Refrigeration cycle
Lec 10-11 - Refrigeration cycle
 
Thermostatic expansion valves
Thermostatic expansion valvesThermostatic expansion valves
Thermostatic expansion valves
 
Reciprocating compressor
Reciprocating compressorReciprocating compressor
Reciprocating compressor
 
Compressor
CompressorCompressor
Compressor
 
reciprocating compressor
reciprocating compressorreciprocating compressor
reciprocating compressor
 
Compressor
CompressorCompressor
Compressor
 
Air Compressor in mechanical Engineering
Air Compressor in mechanical EngineeringAir Compressor in mechanical Engineering
Air Compressor in mechanical Engineering
 
compressor notes.pdf
compressor notes.pdfcompressor notes.pdf
compressor notes.pdf
 
Screw Air Compressors
Screw Air CompressorsScrew Air Compressors
Screw Air Compressors
 

Similar to Compressor

Unit no 3 air compressor
Unit no 3 air compressorUnit no 3 air compressor
Unit no 3 air compressorsandeshkrasal
 
Gas turbine 2 - regeneration and intercooling
Gas turbine   2 - regeneration and intercoolingGas turbine   2 - regeneration and intercooling
Gas turbine 2 - regeneration and intercoolingNihal Senanayake
 
Refrigeration system (MECH 324)
Refrigeration system (MECH 324)Refrigeration system (MECH 324)
Refrigeration system (MECH 324)Yuri Melliza
 
BASICS OF AXIAL FLOW COMPRESSOR AND ITS WORKING PRINCIPLE.ppt
BASICS OF AXIAL FLOW COMPRESSOR AND ITS WORKING PRINCIPLE.pptBASICS OF AXIAL FLOW COMPRESSOR AND ITS WORKING PRINCIPLE.ppt
BASICS OF AXIAL FLOW COMPRESSOR AND ITS WORKING PRINCIPLE.pptshaiksohel0804
 
Air standard cycles
Air standard cyclesAir standard cycles
Air standard cyclesSoumith V
 
Se prod thermo_chapter_2_compressor
Se prod thermo_chapter_2_compressorSe prod thermo_chapter_2_compressor
Se prod thermo_chapter_2_compressorVJTI Production
 
AIR COMPRESSOR.ppt
AIR COMPRESSOR.pptAIR COMPRESSOR.ppt
AIR COMPRESSOR.pptAlagarSamy63
 
Buenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptxBuenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptxEVABUENAFE
 
Buenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptxBuenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptxEVABUENAFE
 
Air compressor
Air compressorAir compressor
Air compressorsureshkcet
 
3110006_BME_Chapter 9_Air Compressor (1).pdf
3110006_BME_Chapter 9_Air Compressor (1).pdf3110006_BME_Chapter 9_Air Compressor (1).pdf
3110006_BME_Chapter 9_Air Compressor (1).pdfNilesh839639
 

Similar to Compressor (20)

Aircompressor unit 5
Aircompressor unit 5Aircompressor unit 5
Aircompressor unit 5
 
Unit no 3 air compressor
Unit no 3 air compressorUnit no 3 air compressor
Unit no 3 air compressor
 
Gas turbine 2 - regeneration and intercooling
Gas turbine   2 - regeneration and intercoolingGas turbine   2 - regeneration and intercooling
Gas turbine 2 - regeneration and intercooling
 
Refrigeration system (MECH 324)
Refrigeration system (MECH 324)Refrigeration system (MECH 324)
Refrigeration system (MECH 324)
 
010
010010
010
 
BASICS OF AXIAL FLOW COMPRESSOR AND ITS WORKING PRINCIPLE.ppt
BASICS OF AXIAL FLOW COMPRESSOR AND ITS WORKING PRINCIPLE.pptBASICS OF AXIAL FLOW COMPRESSOR AND ITS WORKING PRINCIPLE.ppt
BASICS OF AXIAL FLOW COMPRESSOR AND ITS WORKING PRINCIPLE.ppt
 
Gas Turbine Cycles - 5.pptx
Gas Turbine Cycles - 5.pptxGas Turbine Cycles - 5.pptx
Gas Turbine Cycles - 5.pptx
 
Gas turbine 1
Gas turbine  1Gas turbine  1
Gas turbine 1
 
Air standard cycles
Air standard cyclesAir standard cycles
Air standard cycles
 
Se prod thermo_chapter_2_compressor
Se prod thermo_chapter_2_compressorSe prod thermo_chapter_2_compressor
Se prod thermo_chapter_2_compressor
 
AIR COMPRESSOR.ppt
AIR COMPRESSOR.pptAIR COMPRESSOR.ppt
AIR COMPRESSOR.ppt
 
Buenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptxBuenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptx
 
Buenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptxBuenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptx
 
Air comprosser
Air comprosserAir comprosser
Air comprosser
 
Air compressor
Air compressorAir compressor
Air compressor
 
Air compressor
Air compressorAir compressor
Air compressor
 
Chap 03
Chap 03Chap 03
Chap 03
 
3110006_BME_Chapter 9_Air Compressor (1).pdf
3110006_BME_Chapter 9_Air Compressor (1).pdf3110006_BME_Chapter 9_Air Compressor (1).pdf
3110006_BME_Chapter 9_Air Compressor (1).pdf
 
4.8.compressors
4.8.compressors4.8.compressors
4.8.compressors
 
4.8.compressors
4.8.compressors4.8.compressors
4.8.compressors
 

More from Yuri Melliza

Airconditioning system (ppt)
Airconditioning system (ppt)Airconditioning system (ppt)
Airconditioning system (ppt)Yuri Melliza
 
Fundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notesFundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notesYuri Melliza
 
Module 10 (air standard cycle)
Module 10 (air standard cycle)Module 10 (air standard cycle)
Module 10 (air standard cycle)Yuri Melliza
 
Module 9 (second law & carnot cycle)
Module 9 (second law & carnot cycle)Module 9 (second law & carnot cycle)
Module 9 (second law & carnot cycle)Yuri Melliza
 
Module 8 (fuels and combustion)
Module 8 (fuels and combustion)Module 8 (fuels and combustion)
Module 8 (fuels and combustion)Yuri Melliza
 
Module 7 (processes of fluids)
Module 7 (processes of fluids)Module 7 (processes of fluids)
Module 7 (processes of fluids)Yuri Melliza
 
Module 6 (ideal or perfect gas and gas mixture) 2021 2022
Module 6 (ideal or perfect gas and gas mixture) 2021   2022Module 6 (ideal or perfect gas and gas mixture) 2021   2022
Module 6 (ideal or perfect gas and gas mixture) 2021 2022Yuri Melliza
 
Module 5 (properties of pure substance)2021 2022
Module 5 (properties of pure substance)2021 2022Module 5 (properties of pure substance)2021 2022
Module 5 (properties of pure substance)2021 2022Yuri Melliza
 
Module 4 (first law of thermodynamics) 2021 2022
Module 4 (first law of thermodynamics) 2021 2022Module 4 (first law of thermodynamics) 2021 2022
Module 4 (first law of thermodynamics) 2021 2022Yuri Melliza
 
Module 2 (forms of energy) 2021 2022
Module 2 (forms of energy) 2021   2022Module 2 (forms of energy) 2021   2022
Module 2 (forms of energy) 2021 2022Yuri Melliza
 
Module 1 (terms and definition & properties of fluids)2021 2022
Module 1 (terms and definition & properties of fluids)2021 2022Module 1 (terms and definition & properties of fluids)2021 2022
Module 1 (terms and definition & properties of fluids)2021 2022Yuri Melliza
 
Fuels and Combustion
Fuels and CombustionFuels and Combustion
Fuels and CombustionYuri Melliza
 
Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)Yuri Melliza
 
AIR STANDARD CYCLE
AIR STANDARD CYCLEAIR STANDARD CYCLE
AIR STANDARD CYCLEYuri Melliza
 
Chapter 7 Processes of Fluids
Chapter 7 Processes of FluidsChapter 7 Processes of Fluids
Chapter 7 Processes of FluidsYuri Melliza
 
Chapter 6 Gas Mixture
Chapter 6 Gas MixtureChapter 6 Gas Mixture
Chapter 6 Gas MixtureYuri Melliza
 
Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)Yuri Melliza
 
Chapter 4 (propertiesof pure substance)
Chapter 4 (propertiesof pure substance)Chapter 4 (propertiesof pure substance)
Chapter 4 (propertiesof pure substance)Yuri Melliza
 

More from Yuri Melliza (20)

Airconditioning system (ppt)
Airconditioning system (ppt)Airconditioning system (ppt)
Airconditioning system (ppt)
 
Fundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notesFundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notes
 
Module 10 (air standard cycle)
Module 10 (air standard cycle)Module 10 (air standard cycle)
Module 10 (air standard cycle)
 
Module 9 (second law & carnot cycle)
Module 9 (second law & carnot cycle)Module 9 (second law & carnot cycle)
Module 9 (second law & carnot cycle)
 
Module 8 (fuels and combustion)
Module 8 (fuels and combustion)Module 8 (fuels and combustion)
Module 8 (fuels and combustion)
 
Module 7 (processes of fluids)
Module 7 (processes of fluids)Module 7 (processes of fluids)
Module 7 (processes of fluids)
 
Module 6 (ideal or perfect gas and gas mixture) 2021 2022
Module 6 (ideal or perfect gas and gas mixture) 2021   2022Module 6 (ideal or perfect gas and gas mixture) 2021   2022
Module 6 (ideal or perfect gas and gas mixture) 2021 2022
 
Module 5 (properties of pure substance)2021 2022
Module 5 (properties of pure substance)2021 2022Module 5 (properties of pure substance)2021 2022
Module 5 (properties of pure substance)2021 2022
 
Module 4 (first law of thermodynamics) 2021 2022
Module 4 (first law of thermodynamics) 2021 2022Module 4 (first law of thermodynamics) 2021 2022
Module 4 (first law of thermodynamics) 2021 2022
 
Module 2 (forms of energy) 2021 2022
Module 2 (forms of energy) 2021   2022Module 2 (forms of energy) 2021   2022
Module 2 (forms of energy) 2021 2022
 
Module 1 (terms and definition & properties of fluids)2021 2022
Module 1 (terms and definition & properties of fluids)2021 2022Module 1 (terms and definition & properties of fluids)2021 2022
Module 1 (terms and definition & properties of fluids)2021 2022
 
Me 312 module 1
Me 312 module 1Me 312 module 1
Me 312 module 1
 
Fuels and Combustion
Fuels and CombustionFuels and Combustion
Fuels and Combustion
 
Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)
 
AIR STANDARD CYCLE
AIR STANDARD CYCLEAIR STANDARD CYCLE
AIR STANDARD CYCLE
 
Me 12 quiz no. 3
Me 12 quiz no. 3Me 12 quiz no. 3
Me 12 quiz no. 3
 
Chapter 7 Processes of Fluids
Chapter 7 Processes of FluidsChapter 7 Processes of Fluids
Chapter 7 Processes of Fluids
 
Chapter 6 Gas Mixture
Chapter 6 Gas MixtureChapter 6 Gas Mixture
Chapter 6 Gas Mixture
 
Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)
 
Chapter 4 (propertiesof pure substance)
Chapter 4 (propertiesof pure substance)Chapter 4 (propertiesof pure substance)
Chapter 4 (propertiesof pure substance)
 

Recently uploaded

CHEST Proprioceptive neuromuscular facilitation.pptx
CHEST Proprioceptive neuromuscular facilitation.pptxCHEST Proprioceptive neuromuscular facilitation.pptx
CHEST Proprioceptive neuromuscular facilitation.pptxAneriPatwari
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptxmary850239
 
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...DhatriParmar
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operationalssuser3e220a
 
ARTERIAL BLOOD GAS ANALYSIS........pptx
ARTERIAL BLOOD  GAS ANALYSIS........pptxARTERIAL BLOOD  GAS ANALYSIS........pptx
ARTERIAL BLOOD GAS ANALYSIS........pptxAneriPatwari
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQuiz Club NITW
 
Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17Celine George
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationdeepaannamalai16
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSMae Pangan
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4JOYLYNSAMANIEGO
 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxSayali Powar
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17Celine George
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptxmary850239
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxCLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxAnupam32727
 

Recently uploaded (20)

Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of EngineeringFaculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
 
CHEST Proprioceptive neuromuscular facilitation.pptx
CHEST Proprioceptive neuromuscular facilitation.pptxCHEST Proprioceptive neuromuscular facilitation.pptx
CHEST Proprioceptive neuromuscular facilitation.pptx
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx
 
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operational
 
ARTERIAL BLOOD GAS ANALYSIS........pptx
ARTERIAL BLOOD  GAS ANALYSIS........pptxARTERIAL BLOOD  GAS ANALYSIS........pptx
ARTERIAL BLOOD GAS ANALYSIS........pptx
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
 
Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentation
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHS
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4
 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxCLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
 

Compressor

  • 1. Air or Gas Compressors: A steady-state, steady flow machine that is used to compressed air or gas to final pressure exceeding 241.25 Kpa gage. Types of Compressor: 1. Centrifugal Compressors: For low pressure and high capacity applications. 2. Rotary Compressors: For medium pressure and low capacity application. 3. Reciprocating Compressors: For high pressure and low capacity application. Uses of compressed air: 1. Operation of small engines 2. Pneumatic tools 3. Air hoists 4. Industrial cleaning by air blast 5. Tire inflation 6. Paint Spraying
  • 2.
  • 3. Where: m – mass flow rate in kg/sec C p – constant pressure specific heat in KJ/kg-  C or KJ/kg-  K
  • 4. 2. Polytropic compression: PV n = C P V P 2 P 1 PV n = C
  • 5. 3. Isothermal Compression: PV = C Analysis of Reciprocating Type Compressor (Piston-in-cylinder type): piston Valves cylinder Piston rod P V P 2 P 1 PV = C
  • 6. Pressure-Volume Diagram (PV) HE – head end CE – Crank end L – length of stroke P 1 – suction pressure P 2 – discharge pressure V 1’ – volume flow rate at intake V D – displacement volume CV D – clearance volume CV D = V 3 V D L HE CE P V 1 2 3 4 P 2 P 1 V 1’ V D CV D
  • 7. 1. Isentropic Compression: PV k = C Where: V1’ – volume flow rate at intake, m 3 /sec m – mass flow rate corresponding V 1’ P 1 – suction pressure, Kpa P 2 – discharge pressure, Kpa T 1 – suction temperature,  K T 2 – discharge temperature,  K W – work, KW 2. Polytropic Compression: PV n = C
  • 8. 3. Isothermal Compression: PV = C Percent Clearance : Ratio of the clearance volume to the displacement volume. Note: For compressor design values of C ranges from 3 to 10 percent.
  • 9. Pressure Ratio: Ratio of the discharge pressure to suction pressure. Volumetric Efficiency: Ratio of the volume flow rate at intake to the displacement volume. 1. For Isentropic Compression and Expansion process: PV k = C
  • 10. 2. For Polytropic Compression and Expansion process: PV n = C 2. For Isothermal Compression and Expansion process: PV = C Actual Volumetric Efficiency : Ratio of the actual volume of air drawn in by the compressor to the displacement volume.
  • 11. For an air compressor handling ambient air where pressure drop and heating of air occurs due to fluid friction and irreversibilities of fluid flow, less amount of air is being drawn by the cylinder. The actual volumetric efficiency is: Where: P O – ambient air pressure in Kpa T O – ambient air temperature in  K Displacement Volume: Volume of air occupying the highest stroke L of the piston within the cylinder. The length of stroke L is the dis- tance from the HE (head end) to the CE (crank end).
  • 12.
  • 13. Where: D – diameter of piston in meters d – diameter of piston rod in meters N – no. of RPM n’ – no. of cylinders Piston Speed : It is the linear speed of the piston. Compressor Performance Factor: 1. Compression Efficiency: Ratio of Ideal Work to Indicated Work.
  • 14. 2. Mechanical Efficiency: Ratio of Indicated Work to Brake or Shaft Work. 3. Compressor Efficiency: Ratio of Ideal Work to Brake or Shaft Work.
  • 15. MULTISTAGE COMPRESSION: Multi staging is simply the compression of air or gas in two or more cylinders in place of a single cylinder compressor. It is used in reciprocating compressors when pressure of 300 KPa and above are desired, in order to: 1) Save power 2) Limit the gas discharge temperature 3) Limit the pressure differential per cylinder 4) Prevent vaporization of lubricating oil and to prevent its ignition if the tem- perature becomes too high. It is a common practice for multi-staging to cool the air or gas between stages of compression in an intercooler, and it is this cooling that affects considerable saving in power.
  • 16. For an ideal multistage compressor, with perfect inter-cooling and minimum work, the cylinder were properly designed so that: a) the work at each stage are equal b) the air in the intercooler is cooled back to the initial temperature c) no pressure drop occurs in the intercooler 2 Stage Compressor without pressure drop in the intercooler : 1 2 3 4 Suction Discharge Qx Intercooler 1 st stage 2 nd stage
  • 17. Work of 1 st stage cylinder ( W 1 ) : Assuming Polytropic compression on both stages. Work of 2 nd stage cylinder ( W 2 ) : Assuming Polytropic compression on both stages.
  • 18. For perfect inter-cooling and minimum work: W 1 = W 2 T 1 = T 3 W = W 1 + W 2 W = 2W 1 P 2 = P 3 = P x therefore P 1 V 1’ = P 3 V 3’ Where: Px – optimum intercooler pressure or interstage pressure P V P 4 P 1 P x 1 4 3 2 5 6 7 8 PV n = C W 1 W 2 S T 4 3 2 1 P 4 P x P 1 Q x
  • 19.
  • 20. With pressure drop in the intercooler: T 1  T 3 and P 2  P 3 W = W 1 + W 2 P 1 V 1’  P 3 V 3’ 2 Stage Compressor with pressure drop in the intercooler : 1 2 3 4 Suction Discharge Qx Intercooler 1 st stage 2 nd stage
  • 21. P V P 4 P 1 P 3 1 4 3 2 5 6 7 8 PV n = C W 1 W 2 S T 4 3 2 1 P 4 P 1 Q x P 2 P 2 P 3 3 Stage Compressor without pressure drop in the intercooler : 1 2 3 4 Suction Discharge Qx LP Intercooler 1 st stage 2 nd stage 3 rd stage 5 6 Qy HP Intercooler
  • 22. S T 4 3 2 1 P 6 P x P 1 Q x P y 5 6 Q y For perfect inter-cooling and minimum work: T 1 = T 3 = T 5 P x = P 2 = P 3 W 1 = W 2 = W 3 P y = P 4 = P 5 W = 3W1 P 1 V 1’ = P 3 V 3’ = P 5 V 5’ mRT 1 = mRT 3 = mRT 5 Therefore: r P1 = r P2 = r P3 P V P 6 P 1 P x 1 4 3 2 5 6 7 12 PV n = C W 1 W 2 P y 9 10 11 8 W 3
  • 23. Work for each stage: 1 st Stage: 2 nd Stage: 3 rd Stage: Intercooler Pressures:
  • 24.
  • 25. For multistage compression with minimum work and perfect inter-cooling and no pressure drop that occurs in the inter-coolers between stages, the following conditions apply: 1. the work at each stage are equal 2. the pressure ratio between stages are equal 3. the air temperature in the inter-coolers are cooled to the original temperature T 1 4. the total work W is equal to Where: s – is the number of stages. Note: For multistage compressor with pressure drop in the intercoolers the equation of W above cannot be applied. The total work is equal to the sum of the work for each stage that is computed separately.
  • 26.