SlideShare une entreprise Scribd logo
1  sur  1467
NED University of Engineering and Technology
Department of Environmental Engineering
EN501: Introduction to Environmental Engineering - Fall 2015 semester
Course Plan
Week Topic
1 Introduction to Subject, distribution of marks, Natural Resource and its
characteristics,
Global Environmental Issues, Pakistan Environmental Issues
2 Ecology, Ecosystems and Economic Growth
3 Cycles in Nature
4 Brief introduction to Air Pollution and its Management
5 Brief introduction to Water Pollution and its Management
6 Brief introduction to Solid waste and its Management
7 Brief Introduction to Noise Pollution, Radiation and its Management
8 Interrelations of air, water pollution and solid waste management, radiation,
noise pollution
9 Effects of Pathogen and Chemicals on Health
10 Economics of Environmental Pollution Control
11 Environmental Quality Objectives
12 Environmental Legislation
13 Brief Introduction to Environmental Impact Assessment
14 Environmental Standards and Technologies,
An Introduction to ISO 14001:2004
15 Student Presentation
16 Student Presentation,
Distribution of Course
Marks
Marks
1. Exams 60
2. Sessional 40
a. Class Test
Best 2 of 3
2 x 10 = 20
b. Class Report 10
c. Class Presentation 10
Class Teacher
Tufail Ali Zubedi
Cell: 0300-3538024
Email: info@SPMCpk.com; Zubeditufail@yahoo.com
http://www.SPMCpk.com/
Engr.TufailAli Zubedi, PE
BE Civil, ME Environmental Engg
Environmental Consultant
http://www.SPMCpk.com/
EN 501
Introduction to
Environmental Engineering
Today’s Talk
 Round of Introduction
 Class etiquettes
 Course Syllabus
 Distribution of Marks
 Introduction to subject
Round of Introduction
 Tufail Ali Zubedi
 Students
Class Etiquettes
 Student –Teacher relationship
 While in class:
 Smoking , Eating, Drinking, especially sleeping is not allowed
 Mobile / iPod / iPads switched off
 Lecture will be provided
 Open to suggestions
 “Learn by doing”
 Language of instruction = English
Week Topic
1 Introduction to Subject, distribution of marks, Natural Resource and its
characteristics,
Global Environmental Issues, Pakistan Environmental Issues
2 Ecology, Ecosystems and Economic Growth
3 Cycles in Nature
4 Brief introduction to Air Pollution and its Management
5 Brief introduction to Water Pollution and its Management
6 Brief introduction to Solid waste and its Management
7 Brief Introduction to Noise Pollution, Radiation and its Management
8 Interrelations of air, water pollution and solid waste management,
radiation, noise pollution
9 Effects of Pathogen and Chemicals on Health
10 Economics of Environmental Pollution Control
11 Environmental Quality Objectives
12 Environmental Legislation
13 Brief Introduction to Environmental Impact Assessment
14 Environmental Standards and Technologies,
An Introduction to ISO 14001:2004
15 Student Presentation
16 Student Presentation,
Course Syllabus
Marks Distribution
Distribution of Course
Marks
Marks
1. Exams 60
2. Sessional 40
a. Class Test
Best 2 of 3
2 x 10 = 20
b. Class Report 10
c. Class Presentation 10
Introduction to
Environmental Engineering
 The application of
 Science and engineering knowledge and
concepts
 To care for / restore our natural environment &
 To resolve environmental problems
Who does it affect?
 Everyone and Everything!
 Plants
 Insects
 Animals
 Humans
 Ecosystems
 Our planet ..
What to Environmental Engineer do?
 Environmental Engineers are
 Concerned with the negative impacts of human activity on the
environment
 Also concerned with the positive impacts on the environment
 Scale = micro to macro
 Individual and holistic activities
 Individual and cumulative impacts
 Within and outside the project boundaries
Natural Resources
 Natural resources occur naturally
within environments that exist
relatively undisturbed by humanity, in
a natural form.
 A natural resource is often
characterized by amounts of
biodiversity and geodiversity existent
in various ecosystems.
 Natural resources are derived from the
environment.
 Some of them are essential for our
survival while most are used for
satisfying our desires.
 A natural resource may exist as a separate entity such as
 Fresh water, and air, as well as a living organism such as a fish,
or
 it may exist in an alternate form which must be processed to
obtain the resource such as
 metal ores, oil, and most forms of energy.
Classification
On the basis of origin, natural resources may be divided into:
 Biotic – Biotic resources are obtained from the biosphere (living and
organic material), such as forests and animals, and the
materials that can be obtained from them.
 (Oil / coal)
 Abiotic – Abiotic resources are those that come from nonliving,
inorganic material.
 (land, fresh water, air and heavy metals including ores)
Considering their stage of development,
natural resources may be:
 Potential resources – Potential resources are those that exist in a region and may be
used in the future.
 (petroleum but until the time it is actually drilled out and put into use,
itremains a potential resource.)
 Actual resources – Actual resources are those that have been surveyed, their quantity
and quality determined and are being used in present times.
 (The development of an actual resource, such as wood processing depends upon
the technology available and the cost involved.)
 Reserve resources –The part of an actual resource which can be developed profitably in
the future is called a reserve resource.
 Stock resources – Stock resources are those that have been surveyed but cannot be used
by organisms due to lack of technology.
 (hydrogen. Shale gas)
 natural resources can be categorized as either renewable or
nonrenewable:
 Renewable resources – Renewable resources can be replenished
naturally.
 (sunlight, air, wind, etc.)
 Resources from a human use perspective are classified as
renewable only so long as the rate of replenishment/recovery
exceeds that of the rate of consumption.
 Nonrenewable resources – Nonrenewable resources either form
slowly or do not naturally form in the environment.
 (fossil fuel)
World Charter for Nature
 In 1982 the UN developed theWorld Charter for Nature,
which recognized the need to protect nature from further
depletion due to human activity.
 It states that measures need to be taken at all societal levels,
from international to individual, to protect nature
 READ “UN-World Charter for Nature”
 It outlines the need for sustainable use of natural resources
and suggests that the protection of resources should be
incorporated into national and international systems of law.
Reading Assignment
 IUCN-Pakistan Conservation Strategy
 IUCN- State of Environment and Development (SoED) of
Sindh
 IUCN-Sindh Strategy for Sustainable Development
Natural Resources of Pakistan
FINAL WORDS
There is much debate worldwide over natural resource
allocations, this is partly due to increasing scarcity (depletion
of resources) but also because the exportation of natural
resources is the basis for many economies (particularly for
developed nations).
Next Class
Global and Pakistan Environmental Issues and solutions
TIP
 Some natural resources such as sunlight and air can be found
everywhere, and are known as ubiquitous resources.
However, most resources only occur in small sporadic areas,
and are referred to as localized resources.
 There are very few resources that are considered
inexhaustible (will not run out in foreseeable future) – these
are solar radiation, geothermal energy, and air (though access
to clean air may not be).The vast majority of resources are
exhaustible, which means they have a finite quantity, and can
be depleted if managed improperly.
Natural Resources
 https://en.wikipedia.org/wiki/Natural_resource
 Sohail Ahmed Presentation
11/20/2015 A/RES/37/7. World Charter for Nature
http://www.un.org/documents/ga/res/37/a37r007.htm 1/5
United Nations A/RES/37/7
General Assembly
Distr. GENERAL  
28 October 1982
ORIGINAL:
ENGLISH
                                                   A/RES/37/7
                                                   48th plenary meeting
                                                   28 October 1982
 
 
     37/7.   World Charter for Nature
 
     The General Assembly,
 
     Having considered the report of the Secretary‐General on the revised
draft World Charter for Nature,
 
     Recalling that, in its resolution 35/7 of 30 October 1980, it expressed
its conviction that the benefits which could be obtained from nature depended
on the maintenance of natural processes and on the diversity of life forms and
that those benefits were jeopardized by the excessive exploitation and the
destruction of natural habitats,
 
     Further recalling that, in the same resolution, it recognized the need
for appropriate measures at the national and international levels to protect
nature and promote international co‐operation in that field,
 
     Recalling that, in its resolution 36/6 of 27 October 1981, it again
expressed its awareness of the crucial importance attached by the
international community to the promotion and development of co‐operation aimed
at protecting and safeguarding the balance and quality of nature and invited
the Secretary‐General to transmit to Member States the text of the revised
version of the draft World Charter for Nature contained in the report of the
Ad Hoc Group of Experts on the draft World Charter for Nature, as well as
any further observations by States, with a view to appropriate consideration
by the General Assembly at its thirty‐seventh session,
 
     Conscious of the spirit and terms of its resolutions 35/7 and 36/6, in
which it solemnly invited Member States, in the exercise of their permanent
sovereignty over their natural resources, to conduct their activities in
recognition of the supreme importance of protecting natural systems,
maintaining the balance and quality of nature and conserving natural
resources, in the interests of present and future generations,
 
     Having considered the supplementary report of the Secretary‐General,
 
     Expressing its gratitude to the Ad Hoc Group of Experts which, through
its work, has assembled the necessary elements for the General Assembly to be
able to complete the consideration of and adopt the revised draft World
Charter for Nature at its thirty‐seventh session, as it had previously
recommended,
11/20/2015 A/RES/37/7. World Charter for Nature
http://www.un.org/documents/ga/res/37/a37r007.htm 2/5
 
     Adopts and solemnly proclaims the World Charter for Nature contained in
the annex to the present resolution.
 
 
                                    ANNEX
                           World Charter for Nature
 
     The General Assembly,
 
     Reaffirming the fundamental purposes of the United Nations, in particular
the maintenance of international peace and security, the development of
friendly relations among nations and the achievement of international
co‐operation in solving international problems of an economic, social,
cultural, technical, intellectual or humanitarian character,
 
     Aware that:
 
     (a)  Mankind is a part of nature and life depends on the uninterrupted
functioning of natural systems which ensure the supply of energy and
nutrients,
 
     (b)  Civilization is rooted in nature, which has shaped human culture and
influenced all artistic and scientific achievement, and living in harmony with
nature gives man the best opportunities for the development of his creativity,
and for rest and recreation,
 
     Convinced that:
 
     (a)  Every form of life is unique, warranting respect regardless of its
worth to man, and, to accord other organisms such recognition, man must be
guided by a moral code of action,
 
     (b)  Man can alter nature and exhaust natural resources by his action or
its consequences and, therefore, must fully recognize the urgency of
maintaining the stability and quality of nature and of conserving natural
resources,
 
     Persuaded that:
 
     (a)  Lasting benefits from nature depend upon the maintenance of
essential ecological processes and life support systems, and upon the
diversity of life forms, which are jeopardized through excessive exploitation
and habitat destruction by man,
 
     (b)  The degradation of natural systems owing to excessive consumption
and misuse of natural resources, as well as to failure to establish an
appropriate economic order among peoples and among States, leads to the
breakdown of the economic, social and political framework of civilization,
 
     (c)  Competition for scarce resources creates conflicts, whereas the
conservation of nature and natural resources contributes to justice and the
maintenance of peace and cannot be achieved until mankind learns to live in
peace and to forsake war and armaments,
 
     Reaffirming that man must acquire the knowledge to maintain and enhance
his ability to use natural resources in a manner which ensures the
preservation of the species and ecosystems for the benefit of present and
future generations,
 
     Firmly convinced of the need for appropriate measures, at the national
and international, individual and collective, and private and public levels,
to protect nature and promote international co‐operation in this field,
 
     Adopts, to these ends, the present World Charter for Nature, which
11/20/2015 A/RES/37/7. World Charter for Nature
http://www.un.org/documents/ga/res/37/a37r007.htm 3/5
proclaims the following principles of conservation by which all human conduct
affecting nature is to be guided and judged.
 
                            I.  GENERAL PRINCIPLES
 
     1.   Nature shall be respected and its essential processes shall not be
impaired.
 
     2.   The genetic viability on the earth shall not be compromised; the
population levels of all life forms, wild and domesticated, must be at least
sufficient for their survival, and to this end necessary habitats shall be
safeguarded.
 
     3.   All areas of the earth, both land and sea, shall be subject to these
principles of conservation; special protection shall be given to unique areas,
to representative samples of all the different types of ecosystems and to the
habitats of rare or endangered species.
 
     4.   Ecosystems and organisms, as well as the land, marine and
atmospheric resources that are utilized by man, shall be managed to achieve
and maintain optimum sustainable productivity, but not in such a way as to
endanger the integrity of those other ecosystems or species with which they
coexist. 
 
     5.   Nature shall be secured against degradation caused by warfare or
other hostile activities.
 
                                II.  FUNCTIONS
 
     6.   In the decision‐making process it shall be recognized that man's
needs can be met only by ensuring the proper functioning of natural systems
and by respecting the principles set forth in the present Charter.
 
     7.   In the planning and implementation of social and economic
development activities, due account shall be taken of the fact that the
conservation of nature is an integral part of those activities.
 
     8.   In formulating long‐term plans for economic development, population
growth and the improvement of standards of living, due account shall be taken
of the long‐term capacity of natural systems to ensure the subsistence and
settlement of the populations concerned, recognizing that this capacity may be
enhanced through science and technology.
 
     9.   The allocation of areas of the earth to various uses shall be
planned, and due account shall be taken of the physical constraints, the
biological productivity and diversity and the natural beauty of the areas
concerned.
 
     10.  Natural resources shall not be wasted, but used with a restraint
appropriate to the principles set forth in the present Charter, in accordance
with the following rules:
 
     (a)  Living resources shall not be utilized in excess of their natural
capacity for regeneration;
 
     (b)  The productivity of soils shall be maintained or enhanced through
measures which safeguard their long‐term fertility and the process of organic
decomposition, and prevent erosion and all other forms of degradation;
 
     (c)  Resources, including water, which are not consumed as they are used
shall be reused or recycled;
 
     (d)  Non‐renewable resources which are consumed as they are used shall be
exploited with restraint, taking into account their abundance, the rational
possibilities of converting them for consumption, and the compatibility of
11/20/2015 A/RES/37/7. World Charter for Nature
http://www.un.org/documents/ga/res/37/a37r007.htm 4/5
their exploitation with the functioning of natural systems.
 
     11.  Activities which might have an impact on nature shall be controlled,
and the best available technologies that minimize significant risks to nature
or other adverse effects shall be used; in particular:
 
     (a)  Activities which are likely to cause irreversible damage to nature
shall be avoided;
 
     (b)  Activities which are likely to pose a significant risk to nature
shall be preceded by an exhaustive examination; their proponents shall
demonstrate that expected benefits outweigh potential damage to nature, and
where potential adverse effects are not fully understood, the activities
should not proceed;
 
     (c)  Activities which may disturb nature shall be preceded by assessment
of their consequences, and environmental impact studies of development
projects shall be conducted sufficiently in advance, and if they are to be
undertaken, such activities shall be planned and carried out so as to minimize
potential adverse effects;
 
     (d)  Agriculture, grazing, forestry and fisheries practices shall be
adapted to the natural characteristics and constraints of given areas;
 
     (e)  Areas degraded by human activities shall be rehabilitated for
purposes in accord with their natural potential and compatible with the
well‐being of affected populations.
 
     12.  Discharge of pollutants into natural systems shall be avoided and:
 
     (a)  Where this is not feasible, such pollutants shall be treated at the
source, using the best practicable means available;
 
     (b)  Special precautions shall be taken to prevent discharge of
radioactive or toxic wastes.
 
     13.  Measures intended to prevent, control or limit natural disasters,
infestations and diseases shall be specifically directed to the causes of
these scourges and shall avoid adverse side‐effects on nature.
 
                             III.  IMPLEMENTATION
 
     14.  The principles set forth in the present Charter shall be reflected
in the law and practice of each State, as well as at the international level.
 
     15.  Knowledge of nature shall be broadly disseminated by all possible
means, particularly by ecological education as an integral part of general
education.
 
     16.  All planning shall include, among its essential elements, the
formulation of strategies for the conservation of nature, the establishment of
inventories of ecosystems and assessments of the effects on nature of proposed
policies and activities; all of these elements shall be disclosed to the
public by appropriate means in time to permit effective consultation and
participation.
 
     17.  Funds, programmes and administrative structures necessary to achieve
the objective of the conservation of nature shall be provided.
 
     18.  Constant efforts shall be made to increase knowledge of nature by
scientific research and to disseminate such knowledge unimpeded by
restrictions of any kind.
 
     19.  The status of natural processes, ecosystems and species shall be
closely monitored to enable early detection of degradation or threat, ensure
11/20/2015 A/RES/37/7. World Charter for Nature
http://www.un.org/documents/ga/res/37/a37r007.htm 5/5
timely intervention and facilitate the evaluation of conservation policies and
methods. 
 
     20.  Military activities damaging to nature shall be avoided.
 
     21.  States and, to the extent they are able, other public authorities,
international organizations, individuals, groups and corporations shall:
 
     (a)  Co‐operate in the task of conserving nature through common
activities and other relevant actions, including information exchange and
consultations;
 
     (b)  Establish standards for products and manufacturing processes that
may have adverse effects on nature, as well as agreed methodologies for
assessing these effects;
 
     (c)  Implement the applicable international legal provisions for the
conservation of nature and the protection of the environment;
 
     (d)  Ensure that activities within their jurisdictions or control do not
cause damage to the natural systems located within other States or in the
areas beyond the limits of national jurisdiction;
 
     (e)  Safeguard and conserve nature in areas beyond national jurisdiction.
 
     22.  Taking fully into account the sovereignty of States over their
natural resources, each State shall give effect to the provisions of the
present Charter through its competent organs and in co‐operation with other
States.
 
     23.  All persons, in accordance with their national legislation, shall
have the opportunity to participate, individually or with others, in the
formulation of decisions of direct concern to their environment, and shall
have access to means of redress when their environment has suffered damage or
degradation.
 
     24.  Each person has a duty to act in accordance with the provisions of
the present Charter; acting individually, in association with others or
through participation in the political process, each person shall strive to
ensure that the objectives and requirements of the present Charter are met.
      
By :Sohail Ahmed
NATURAL RESOURCES OF
PAKISTAN
NATURAL RESOURCES
Soil
Mountains
Rivers and Canals
Forests
Animals
Minerals
The resources gifted by the nature to the
country and the people are called National
Resources.
SOHAIL AHMED 2
SOIL
• Fertile Plains and deserts are important part
of natural resources.
• More fertile plain a country has means more
Agricultural department.
• Allah has gifted many fertile plains to
Pakistan.
• Pakistan Can Cultivate a number of different
foods.
SOHAIL AHMED 3
MOUNTAINS
• Mountains are the gift of the nature.
• They protect from the cool winds
• Mountains are rich in minerals.
• Mountain provide water to our rivers.
• Mountains of Pakistan are rich in minerals
especially the Western Mountain Ranges.
SOHAIL AHMED 4
RIVERS AND CANALS
• The underground water, rivers and oceans are
natural resources
• The river system of Pakistan is consisted of
Indus and other associated rivers.
• We use water for drinking purposes and store
the water of the rivers and use it for different
purposes like irrigation, for hydroelectricity etc.
SOHAIL AHMED 5
FORESTS
• They are helpful in improvement of weather
• Protect against windstorms
• Help in slow melting of snow to stop floods.
• Much More to explain
• Normally 25 percent area of a country should
be covered with forest. But in Pakistan it is
only 4 to 5 percent.
SOHAIL AHMED 6
ANIMALS
• Animals provide milk, meat, hide and skins,
wool etc.
• They are also used for agriculture and
transportation.
• They are a source of foreign exchange.
• Pakistan is Gifted by Nature a lot of Different
types of Animals
SOHAIL AHMED 7
MINERAL RESOURCES
The term Mineral Resource is used to refer to
any of a class of naturally occurring solid
inorganic substances with a characteristic
crystalline form and a homogeneous chemical
composition.
SOHAIL AHMED 8
MINERALS OF PAKISTAN
In Pakistan there is wide scale availability of
mineral resources, but these resources remained
unexploited for years. It is due to lack of
technical skill, finance and technology.
SOHAIL AHMED 9
IMPORTANT MINERALS OF PAKISTAN
• Coal
• Natural Gas
• Iron ore
• Chromite
• Gypsum
• Sulphur
• Oil
• Uranium
SOHAIL AHMED 10
COAL
• The annual coal production of Pakistan is 3.2
million tones.
• Coal is used in power generation. It is basically
used as fuel.
• It is mostly found in Sindh (Thatta, Tharparkar,
Manara) Balochistan (Deegari, Maach), Punjab
(Makarwal, Dandot),NWFP (Cherat and Noshera).
SOHAIL AHMED 11
NATURAL GAS
• It is itself a source of energy and fuel.
• Used as a source of power generation.
• It is found in Sui, Mari, Uch, Khairpur,
Jacobabad etc.
• Now some new discoveries are also found.
SOHAIL AHMED 12
IRON ORE
• Iron Ore is used for industry, especially steel
industry.
• Its deposits are found in Chitral, Chaghai,
Kohat, Kurram Agency, Mardan, Hazara,
Mianwali (Kalabagh) and DG Khan.
SOHAIL AHMED 13
CHROMITE
• Chromite is used in preparing other metals,
leather tanning, making of steel products,
armament and stainless steel.
• Found in Zoab (Muslim Bagh), Chaghai,
Malakand, Mahmand, Waziristan, Fort
Sandaman etc.
SOHAIL AHMED 14
GYPSUM
• Gypsum is used for plaster of Paris, Paints
and Cement.
• It is found in Jhelum, Mianwali, DG Khan,
Kohat and Loralai.
SOHAIL AHMED 15
SULPHUR
• Sulphur is used by chemical industry.
• Its deposits are found in Kalat, Khairpur,
Mardan, and Jacobabad etc.
SOHAIL AHMED 16
OIL
• It is a major source of energy.
• It is mostly imported from Iran and Gulf
states.
• Now some valuable reserves are found in
Jhelum, Mianwali, Attock, Balkasar, Mial,
Chakwal, and Dhodak.
SOHAIL AHMED 17
URANIUM
• It is the basic element for atomic power,
indispensable for the defence.
• Its deposits are in DG Khan, Hazara and
Kohat.
SOHAIL AHMED 18
Pakistan is blessed with considerable
mineral resources. Some of them are
explored but much remains to be done for
the search for more
SOHAIL AHMED 19
SOHAIL AHMED 20
EN 501
Introduction to
Environmental Engineering
Engr.TufailAli Zubedi, PE
BE Civil, ME Environmental Engg
o e ta g ee g
Environmental Consultant
http://www.SPMCpk.com/
Today’s TalkToday’s Talk
In March 1992, the Government of Pakistan adopted the National
Conservation Strategy (NCS)Conservation Strategy (NCS).
It addresses the issues of conservation and sustainable use of
natural resources for economic development.
IUCN Pakistan supported the Federal Government for the
development of relevant provincial level strategies.
IUCN's Sindh Programme was established in 2002.IUCN s Sindh Programme was established in 2002.
IUCN Sindh Programme initiated the process of developing a
report on the State of Environment and Development of Sindh (SoED)
to bridge the existing information gap and to cater to the needs ofto bridge the existing information gap and to cater to the needs of
a wide range of stakeholders, who have been striving for the
sustainable development of Sindh.
The report may also serve as a baseline for policy makers,
planners, and development practitioners.
The next logical step to the SoED is to develop a Sustainable
Development Strategy for SindhDevelopment Strategy for Sindh.
The SoED is intended to provide the basis for devising this
Strategy, which aims to provide an overall framework togy, p
address the Province's environmental and development issues
in a holistic manner.
SINDH IN THE NATIONAL CONTEXTSINDH IN THE NATIONAL CONTEXT
Sindh is located in the south-east of Pakistan.
Throughout history it has been known by many names;
Sindh comprises of Lower Indus Basin.
Is the second-most populous province after the Punjab and
Covers 140,914 square kilometre (km), with a northsouth
l th f b t 540 k d b dth f b t 250 klength of about 540 km and a breadth of about 250 km.
lies between 23° and 28 ° North latitudes and 66° and 71°
East longitudesEast longitudes.
TopographyTopography
Sindh can be divided into four distinct parts
dry and barren Kirthar Range in the west,
a central alluvial plain bisected by the River Indus,
a desert belt in the east anda desert belt in the east, and
the Indus delta in the south.
Mountainous RangesMountainous Ranges
Western Sindh is the only region which is mountainous
It includes the hill ranges of
Kirthar,
P bPab,
Laki, and
Kohistan.Kohistan.
Small hilly tract in the southeast corner of theTharparkary p
District known as Nagarparkar.
The Kirthar RangeThe Kirthar Range
Kirthar has a simple, anticlinal structure with flanks gently
dipping towards west and south.
These ranges run north to south like a crescent turned
towards the low lands and extend up to the northerntowards the low lands and extend up to the northern
extremity of the province.
The highest altitude known as Kutay-jee- Kabar (Dog'sg y j ( g
Grave) is in the Kirthar Range and is 2072.64 meters high.
The Laki RangeThe Laki Range
The Laki Range, is mainly composed of tertiary rocks and
contains a large number of thermal springs.
The hilly region of western Sindh consists almost entirely of rocks belonging to
the tertiary system of geological nomenclature.y y g g
Only along the Laki Range and in its neighborhood that there are some
exposures of rocks belonging to the next older system, the Cretaceous.
With the exception of some volcanic beds associated with these Cretaceous
strata, all the rock formations of western Sindh are of sedimentary origin.
All of the more important hill masses consist of limestone.
A great majority of these limestone deposits belong to the Nummultic periodA great majority of these limestone deposits belong to the Nummultic period
and are largely built up of the accumulated shells of foraminifera, principally
those belonging to the genus Nummulites.
The isolated hills of Nagarparkar on the northern border of the Rann of Kutch
belong to quite a different system both geographically and geologically.
A large part of Sindh lies in the deltaic plain of the Lower
IndusValley. Most of this region consists of plains overlain by
alluvium, trenched with river channels in some places and
overridden by raised terraces in othersoverridden by raised terraces in others.
A few isolated low limestone hills are the only relieving
features in the plains which are otherwise at one level.p
The plains may be subdivided into three parts:
the western valley,
the eastern valley, and
The deltaic area.
The western valley section is distinguished from the eastern
valley by the presence of old alluvium(wind-borne sand) and
seasonal nala flowing from the Kirthar mountain range into
the Manchar Lakethe Manchar Lake.
The deltaic area largely consists of mangrove swamps and
sandbars.The chief characteristic of the region is the creeks,g
which serve as the changing outlets of the Indus and as inlets
for the sea.
The eastern part of Sindh consists of theThar Desert which
continues into Rajputana (India).
The landscape is sandy and rough with sand dunes covering
more than 56 percent of the areamore than 56 percent of the area.
The sand dunes are mostly longitudinal with a north-east-
south-west trend and are stabilized by shrub vegetation andy g
grass.
VegetationVegetation
characteristic features indicative of a rainless climate, dry
atmosphere and sandy soil largely impregnated with salt.
Another feature of the vegetation in the province is the
prominence and variety of grassesprominence and variety of grasses.
The most striking characteristic is the predominance of
l t ith ll l t ll lik th l flplants with small leaves, or none at all, like the leafless caper,
milkbush and the cactus (Euphorbia nereifolia).The large leaved
Banyan tree,like the pipal,was introduced later.
Except for the irrigated Indus valley, the province is arid and
with little vegetation.The dwarf palms, Kher (Acacia rupestris),
and Lohirro (Tecoma undulata) trees are typical of the western hilland Lohirro (Tecoma undulata) trees are typical of the western hill
region.
In the central valley, the babul (known as Babur in Sindhi) tree is
the most dominant and occurs in thick forests along the Indus
banks.
The neem (Azadirachta indica),ber (Zizyphys vulgaris) or jojoba,
lai (Tamarix orientalis) and kirirr (Capparis decidua) are among the
more common vegetation types.
Mango date palms and the more recently introducedMango, date palms, and the more recently introduced
banana, guava, orange and chiku are the common fruit-bearing
trees of the irrigated areas.g
The coastal strip and the creeks abound in semi-aquatic and
aquatic plants and the in-shore Indus deltaic islands support
forests of timmer (Avicennia marina) (timmer ja bela) and
chaunir (Ceriops tagal) treeschaunir (Ceriops tagal) trees.
Water lilies grow in abundance in the numerous lakes and
ponds, particularly in the Lower Sindh region.p p y g
Needs to be updated : 2015-08-15
ClimateClimate
Humidity
Wind speed and direction
Rainfall
Wetlands of SindhWetlands of Sindh
Protected areas of SindhProtected areas of Sindh
WetlandsWetlands
Bird Count in Wetlands of SindhBird Count in Wetlands of Sindh
Mangrove Species in PakistanMangrove Species in Pakistan
List of Trees shrubs of SindhList of Trees, shrubs of Sindh
Important Mammal SpeciesImportant Mammal Species
Handouts via email.
Homework via email.
Sustainable Solid Waste Management-
Application of Modern Landfill Concept
Presenter: Mubashir Saleem
NED University of Engineering & Technology
August 13, 2015
- Name: Mubashir Saleem
- Professional Experiance: 2 years in the Design and drawing of water
and wastewater conveayance and treatment systems + 1.5 year of
Teaching
- Academic Qualification:
• BE (Civil Engineering), NED University (2009)
• ME (Environmental Engineering), NED University + University of
Padua ,(2013)
- Current Affiliation:
• Doctoral Research Fellow at The University of Padua, Italy.
About Me
Sustainability?
WHAT IS POLLUTION ?
• Some sort of contamination
• Unbalanced in the natural system
• Accumulation of something bad or
unwanted
POLLUTION, the other side of the Coin
POLLUTION is actually a RESOURCE in the WRONG
QUANTITY at the WRONG PLACE
An IDEA can change life
The Hypocrisy: (Fertilizer application)
Fertilizers contain:
• Plant Nutrients (Nitrate and Phosphates)
• Resource when applied in the field
• Becomes a pollutant when they infiltrate into the ground water
Definition of solid waste: Difficult !
“Waste is a left-over, a redundant product or material
of no or marginal value for the owner
and which the owner wants to discard”
Courtesy Prof.Christensen
•No universally accepted definition exists
Waste is a problem
Karachi by day
Quantity is a problem!
The underestimated side :
Energy Potential from waste in Pakistan
The European Paradigm:
UK produces 28 million tones (around 77000 tones per day) of household waste every
year.. Currently, UK only 11% of this is utilized for energy production, producing, around
190MW, enough for 300,000 households.
Where we are standing:
• Only Karachi produce around 12000 tons/ day of solid waste out of which
• 20% is collected by the intermediate waste pickers,
• 20% is left on the streets at the mercy of nature and
• the rest (almost 60%) is picked up and dump in official and/or unofficial dustbins of the
city, then transported to the uphill areas located 30-35 km away from the city and
disposed in open air
• Apart from the Municipal waste the country has an enormous potential of recovering
energy through Anaerobic Digestion of agricultural waste, poultry waste, animal
manure etc.
(Nayyer Alam Zaigham, Proceedings of COMSATS Conference2004 on Renewable Energy Technologies & Sustainable
Development, 2005)
Quality is a problem!
And you about
landfill gas?
Do you know
anything about
parachutes?
Elementary Composition of MSW
1
Werte aus : NEUPERT, 1989, Stoffl. Zussammensetzung von Haus- u. Gewerbemüll
Bayr. Landesamt für Umweltschutz (Hrsg.): Zusammensetzung und Schadstoffgehalt von Siedlungsabfällen, 2003
Zeschmar- Lahl, 2003
Bidlingmeyer, 1990, Schwermetalle im Hausmüll
El Dawi, 1997, Vergleich der Müllzusammensetzungen in Abfallbehandlungsanlagen
2 Werte aus: Neumayer, 1999
Döberl, 2004
Substance Ratio 2
[% FS]
Lignin 6
Cellulose 16
Hemicellulose 7
Hydrocarbons 9
Proteins 3
Fats, Resins, Waxes 2
Paper additives (org.+anorg.) 8
Plastics 18
Plastic additives (anorg.) 3
Minerals 13
Ash 4
Hazardous substances 1
Metals 10
Summe 100
Microscopical picture of slag from
thermal waste treatment
Quelle: ise.uni-karlsruhe.de
Substance Ratio 1
[Gew.% FS]
Water 35 -37
Glass/Minerals 7- 11,2
O2 13,6
H2 2,4
C ges 20 - 22
Zn 0,04 - 0,3
Fe 2,8
Pb 0,011 - 0,063
Cd 0,0006 - 0,001
Hg 0,0004
Cu 0,024
Cr 0,0031 - 0,021
Mn 0,018
Ni 0,0024
Sn 0,002
Al 0,64
As 0,0007 - 0,0009
Ti 0,16
F 0,012
Cl 0,5
S 0,2
N 0,9
P 0,1
Na 0,5
K 0,4
Mg 0,3
Ca 2,1
eere.energy.gov
Biomass Composition and Degradability
Readily degradable
under anaerobic landfill
conditions
Slowly degradable under
anaerobic landfill conditionsPersistent under
anaerobic landfill
conditions
A hemicellulose can be
any of several different
heteropolymers (matrix
polysaccharides, most
pentose sugars) present
in almost all plant cell
walls along with cellulose.
Hemicellulose is a
branched polymer, while
cellulose is unbranched.
In contrast to cellulose
that is crystalline, strong,
and resistant to
hydrolysis, hemicellulose
has a random, amorphous
structure with little
strength.
500-3000 sugar units
7,000 - 15,000 glucose molecules
Lignin structure
Lignin is an organic substance binding
the cells, fibres and vessels which
constitute wood and the lignified
elements of plants. After cellulose, it is
the most abundant renewable carbon
source on Earth. It is not possible to
define the precise structure of lignin as
a chemical molecule. All lignins show a
certain variation in their chemical
composition. However the definition
common to all is a network polymer of
phenyl propene basic units.
Recycling is an option
Waste to energy is an option
Landfilling is an option
Modern waste management strategy
• Waste production minimisation
• Efficient waste management
• Recovery of valuable material resources
• Global climate changes issues
• Reduction of landfilling
• Energy balance optimisation
• Emissions minimisation, ecotoxilogical control
• Health risk minimisation
• Environmental sustainability (long term impacts)
• Economical and social sustainability
Boh!!!
Magic solutions
Jarrod Ball & Associates
Innovative technologies
(H.Robinson, 2008)
Politicians are very interested in wastes
(Howard Robinson, 2007)
NIMBY NIMO BANANA IDEOLOGIES
Business interests Corruption
Problems for decision makers
Criminality
Avoiding mistakes
Rigid environmentalist positions
Disinformation
POPs: The Dirty Dozen
Chlordane
Dieldrin
Chlorinated Dioxins and Furans
Endrin
Heptachlor
Hexachlorobenzene
Mirex
PCBs
Toxaphene
DDT
Aldrin
transcis
2,3,7,8-TCDD 2,3,7,8-TCDF
Waste Management
Traditional
• low population
• harmony with nature
Low amount of waste
Today
• explosion of population
• increasing standard of living
huge amount of waste
Traditional
methods
do not
fulfill
the new
requirements!
Himba-
People /
Namibia
Pictures: GEO 2001; Greenpeace, Smid 1996
Sao Paulo / Brasil
Global Warming
Depletion of
stratospheric ozone
Global Environmental Impacts
Global Warming
CH4
280 ppm
180 ppm
CO2
380 ppm
Ice Core Data
IPCC 2007
Global Warming
• Landfills are significant sources (6-
13% of global CH4 emission)
• CH4 more GWP than CO2 (28-34 from
2013 IPCC AR5 p714)
• Methane oxidation important
• Less organic waste in landfills in the
future
(TH Christensen)
Loss of Natural Resources
Loss of aestetics and landscaping
Water Contamination
Environmental
damages
AIT, Thailand
Collection of waste
in developing countries
- irregular
- not efficient
- not existing
In many cases:
Lixeira / Brasil
Thailand
Thailand Thailand
Kampala/ Uganda
Kampala/ Uganda
Kampala/ Uganda
Pakistan
Collection Systems
Ampang Jaya Landfill Site (Kuala Lumpur)
Source: UPM, Malaysia, Dawn news paper
Disposal of collected waste
- dumps / landfills / open burning -
Jam Chakro (Karachi)
Disposal of waste –
if no collection system is existing
- open fires
- wild dumps
- dump in waterbodies
Ilhabela / Brasil
Pictures: Santen, 2000; Kraus 2001 and Dawn news paper
Kampala/ Uganda
Jam Chakro, Karachi
Health issues
Risk to community
Illness
Disease
- Breeding ground for vermin, insects and scavenging animals 
chances of illness and disease
-waste pickers: contact with syringes, hospital wastes and other
hazardous waste
- Burning causes air pollution, and serious health effects
- Where these sites are located very close to densely populated
areas, or support substantial communities of waste pickers,
there are particular public health risks
Dumpsite Collapsed in Philippines
On 10 July 2000, more than 200 people died and hundreds more were
injured when the Payatas dumpsite in Quezon City, the Philippines,
collapsed in heavy rains. The collapse buried shanty homes of the
nation's poorest. Most of the victims were children, at home on a day
declared a holiday because of an impending typhoon.
Source: AIT, Thailand
1999: Shacks close to the mountain of
garbage which subsided
After the Collapse in July 2000 Payatas
dumpsite in Quezon City, Philippines
Waste as a resource
- Waste paper for new paper production
- Separated plastics for (like PE, PVC, PP) as a source
for new plastic production
- Mixed plastic and paper as an energy source (RDF)
- Metal recovery for new metal production (including
electronic waste)
- Kitchen and yard waste as soil conditioner
- Sewage sludge and agricultural waste as soil
conditioner or fuel
Waste as a resource
New products from waste
- organic waste as a source for the production of fuel,
CO2, CH4, alcohol)
- organic waste as a source for the production of food
for animals
- organic waste as a source for the production of e.g.
biodegradable plastic
Hierarchy of utilisation of waste
Direct recycling Downcycling
Actual material use Raw material use
(as a resource)
Material use Energetic use
(thermal use)
Utilisation for
Avoidance
Material recovery
Energy recovery
Landfilling
Waste Management Hierarchy
Waste Management Hierarchy
Avoidance
Material recovery
Energy recovery
Landfilling
Ecoproduction
Ecodistribution
Packaging control
Internal recycling
Waste Management Hierarchy
Avoidance
Material recovery
Energy recovery
Landfilling
3Rs: Recovery,
Reuse,Recycle
Separate collection
Separate
collection
Source-
segregated
What about the Organics/ Organic
Fraction of Municipal Solid waste /
Putrescible waste ?
Aerobic stabilisation: Composting
Biological degradation and transformation process for organic substances by
a variety of microbes, in aerobic conditions and in solid state. The process is
exergonic, results in heating up of the stabilizingmaterial, and it leads to the
formation of carbon dioxide and water. A humus rich material is generated.
Under specific quality control of the substrate and of the process the final product
may be classified as Compost: a stabilized and sanitised product which is
beneficial to plant growth.
Mechanism Of Biological Treatment?
Aerobic treatment is a biochemical process carried out in the
presence of O2 (dissolved). The process uses organic matter, nutrients,
and dissolved oxygen, and produces stable solids, carbon dioxide, and more
organisms.
Organic materials+ Nutrients +O2 CO2+NH3+New Cells
Aerobic microbes
Organics
O2
CO2
Nutrients
Stable
Solids
Growth
Microbes
Aims of Composting
 Reduction of volume and mass of organic waste
 Recirculation of organics into the natural cycle
 Increasing of the Carbon Sink pool
 Energy recovery (if anaerobic digestion is adopted as a
treatment before composting)
 Stabilisation and hygienization of organic waste as a
pretreatment before landfilling
 Fulfilment of regulations and laws
The Actors
• Bacteria
• Actinobacteria
• Fungi
• (Protozoa and
animals)
Streptococcus Rods Cocci
Phycomyces blakesleeanus Phellinius
pini
Coprinus -Specie
Ciliary Flagellates Worms
Actinomycetes
Degradation Phases during Composting
0
10
20
30
40
50
60
70
80
Meso- Thermophilic Cooling phase
easilydeg
radable medium
degradable
Phase
anaerobic bacteria
aerobic bacteria
fungi
Maturation
hardly degradable substances
unwanted
Maturation phase : Actynomicetes are very active;
phenols and phenolic acids generated by the
degradation of lignins, tannins and poliphenols are
polymerized to humic substances.
The Concept of Zero Waste
Avoidance
Material recovery
Energy recovery
Landfilling
Waste Management Hierarchy
• Zero waste is a new planning
approach for the 21st Century that
seeks to redesign the way resources
and materials flow through society,
taking a ‘whole system’ approach
(Zero waste kuvalum, 2004).
• Zero waste maximises recycling,
minimises waste, reduces
consumption and ensures that
products are made to be reused,
repaired or recycled back into nature
or the market place (Grass Roots
Recycling Network, 2004).
(Cristina Trois, 2008)
Zero waste option
Zero waste perspectives
Zero waste
• Waste minimisation
• Personal behaviour
• Education
• Composting, MBT
• Thermal treatment
• Landfilling
Zero illness
• Prevention
• Personal behaviour
• Education
• Medicine
• Surgeries
• Graveyards
The Concept of Urban Mining
and Sustainability
E: extracted raw material
ΔR: recycled and reused material (secondary raw materials)
ΔL: recovered material from landfill mining (secondary raw materials)
di: diffuse mass emissions/loss associated to the specific steps and
processes
I: immobilized material. (inert material)
The Concept of Urban Mining
Dispersion of Materials with Time
Raw Material Dispersed Material
100%
100%
Cycle of Utilization/Time
Raw Materials: i.e. steel, paints , textiles, tires, asphalt
Processes : i.e. corrosion, abrasion, dissolution, evaporation,
E = ∆R ∆L+ I∑di
Mass Balance: Flow of Resources
+ +
Sustainability and Urban Mining
The diffuse emissions should be carefully controlled and minimised as
they are the cause for the progressive deterioration of the global
environmental quality.
E= ∆R ∆L- I∑di - -
• Minimise raw material extraction
• Maximize recovery, recycling and reuse of secondary raw
materials
• Increase the immobilisation of materials in final sinks/geological
repositories
Waste Management Hierarchy
Avoidance
Material recovery
Energy recovery
Landfilling
Alternative/
Renewable energy
Anaerobic Digestion
Mechanism Of Biological Treatment?
Anaerobic treatment is a biochemical process carried out in the
absence of O2 for the stabilization of organic materials by conversion
to CH4 and inorganic end-products such as CO2 and NH3
Organics
Nutrients
Growth
Stable
Solids
CO2 CH4+
Microbes
Energy Value:
Methane can be
used as fuel
Organic materials+ Nutrients CH4+CO2+NH3+New Cells
Anaerobic microbes
Biodegradation of organic waste: Process choice
green waste
rural biowaste
municipal biowaste
kitchen waste
food waste
restaurant waste
slaughterhouse waste
sewage sludge
slurry
Composting Digestion
Moisture
Structure
Sludges
Waste in
Loading Combustion
chamber
Post-combustion
Bag filter
Denox
Bottom ash
Fly ash
Control panel
Pump
Mineralized
Water
Dégasing unit
Air condenser
Stack gases
36 MW
Incineration
Perception & Reality
(J. Gronow, H. Robinson, 2007)
By definition a sanitary landfill is:
• a fully engineered disposal option.
• It avoids the harmful effects of uncontrolled dumping by
• spreading,
• compacting and
• Covering the waste on land that has been carefully
engineered before use.
• Through careful site selection, preparation and management,
operators can minimize risks from leachate and gas production
both in the present and the future.
• Site design and plans consider not only waste disposal but
aftercare and ultimate land use once the site closes
Sanitary landfill
Sanitary landfill
Objectives
To prevent or reduce as far as possible
negative effects from the landfilling of
waste on
• the environment
• the global environment
• human health
LANDFILL TYPE
1. Mound
leachate migration by gravity out
of the landfill (long term)
long term landfill identification
2. Pit
closer to groundwater
leachate control more difficult
(eternal pumping)
side walls to be lined (avoiding
gas and leachate migration)
Concept I
• Open dump
– High impact during operation
• Dry tomb landfilling
– No air in landfill body
→Anaerobic degradation
– No water, no leachate
→Very low organic waste degradation
(mummification)
→Long term impacts due to high organic content in
landfill body
Concept II
• Contained landfill (today design)
– Controll of biogas and leachate emissions by physical
barriers (what will happen when they loose
efficiency?)
– Some lined landfill could became dry tomb – it
depends on top cover and the allowance of leachate
recirculation
• Sustainable landfill (tomorrow design)
– Waste pre-treatment
– Aerobic landfilling
– Open cover
– High ratio Liquid/Solid
2.84
time
OPERATION
dm/dta
dm/dt30
300
AFTERCARE
WASTE MANAGEMENT
(fee)
CONTAMINATED SOIL
(social money)
Long term landfill accumulation
tc
Traditional landfill
Sustainable landfill
SAC (Short term After-Care)
landfill
dm/dtmax
Sustainable landfilling
30 years
laterAnaerobic
degradation
Rain
Leachate
Mummification
Rain
Contaminant
Leachate
30 years
later Degradation
and flushing
Rain
Clean
Leachate
Aerobic
degradation
Rain
Leachate
to treatment
Air
Long term landfill impact
Open dump
Dry tomb landfill
Contained landfill
Sustainable landfill
time
OPERATION
ea
e30
300
AFTERCARE
tc
emax
I
II
III
Reactor Landfill
leachate
recirculation
Compost Layer
Drainige
Liner
Leachate
Pretratment
Leachate
Treatment
Gas Extraction
Efluent
amino acids,
saccharid, glycerin,
fatty acids
Anaerobic Processes (Contained Landfills)
fractions and
solved polymeres
protein
carbohydrate
fat
H2
alcohol
CO2
acetic acid
Biogas
CH4, CO2
organic acids
Hydrolysis Acidification Acetogenic
phase
Methane formation
H2
CO2
acetic acid
propionic acid,
butyric acid
Complex &
Particulate
OM
• Particulates made soluble and large polymers
converted to simpler monomers
– Carbohydrates, fats, and proteins
• Large molecules (polymers) broken down into
smaller molecules (monomers)
– Allow passage through bacterial cell wall
• Facultative anaerobes and anaerobes
• May be rate limiting step in process for high
concentrations of particulate organic matter.
Step 1: Hydrolysis
 Molecule composed of
fatty acids and alcohols
R — C
O — H
O
R — C
O — H
O
Fatty Acids: Long-chain hydrocarbon
molecule capped by a carboxyl group
(COOH)
O
C
H — CH — CH — CH — H
O
R
O
C
O
R
O
C
O
R
H — CH — CH — CH — H
O
R
O
C
O
R
O
C
O
R
O
C
O
R
O
C
O
R
Fats (Lipids)
Protein
 A macromolecule (polymer)
C — C
O — H
O
—
NH2
H
R
amino acid
C — C
O — H
O
—
NH2
H
R C — C
O — H
O
—
NH2
H
R
amino acid
C — C
O — H
O
—
NH2
H
R — N — C — C
O
H H
R’
peptide bond
C — C
O — H
O
—
NH2
H
R — N — C — C
O
H H
R’
peptide bond
Step 1: Hydrolysis (Examples)
Step 2: Acidogenesis
• Glucose, amino acids,
and fatty acids converted
to C3 and C4 volatile fatty
acids (76%), H2 (4%), and
acetic acid (20%)
• Optimum growth rate
occurs near pH 6
• Volatile fatty acids
generally not significant
consumer of alkalinity
• NH3 produced from
amino acids
Volatile Fatty Acids
 "short-chain" or volatile fatty acids are 2 to
4-carbon molecules
CH3 — C
O — H
O
CH3 — C
O — H
O
ethanoic acid
(acetic acid / vinegar)
propionic acid
CH3 — CH2 — C
O — H
O
CH3 — CH2 — C
O — H
O
O — H
butanonic acid
(butyric acid)
CH3 — CH2 — CH2 — C
O
butanonic acid
(butyric acid)
CH3 — CH2 — CH2 — C
O
Step 3: Acetogenesis
Example:
C2H5OH + H2O  acetate (CH3COO-) + H+ + 2H2
Go' = +9.6 kJ/mol
• Volatile fatty acids converted to acetic acid
(68%) and H2 (32%)
• Sensitive to H2 concentration
• Syntrophic (mutually beneficial) relationship with
the methanogens
Step 4: Methanogenesis
• Obligate anaerobes – methanogens
– Tend to have slower growth rates
• H2 utilizing methanogens use H2 to produce
methane removing H2 from system
• Limited pH range 6.7 to 7.4
– importance of alkalinity in system
• Sensitive to temperature change
Mechanisms of Methane Formation
2. Reduction of carbon dioxide CO2 + 4H2 => CH4 + 2H2O
1. Splitting of acetic acid CH3COOH => CH4 + CO2
Acetotrophic methanogens
4 CH3COOH  4 CO2 + 2 H2
Methylotrophic methanogens
4 CH3OH + 6 H2  3 CH4 + 2 H2O
Hydrogenotrophic methanogens
CO2 + 4 H2  CH4 + 2 H2O
1.
2.
Sample Methane Yield, m3
/kg VS
Mixed MSW 0.186 - 0.222
Mixed Yard Waste 0.143
Office Paper 0.369
Newsprint 0.084
Magazine 0.203
Food Board 0.343
Milk Carton 0.318
Wax Paper 0.341
*
From Owens, J.M. and D.P. Chynoweth
Biogas Potentials of Different Materials
Major abiotic factors Influencing the
process
Influence of sulphates
Leachate is a wastewater produced by the infiltration of water in
the landfill.
The water percolating through the waste removes organic
compounds, metals and salts.
The QUALITY of the leachate depends on:
• the quality and type of the waste (MSW, Industrial waste,
bottom ashes).
• it depends by the conditions of the degradation of waste
in the landfill (anaerobic condition, aerobic conditions,
semi-aerobic condtions)
• and finally it depends by the age of the landfill (new
landfill or old landfill).
What is leachate?
The QUANTITY of leachate depends on:
• Characteristics of the site
• Climatic & meteorological conditions of the site
• Physical characteristics of the waste
• Characteristics of the barrier systems
What is leachate?
Leachate composition
BMBF Statusbericht „Deponiekörper“, 1995
Phase I II III IV V
NH3 (aq) + H2O NH4
+ + OH-
Ammonia in Anaerobic Digestion
Leachate management options
• A. In situ : recirculation
• B. On site: leachate treatment plant
• C. Off site: co-treatment at external
facilities (industrial or domestic)
C
A B
C
Selection criteria for treatment
Young Medium Old
COD (mg/l) > 10.000 500-10.000 < 500
COD/TOC 2,7 2,0-2,7 2,0
BOD5/COD > 0,4 0,1-0,4 < 0,1
Biological treatment
Chemical precipitation
Ozone
Reverse osmosis
Activated carbon
Ion exchange
good good-fair fair fair-poor poor
Landfill Gas Phases
Vol.%
I II III IV V
2 – 5 years several decades
2nd Barriere = quality of the site
3rd Barriere = landfill concept
Multi Barrier Concept
1st Barrier = quality of the waste
4th Barrier = landfill drainage & liner
Landfill siting
The following criteria have to be respected in the course
of landfill siting:
Geological barrier: thickness > 3 m with kf < 1*10-7 m/s
Groundwater: Baseline of the liner 1m above the highest
groundwater table, soil should have a low permeability
No drinking water catchment area, no nature conservation
areas, no floading areas
> 300 m distance to residential areas, appropriate traffic
location
gravel layer
(drainage)
mineral layer
plastic liner
geotextil
e
Lining & Leachate Collection
GRAVEL
HDPE TUBE
Drainage
HPDE TUBE DE140
SILICA GRAVEL
BARRIERS
WASTE
ENVIRONMENTAL ISSUES OF SINDH
 EACH STUDENTTO PRESENT
 Uzma=water Scarcity
 Rabab=ground water Contamination
 Waseem=solidWaste in Urban Areas
 Sheheryar=wetlands
 Amin=Urbanization
 Amar=X
 Ahmer=Noise Pollution (KHI/SUKKUR)
 Waqas=Coalfired boiler (2014 SEPA survey)
 Tabish=various
Tufail Ali Zubedi
Environmental Consultant
EN501
Introduction to Ecology
Today
 Evolution of the Solar System
 Evolution of Life on Earth
 Evolution of Life on Earth
 Periodic Extinctions
Evolution of the Solar System
 The standard model for the formation of the Solar System (including the Earth)
is the solar nebula hypothesis.
 In this model, the Solar system formed from a large, rotating cloud of
interstellar dust and gas called the solar nebula.
 It was composed of hydrogen and helium created shortly after the Big Bang
13.8 Ga (billion years ago) and heavier elements ejected by supernovae.
 About 4.5 Ga, the nebula began a contraction that may have been triggered by
the shock wave of a nearby supernova.
 A shock wave would have also made the nebula rotate.
 As the cloud began to accelerate, its angular momentum, gravity and inertia
flattened it into a protoplanetary disk perpendicular to its axis of rotation.
 Small perturbations due to collisions and the angular momentum of other large
debris created the means by which kilometer-sized protoplanets began to form,
orbiting the nebular center.
 The center of the nebula, not having much angular momentum,
collapsed rapidly.
 The compression heating it until nuclear fusion of hydrogen into
helium began.
 After more contraction, aTTauri star ignited and evolved into the
Sun.
 The solar wind of the newly formedTTauri star cleared out most
of the material in the disk that had not already condensed into
larger bodies.
 The same process is expected to produce accretion disks around
virtually all newly forming stars in the universe, some of which
yield planets
 In the outer part of the nebula, gravity caused matter to
condense around density perturbations and dust particles.
 The rest of the protoplanetary disk began separating into
rings.
 Successively larger fragments of dust and debris clumped
together to form planets (called runaway accretion)
 Earth formed in this manner about 4.54 billion years ago
(with an uncertainty of 1%) and was largely completed
within 10–20 million years
 The proto-Earth grew by accretion until its interior was hot
enough to melt the heavy, siderophile metals.
 Having higher densities than the silicates, these metals sank.
 This so-called iron catastrophe resulted in the separation of a
primitive mantle and a (metallic) core
 Only 10 million years after the Earth began to form,
producing the layered structure of Earth and setting up the
formation of Earth's magnetic field.
Geological Layers of Earth
Evolution of Life on Earth
 Biologists reason that all living organisms on Earth must
share a single universal ancestor.
 The earliest organisms fossil is available of bacteria.
 The lack of fossil or geochemical evidence for earlier
organisms has left plenty of scope for hypotheses.
 Two main groups:
 1) that life arose spontaneously on Earth or
 2) that it was "seeded" from elsewhere in the Universe
Life "seeded" from elsewhere
 There are three main versions of the "seeded from
elsewhere" hypothesis:
 from elsewhere in our Solar System via fragments knocked into
space by a large meteor impact, in which case the most credible
sources are Mars andVenus;
 by alien visitors, possibly as a result of accidental contamination
by microorganisms that they brought with them;
 and from outside the Solar System but by natural means.
 Greek philosopher Anaximander, physical chemist Svante
Arrhenius, astronomers Fred Hoyle and Chandra
Wickramasinghe, and by molecular biologist Francis Crick
and chemist Leslie Orgel.
Independent emergence on Earth
 Life on Earth is based on carbon and water. Carbon provides
stable frameworks for complex chemicals and can be easily
extracted from the environment, especially from carbon
dioxide
 Water is an excellent solvent
 Research on how life might have emerged from non-living
chemicals focuses on three possible starting points:
 self-replication, an organism's ability to produce offspring that
are very similar to itself;
 metabolism, its ability to feed and repair itself; and
 external cell membranes, which allow food to enter and waste
products to leave, but exclude unwanted substances
Tree of Life
Evolution of Life on Earth
 Timeline of evolution of life represents the current scientific
theory outlining the major events during the development
of life on planet Earth.
 In biology, evolution is any change across successive
generations in the heritable characteristics of biological
populations.
 Evolutionary processes give rise to diversity at every level of
biological organization, from kingdoms to species, and
individual organisms and molecules, such as DNA and
proteins.
Basic Timeline
In its 4.6 billion years circling the Sun, the Earth has harbored an
increasing diversity of life forms:
1. for the last 3.6 billion years, simple cells (prokaryotes);
2. for the last 3.4 billion
years, cyanobacteria performing photosynthesis;
3. for the last 2 billion years, complex cells (eukaryotes);
4. for the last 1.2 billion years, eukaryotes which sexually
reproduce
5. for the last 1 billion years, multicellular life;
6. for the last 600 million years, simple animals;
7. for the last 550 million years, bilaterians, water life forms with a
front and a back;
8. for the last 500 million years, fish and proto-amphibians;
9. for the last 475 million years, land plants;
Basic Timeline
10. for the last 400 million years, insects and seeds;
11. for the last 360 million years, amphibians;
12. for the last 300 million years, reptiles;
13. for the last 200 million years, mammals;
14. for the last 150 million years, birds;
15. for the last 130 million years, flowers;
16. for the last 60 million years, the primates,
17. for the last 20 million years, the family Hominidae (great apes);
18. for the last 2.5 million years, the genus Homo (including
humans and their predecessors);
19. for the last 250,000 years, anatomically modern humans.
Detailed timeline
 Handout
Periodic Extinctions
Periodic extinctions have temporarily reduced diversity,
eliminating:
 2.4 billion years ago, many obligate anaerobes (Obligate
anaerobes are poisoned by oxygen), in the Great
Oxygenation Event;
 252 million years ago, the trilobites (Trilobites (3 lobes) are
a fossil group of extinct marine arthropods that form the
class Trilobita.), in the Permian–Triassic extinction event;
 65 million years ago, the pterosaurs (Pterosaurs ("winged
lizard") were the earliest vertebrates flying reptiles known
to have evolved powered flight and of order Pterosauria.
Pterosaurs), non-avian dinosaurs, in the Cretaceous–
Paleogene extinction event.
What is Ecology ?
TAZ/NED/Fall2015En501/20150822/v1
Handout
Accretion In astrophysics, accretion is the growth of particles into a massive object by
gravitationally attracting more matter, typically gaseous matter in an accretion
disc.
This attracted matter accelerates the growth of the particles into boulder-sized
planetesimals. The more massive planetesimals accrete some smaller ones, while
others shatter in collisions.
Some dynamics in the disc are necessary to allow orbiting gas to lose angular
momentum and fall onto the central massive object. Occasionally, this can result
in stellar surface fusion.
accretion disc An accretion disk is a structure (often a circumstellar disk) formed by diffused
material in orbital motion around a massive central body. The central body is
typically a star.
Gravity causes material in the disc to spiral inward towards the central body.
Gravitational and frictional forces compress and raise the temperature of the
material causing the emission of electromagnetic radiation.
The frequency range of that radiation depends on the central object's mass.
Accretion discs of young stars and protostars radiate in the infrared; those around
neutron stars and black holes in the X-ray part of the spectrum.
The study of oscillation modes in accretion discs is referred to as diskoseismology
Big Bang The Big Bang theory is the prevailing cosmological model for the universe from
the earliest known periods through its subsequent large-scale evolution.
It states that the universe expanded from a very high density state
The Big Bang theory offers a comprehensive explanation for a broad range of
observed phenomena, including the abundance of light elements, the cosmic
microwave background, large scale structure, and Hubble's Law. The framework
for the Big Bang model relies on Albert Einstein's theory of general relativity and
on simplifying assumptions such as homogeneity and isotropy of space.
circumstellar disk A circumstellar disk is a torus, pancake or ring-shaped accumulation of matter
composed of gas, dust, planetesimals, asteroids or collision fragments in orbit
around a star. Around the youngest stars, they are the reservoirs of material out
of which planets may form. Around mature stars, they indicate that planetesimal
formation has taken place and around white dwarfs, they indicate that planetary
material survived the whole of stellar evolution. Such a disk can manifest itself in
various ways.
Herbig Ae/Be star A Herbig Ae/Be star (HABe) is a pre-main-sequence star – a young (<10Myr) star
of spectral types A or B. These stars are still embedded in gas-dust envelopes and
are sometimes accompanied by circumstellar disks.
They are 2-8 Solar mass (M☉) objects
Hydrogen and calcium emission lines are observed in their spectra
Luminosity In astronomy, luminosity is the total amount of energy emitted by a star, galaxy,
or other astronomical object per unit time.
It is related to the brightness, which is the luminosity of an object in a given
spectral region.
Milky Way The Milky Way is the galaxy that contains our Solar System.
Its name "milky" is derived from its appearance as a dim glowing band arching
across the night sky whose individual stars cannot be distinguished by the naked
eye.
TAZ/NED/Fall2015En501/20150822/v1
The Milky Way is a barred spiral galaxy that has a diameter usually considered to
be roughly 100,000–120,000 light-years but may be 150,000–180,000 light-years.
The Milky Way is estimated to contain 100–400 billion stars, although this number
may be as high as one trillion.
There are probably at least 100 billion planets in the Milky Way.
The Solar System is located within the disk, about 27,000 light-years from the
Galactic Center, on the inner edge of one of the spiral-shaped concentrations of
gas and dust called the Orion Arm.
Nebula A nebula (Latin for "cloud";[2] pl. nebulae, nebulæ, or nebulas) is an interstellar
cloud of dust, hydrogen, helium and other ionized gases. Originally, nebula was a
name for any diffuse astronomical object, including galaxies beyond the Milky
Way. The Andromeda Galaxy, for instance, was referred to as the Andromeda
Nebula (and spiral galaxies in general as "spiral nebulae") before the true nature
of galaxies was confirmed in the early 20th century by Vesto Slipher, Edwin
Hubble and others.
pre-main sequence
stars
A pre-main-sequence star (also known as a PMS star and PMS object) is a star in
the stage when it has not yet reached the main sequence.
A protostar grows by accretion, acquiring mass from its surrounding envelope of
interstellar dust and gas. By the time it is visible, the main accretion phase has
ended and it has acquired virtually all of its mass but has not yet started hydrogen
burning (i.e. nuclear fusion of hydrogen). The end of the main accretion phase to
the start of hydrogen burning (i.e. zero age main sequence) is the pre-main
sequence stage.
Protoplanetary disk A protoplanetary disk is a rotating circumstellar disk of dense gas surrounding a
young newly formed star, a T Tauri star, or Herbig Ae/Be star.
The protoplanetary disk may also be considered an accretion disc for the star
itself, because gasses or other material may be falling from the inner edge of the
disk onto the surface of the star. But this process should not be confused with the
accretion process thought to build up the planets themselves.
Protoplanets Protoplanets are large planetary embryos that originate within protoplanetary
discs and have undergone internal melting to produce differentiated interiors.
runaway accretion
Siderophile Siderophile (from sideron, "iron", and philia, "love") elements are the high-density
transition metals which tend to sink into the core because they dissolve readily in
iron either as solid solutions or in the molten state.
The siderophile elements include gold, cobalt, iron, iridium, manganese,
molybdenum, nickel, osmium, palladium, platinum, rhenium, rhodium and
ruthenium.
Stars vs planets
Stellar relating to a star or stars
supernova remnant This shock wave sweeps up an expanding shell of gas and dust called a supernova
remnant.
Supernovae A supernova is a stellar explosion that briefly outshines an entire galaxy, radiating
as much energy as the Sun or any ordinary star is expected to emit over its entire
life span, before fading from view over several weeks or months.
TAZ/NED/Fall2015En501/20150822/v1
The extremely luminous burst of radiation expels much or all of a star's material
at a velocity of up to 30,000 km/s (10% of the speed of light), driving a shock wave
into the surrounding interstellar medium.
This shock wave sweeps up an expanding shell of gas and dust called a supernova
remnant.
Supernovae are potentially strong galactic sources of gravitational waves
Supernovae are more energetic than novae. Nova means "new" in Latin, referring
to what appears to be a very bright new star shining in the celestial sphere; the
prefix "super-" distinguishes supernovae from ordinary novae, which are far less
luminous.
Supernovae can be triggered in one of two ways: by the sudden re-ignition of
nuclear fusion in a degenerate star; or by the gravitational collapse of the core of
a massive star
The last directly observed supernova in the Milky Way was Kepler's Star of 1604
(SN 1604); remnants of two more recent supernovae have been found
retrospectively
T Tauri star T Tauri stars (TTS) are a class of variable stars named after their prototype – T
Tauri. They are found near molecular clouds and identified by their optical
variability and strong chromospheric lines. T Tauri stars are pre-main sequence
stars in the process of contracting to the main sequence along the Hayashi track, a
luminosity-temperature relationship obeyed by infant stars of less than 3 solar
masses (M☉) in the pre-main-sequence phase of stellar evolution.
HANDOUT-Timeline of natural history
In the earliest solar system history, the Sun, the planetesimals and the jovian planets were formed.
The inner solar system aggregated more slowly than the outer, so the terrestrial planets were not yet
formed, including Earth and Moon.
 c. 4,570 Ma: A supernova explosion (known as the primal supernova) seeds our galactic
neighborhood with heavy elements that will be incorporated into the Earth, and results in
a shock wave in a dense region of the Milky Way galaxy. The Ca-Al-rich inclusions, which
formed 2 million years before the chondrules,[1]
are a key signature of a supernova explosion.
 4,567±3 Ma: Rapid collapse of hydrogen molecular cloud, forming a third-generation Population
I star, the Sun, in a region of the Galactic Habitable Zone(GHZ), about 25,000 light years from
the center of the Milky Way Galaxy.[2]
 4,566±2 Ma: A protoplanetary disc (from which Earth eventually forms) emerges around the
young Sun, which is in its T Tauri stage.
 4,560–4550 Ma: Proto-Earth forms at the outer (cooler) edge of the habitable zone of the Solar
System. At this stage the solar constant of the Sun was only about 73% of its current value, but
liquid water may have existed on the surface of the Proto-Earth, probably due to the greenhouse
warming of high levels ofmethane and carbon dioxide present in the atmosphere. Early
Bombardment Phase begins: because the solar neighbourhood is rife with large planetoids and
debris, Earth experiences a number of giant impacts that help to increase its overall size
Hadean Eon[edit]
 4,533 Ma: Hadean Eon, Precambrian Supereon and unofficial Cryptic era start as the Earth–
Moon system forms, possibly as a result of a glancing collision between proto–Earth and the
hypothetical protoplanet Theia. (The Earth was considerably smaller than now, before this
impact.) This impact vaporized a large amount of the crust, and sent material into orbit around
Earth, which lingered as rings, similar to those of Saturn, for a few million years, until they
coalesced to become the Moon. The Moon geology pre-Nectarian period starts. Earth was
covered by a magmatic ocean 200 kilometres (120 mi) deep resulting from the impact energy
from this and other planetesimals during the early bombardment phase, and energy released by
the planetary core forming. Outgassing from crustal rocks gives Earth a reducing atmosphere
of methane, nitrogen, hydrogen, ammonia, and water vapour, with lesser amounts of hydrogen
sulfide, carbon monoxide, then carbon dioxide. With further full outgassing over 1000–1500 K,
nitrogen and ammonia become lesser constituents, and comparable amounts of methane,
carbon monoxide, carbon dioxide, water vapour, and hydrogen are released.
 4,500 Ma: Sun enters main sequence: a solar wind sweeps the Earth-Moon system clear of
debris (mainly dust and gas). End of the Early Bombardment Phase.Basin Groups Era begins on
Earth
 4,450 Ma: 100 million years after the Moon formed, the first lunar crust, formed of
lunar anorthosite, differentiates from lower magmas. The earliest Earth crust probably forms
similarly out of similar material. On Earth the pluvial period starts, in which the Earth's crust
cools enough to let oceans form.
 4,300 Ma: Nectarian Era begins on Earth
 4,404 Ma: First known mineral, found at Jack Hills in Western Australia. Detrital zircons show
presence of a solid crust and liquid water. Latest possible date for a secondary atmosphere to
form, produced by the Earth's crust outgassing, reinforced by water and possibly organic
molecules delivered by comet impacts andcarbonaceous chondrites (including type CI shown to
be high in a number of amino acids and polycyclic aromatic hydrocarbons (PAH)).
 4,250 Ma: Earliest evidence for life, based on unusually high amounts of light isotopes of
carbon, a common sign of life, found in Earth's oldest mineral deposits located in the Jack
Hills of Western Australia.[3]
 4,100 Ma: Early Imbrian Era begins on Earth. Late heavy bombardment of the Moon (and
probably of the Earth as well) by bolides and asteroids, produced possibly by the planetary
migration of Neptune into the Kuiper belt as a result of orbital
resonances between Jupiter and Saturn.[4]
 4,030 Ma: Acasta Gneiss of Northwest Territories, Canada, first known oldest rock, or aggregate
of minerals.
Archean Eon[edit]
Main article: Archean
Eoarchean Era[edit]
Main article: Eoarchean
 4,000 Ma: Archean Eon and Eoarchean Era start. Possible first appearance of plate tectonic
activity in the Earth's crust as plate structures may have begun appearing. Possible beginning
of Napier Mountains Orogeny forces of faulting and folding create first metamorphic rocks.
Origins of life.
 3,930 Ma: Possible stabilization of Canadian Shield begins
 3,920–3,850 Ma: Final phase of Late Heavy Bombardment
 3,850 Ma: Greenland apatite shows evidence of 12
C enrichment, characteristic of the presence of
photosynthetic life.[5]
 3,850 Ma: Evidence of life: Akilia Island graphite off Western Greenland contains evidence
of kerogen, of a type consistent with photosynthesis.[citation needed]
 3,800 Ma: Oldest banded iron formations found.[citation needed]
. First complete continental masses
or cratons, formed of granite blocks, appear on Earth. Occurrence of initial felsic igneous activity
on eastern edge of Antarctic craton as first great continental mass begins to coalesce. East
European Craton begins to form - first rocks of the Ukrainian Shield and Voronezh Massif are
laid down
 3,750 Ma: Nuvvuagittuq Greenstone Belt forms
 3,700 Ma: Graphite found to be biogenic in 3.7 billion-year-old metasedimentary
rocks discovered in Western Greenland[6]
Stabilization of Kaapval cratonbegins: old tonaltic
gneisses laid down
Paleoarchean Era[edit]
 3,600 Ma: Paleoarchean Era starts. Possible assembly of the Vaalbara supercontinent: Oldest
cratons on Earth (such as the Canadian Shield, East European Craton and Kaapval) begin
growing as a result of crustal disturbances along continents coalescing into Vaalbara - Pilbara
Craton stabilizes. Formation ofBarberton greenstone belt: Makhonjwa Mountains uplifts on the
eastern edge of Kaapval craton, oldest mountains in Africa - area called the "genesis of life" for
exceptional preservation of fossils. Narryer Gneiss Terrane stabilizes: these gniesses become
the "bedrock" for the formation of the Yilgarn Craton in Australia - noted for the survival of
the Jack Hills where the oldest mineral, a zircon was uncovered
 3,500 Ma: Lifetime of the last Universal ancestor: split between bacteria and archaea occurs as
"tree of life" begins branching out - varieties of Eubacteria begin to radiate out globally. Fossils
resembling cyanobacteria, found at Warrawoona, Western Australia.[citation needed]
 3,480 Ma: Fossils of microbial mat found in 3.48 billion-year-old sandstone discovered
in Western Australia.[7][8]
First appearance of stromatolitic organisms that grow
at interfaces between different types of material, mostly on submerged or moist surfaces
 3,460 Ma: Fossils of bacteria in chert.[citation needed]
Zimbabwe Craton stabilizes from the suture of
two smaller crustal blocks, the Tokwe Segment to the south and the Rhodesdale Segment or
Rhodesdale gneiss to the north
 3.400 Ma: Eleven taxa of prokaryotes are preserved in the Apex Chert of the Pilbara craton in
Australia. Because chert is fine-grained silica-rich microcrystalline,cryptocrystalline or
microfibrious material, it preserves small fossils quite well. Stabilization of Baltic Shield begins
 3.340 Ma: Johannesburg Dome forms in South Africa: located in the central part of Kaapvaal
Craton and consists of trondhjemitic and tonalitic granitic rocks intruded into mafic-ultramafic
greenstone - the oldest granitoid phase recognised so far.
 3,300 Ma: Onset of compressional tectonics[9]
Intrusion of granitic plutons on the Kaapvaal
Craton
 3,260 Ma: One of the largest recorded impact events occurs near the Barberton Greenstone
Belt, when a 58 km (36 mi) asteroid leaves a hole almost 480 km (300 mi) across – two and a
half times larger in diameter than the Chicxulub crater.[10]
Mesoarchean Era[edit]
 3,200 Ma: Mesoarchean Era starts. Onverwacht series in South Africa form - contain some of
the oldest microfossils mostly spheroidal and carbonaceous alga-like bodies
 3,200–2600 Ma: Assembly of the Ur supercontinent to cover between 12–16% of the
current continental crust. Formation of Limpopo Belt
 3.1 Ma: Fig Tree Formation: second round of fossilizations including Archaeosphaeroides
barbertonensis and Eobacterium. Gneiss and greenstone belts in the Baltic Shield are laid down
in Kola Peninsula, Karelia and northeastern Finland
 3 Ma: Humboldt Orogeny in Antarctica: possible formation of Humboldt Mountains in Queen
Maud Land. Photosynthesizing cyanobacteria evolve; they use water as a reducing agent,
thereby producing oxygen as a waste product. The oxygen initially oxidizes dissolved iron in the
oceans, creating iron ore - over time oxygen concentration in the atmosphere slowly rises, acting
as a poison for many bacteria. As Moon is still very close to Earth and causes tides 1,000 feet
(305 m) high, the Earth is continually wracked by hurricane-force winds - these extreme mixing
influences are thought to stimulate evolutionary processes. Rise ofStromatolites: microbial mats
become successful forming the first reef building communities on Earth in shallow warm tidal
pool zones (to 1.5 Gyr). Tanzania Craton forms
 2.940 Ma: Yilgarn Craton of western Australia forms by the accretion of a multitude of formerly
present blocks or terranes of existing continental crust
 2,900 Ma: Assembly of the Kenorland supercontinent, based upon the core of the Baltic shield,
formed at 3100 Ma. Narryer Gniess Terrane (including Jack Hills) of Western Australia
undergoes extensive metamorphism
Neoarchean Era[edit]
 2,800 Ma: Neoarchean Era starts. Breakup of the Vaalbara: Breakup of supercontinent Ur as it
becomes a part of the major supercontinent Kenorland. Kaapvaal and Zimbabwe cratons join
together
 2,770 Ma: Formation of Hamersley Basin on the southern margin of Pilbara Craton - last stable
submarine-fluviatile environment between the Yilgarn and Pilbara prior to rifting, contraction and
assembly of the intracratonic Gascoyne Complex
 2,750 Ma: Renosterkoppies Greenstone Belt forms on the northern edge of the Kaapvaal Craton
 2,736 Ma: Formation of the Temagami Greenstone Belt in Temagami, Ontario, Canada
 2,707 Ma: Blake River Megacaldera Complex begins to form in present-
day Ontario and Quebec - first known Precambrian supervolcano - first phase results in creation
of 8km long, 40km wide, east-west striking Misema Caldera - coalescence of at least two large
mafic shield volcanoes
 2,705 Ma: Major komatiite eruption, possibly global[9]
- possible mantle overturn event
 2.704 Ma: Blake River Megacaldera Complex: second phase results in creation of 30 km long,
15 km wide northwest-southeast trending New Senator Caldera - thick massive mafic sequences
which has been inferred to be a subaqueous lava lake
 2,700 Ma: Biomarkers of cyanobacteria discovered, together
with steranes (sterols of cholesterol), associated with films of eukaryotes, in shales located
beneath banded iron formation hematite beds, in Hamersley Range, Western
Australia[11]
Skewed sulfur isotope ratios found in pyrites shows a small rise in oxygen
concentration in the atmosphere[12]
Sturgeon Lake Caldera, forms in Wabigoon greenstone belt:
contains well perserved homoclinal chain of greenschist facies, metamorphosed intrusive,
volcanic and sedimentary layers - Mattabi pyroclastic flow considered third most voluminous
eruptive event. Stromatolites of Bulawayo series in Zimbabwe form: first verified reef community
on Earth. Skewed sulfur isotope ratios found in pyrites shows a small rise in oxygen
concentration in the atmosphere
 2,696 Ma: Blake River Megacaldera Complex: third phase of activity constructs classic east-
northeast striking Noranda Caldera which contains a 7-to-9-km-thick succession of mafic and
felsic rocks erupted during five major series of activity. Abitibi greenstone belt in present-day
Ontario and Quebec begins to form: considered world's largest series of Archean greenstone
belts, appears to represent a series of thrusted subterranes
 2,690 Ma: Formation of high pressure granulites in the Limpopo Central Region
 2,650 Ma: Insell Orogeny: occurrence of a very-high grade discrete tectonothermal event (a
UHT metamorphic event)
 2,600 Ma: Oldest known giant carbonate platform.[9]
Saturation of oxygen in ocean sediments is
reached as oxygen now begins to dramatically appear in Earth's atmosphere
Proterozoic Eon[edit]
Main article: Proterozoic
Paleoproterozoic Era[edit]
Main article: Paleoproterozoic
Siderian Period[edit]
 2,500 Ma: Proterozoic Eon, Paleoproterozoic Era, and Siderian Period start. Oxygen saturation
in the oceans is reached: Banded iron formations form and saturate ocean floor deposits -
without an oxygen sink, Earth's atmosphere becomes highly oxygenic. Great Oxygenation
Event led by cyanobacteria's oxygenic photosynthesis - various forms of Archaea and anoxic
bacteria become extinct in first great extinction event on Earth. Algoman Orogeny or Kenoran:
assembly of Arctica out of the Canadian Laurentian Shield and Siberian craton - formation
of Angaran Shield and Slave Province
 2,440 Ma: Formation of Gawler Craton in Australia
 2,400 Ma: Huronian glaciation starts, probably from oxidation of earlier methane greenhouse
gas produced by burial of organic sediments of photosynthesizers. First cyanobacteria.
Formation of Dharwar Craton in southern India
 2,400 Ma: Suavjarvi impact structure forms. This is the oldest known impact crater whose
remnants are still recognizable. Dharwar Craton in southern India stabilizes
Rhyacian Period[edit]
 2,300 Ma: Rhyacian period starts.
 2,250 Ma: Bushveld Igneous Complex forms: world's largest reserves of platinum-group
metals (platinum, palladium, osmium, iridium, rhodium and ruthenium) as well as vast quantities
of iron, tin chromium titanium and vanadium appear - formation of Transvaal Basin begins
 2,200–1800 Ma: Continental Red Beds found, produced by iron in weathered sandstone being
exposed to oxygen. Eburnean Orogeny, series of tectonic, metamorphic and plutonic events
establish Eglab Shield to north of West African Craton and Man Shield to its south - Birimian
domain of West Africa established and structured
 2,200 Ma: Iron content of ancient fossil soils shows an oxygen built up to 5–18% of current
levels[13]
End of Kenoran Orogeny: invasion of Superior and Slave Provinces by basaltic dikes
and sills - Wyoming and Montana arm of Superior Province experiences intrusion of 5 km thick
sheet of chromite-bearing gabbroic rock as Stillwater Complex forms
 2,100 Ma: Huronian glaciation ends. Earliest known eukaryote fossils found. Earliest
multicellular organisms collectively referred to as the "Gabonionta" (Francevillian Group
Fossil), Wopmay orogeny along western margin of Canadian Shield
 2,090 Ma: Eburnean Orogeny: Eglab Shield experiences syntectonic trondhjemitic pluton
intrusion of its Chegga series - most of the intrusion is in the form of a plagioclase called
oligoclase
 2.070 Ma: Eburnean Orogeny: asthenospheric upwelling releases large volume of post-orogenic
magmas - magma events repeatedly reactivated from the Neoproterozoic to the Mesozoic
Orosirian Period[edit]
 2,050 Ma: Orosirian Period starts. Significant orogeny in most continents.
 2,023 Ma: Vredefort impact structure forms.
 2,005 Ma: Glenburgh Orogeny (2,005–1,920 Ma) begins: Glenburgh Terrane in western
Australia begins to stabilize during period of substantial granite magmatism and deformation;
Halfway Gneiss and Moogie Metamorphics result. Dalgaringa Supersuite (2,005–1,985 Ma),
comprising sheets, dykes and viens of mesocratic and leucocratic tonalite, stabilizes.
 2,000 Ma: The lesser supercontinent Atlantica forms. The Oklo natural nuclear
reactor of Gabon produced by uranium-precipitant bacteria.[14]
First acritarchs.
 1,900 - 1,880 Ma: Gunflint chert biota forms flourishes including prokaryotes
like Kakabekia, Gunflintia, Animikiea and Eoastrion
 1,850 Ma: Sudbury impact structure. Penokean orogeny. First eukaryotes. Bacterial viruses
(bacteriophage) emerge before, or soon after, the divergence of the prokaryotic and eukaryotic
lineages.[15]
 1,830 Ma: Capricorn Orogeny (1.83 - 1.78 Gyr) stabilizes central and northern Gascoyne
Complex: formation of pelitic and psammitic schists known as Morrissey Metamorphics and
depositing Pooranoo Metamophics an amphibolite facies
Statherian Period[edit]
 1,800 Ma: Statherian Period starts. Supercontinent Columbia forms, one of whose fragments
being Nena. Oldest ergs develop on several cratons[9]
Barramundi Orogeny (ca. 1.8 Gyr)
influences MacArthur Basin in Northern Australia.
 1,780 Ma Colorado Orogeny (1.78 - 1.65 Gyr) influences southern margin of Wyoming craton -
collision of Colorado orogen and Trans-Hudson orogen with stabilized Archean craton structure
 1,770 Ma Big Sky Orogeny (1.77 Gyr) influences southwest Montana: collision between Hearne
and Wyoming cratons
 1,765 Ma As Kimban Orogeny in Australian continent slows, Yapungku Orogeny (1.765 Gyr)
begins effecting Yilgarn craton in Western Australia - possible formation of Darling Fault, one of
longest and most significant in Australia
 1,760 Ma Yavapai Orogeny (1.76 - 1.7 Gyr) impacts mid to south western United States
 1.750 Ma Gothian Orogeny (1.75 - 1.5 Gyr): formation of tonalitic-granodioritic plutonic rocks
and calc-alkaline volcanites in the East European Craton
 1,700 Ma Stabilization of second major continental mass, the Guiana Shield in South America
 1,680 Ma Mangaroon Orogeny (1.68 - 1.62 Gyr), on the Gascoyne Complex in Western
Australia: Durlacher Supersuite, granite intrusion featuring a northern (Minnie Creek) and
southern belt - heavily sheared orthoclase porphyroclastic granites
 1.650 Ma Kararan Orogeny (1.65 Gyr) uplifts great mountains on the Gawler Craton in Southern
Australia - formation of Gawler Range including picturesque Conical Hill Track and "Organ
Pipes" waterfall
Mesoproterozoic Era[edit]
Main article: Mesoproterozoic
Calymmian Period[edit]
 1,600 Ma: Mesoproterozoic Era and Calymmian Period start. Platform covers expand. Major
orogenic event in Australia: Isan Orogeny (1,600 Ma) influences Mount Isa Block of Queensland
- major deposits of lead, silver, copper and zinc are laid down. Mazatzal Orogeny (1,600 Ma -
1,300 Ma) influences mid to south western United States: Precambrian rocks of the Grand
Canyon, Vishnu Schist and Grand Canyon Series, are formed establishing basement of Canyon
with metamorphosed gniesses that are invaded by granites
 1,500 Ma: Supercontinent Columbia collapses: associated with continental rifting along western
margin of Laurentia, eastern India, southern Baltica, southeastern Siberia, northwestern South
Africa and North China Block - formation of Ghats Province in India First structurally
complex eukaryotes (Hododyskia, colonial formamiferian).
Ectasian Period[edit]
 1,400 Ma: Ectasian Period starts. Platform covers expand. Major increase
in Stromatolite diversity with widespread blue-green algae colonies and reefs dominating tidal
zones of oceans and seas
 1,300 Ma: Break-up of Columbia Supercontinent completed: widespread anorogenic magmatic
activity, forming anorthosite-mangerite-charnockite-granite suites in North America, Baltica,
Amazonia and North China - stabilization of Amazonian Craton in South America Grenville
orogeny(1,300 - 1,000 Ma) in North America: globally associated with assembly of
Supercontinent Rodinia establishes Grenville Province in Eastern North America - folded
mountains from Newfoundland to North Carolina as Old Rag Mountain forms
 1,270 Ma Emplacement of Mackenzie granite mafic dike swarm - one of three dozen dike
swarms, forms into Mackenzie Large Igneous Province - formation of Copper Creek deposits
 1,250 Ma Sveconorwegian Orogeny (1,250 Ma - 900 Ma) begins: essentially a reworking of
previously formed crust on the Baltic Shield
 1,240 Ma Second major dike swarm, Sudbury dikes form in Northeastern Ontario around the
area of the Sudbury Basin
Stenian Period[edit]
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original
En 501-2015-original

Contenu connexe

Tendances

environment science
environment scienceenvironment science
environment scienceehrika
 
Scientific Facts on Mercury
Scientific Facts on MercuryScientific Facts on Mercury
Scientific Facts on MercuryGreenFacts
 
The multidisciplinary nature of environmental studies and natural resources
The multidisciplinary nature of environmental studies and natural resources The multidisciplinary nature of environmental studies and natural resources
The multidisciplinary nature of environmental studies and natural resources Maitry Agrawal
 
Environment studies basics
Environment studies basics Environment studies basics
Environment studies basics Jay Maheshwari
 
Saving the Wild - 21st Century Imperatives, by Dr. Jane Smart
Saving the Wild - 21st Century Imperatives, by Dr. Jane SmartSaving the Wild - 21st Century Imperatives, by Dr. Jane Smart
Saving the Wild - 21st Century Imperatives, by Dr. Jane SmartWILD Foundation
 
Multidisciplinary nature of environmental studies
Multidisciplinary nature of environmental studiesMultidisciplinary nature of environmental studies
Multidisciplinary nature of environmental studiesItsShifaSheikh
 
Unit 1.EVS.FY.B.Com.aap
Unit 1.EVS.FY.B.Com.aapUnit 1.EVS.FY.B.Com.aap
Unit 1.EVS.FY.B.Com.aapAnilaAP
 
GE 6351 ENVIRONMENTAL SCIENCE AND ENGINEERING
GE 6351 ENVIRONMENTAL SCIENCE AND ENGINEERING GE 6351 ENVIRONMENTAL SCIENCE AND ENGINEERING
GE 6351 ENVIRONMENTAL SCIENCE AND ENGINEERING mechrmkcet2017
 
Environmental science 2nd lecture
Environmental science 2nd lectureEnvironmental science 2nd lecture
Environmental science 2nd lectureJasperBarcelona
 
Strategic Environmental Assessment (SEA)
Strategic Environmental Assessment (SEA)Strategic Environmental Assessment (SEA)
Strategic Environmental Assessment (SEA)S.Shafiqur Rehman
 
Multidisciplinary nature of environmental studies
Multidisciplinary nature of environmental studiesMultidisciplinary nature of environmental studies
Multidisciplinary nature of environmental studiesSarthakKedia1
 
Environmental laws, policies and its effectiveness in addressing environmenta...
Environmental laws, policies and its effectiveness in addressing environmenta...Environmental laws, policies and its effectiveness in addressing environmenta...
Environmental laws, policies and its effectiveness in addressing environmenta...Muhammad Khairul Amini Nasir
 
Climate Change Environmental Policy 2005, Pakistan
Climate Change Environmental Policy 2005, PakistanClimate Change Environmental Policy 2005, Pakistan
Climate Change Environmental Policy 2005, PakistanShakeel Ahmed
 
Multidisciplinary nature of enviroment
Multidisciplinary nature of enviromentMultidisciplinary nature of enviroment
Multidisciplinary nature of enviromentShaikh Sabina Meraj
 

Tendances (20)

environment science
environment scienceenvironment science
environment science
 
Scientific Facts on Mercury
Scientific Facts on MercuryScientific Facts on Mercury
Scientific Facts on Mercury
 
The multidisciplinary nature of environmental studies and natural resources
The multidisciplinary nature of environmental studies and natural resources The multidisciplinary nature of environmental studies and natural resources
The multidisciplinary nature of environmental studies and natural resources
 
E012213135
E012213135E012213135
E012213135
 
Environment studies basics
Environment studies basics Environment studies basics
Environment studies basics
 
Saving the Wild - 21st Century Imperatives, by Dr. Jane Smart
Saving the Wild - 21st Century Imperatives, by Dr. Jane SmartSaving the Wild - 21st Century Imperatives, by Dr. Jane Smart
Saving the Wild - 21st Century Imperatives, by Dr. Jane Smart
 
Multidisciplinary nature of environmental studies
Multidisciplinary nature of environmental studiesMultidisciplinary nature of environmental studies
Multidisciplinary nature of environmental studies
 
Unit 1.EVS.FY.B.Com.aap
Unit 1.EVS.FY.B.Com.aapUnit 1.EVS.FY.B.Com.aap
Unit 1.EVS.FY.B.Com.aap
 
GE 6351 ENVIRONMENTAL SCIENCE AND ENGINEERING
GE 6351 ENVIRONMENTAL SCIENCE AND ENGINEERING GE 6351 ENVIRONMENTAL SCIENCE AND ENGINEERING
GE 6351 ENVIRONMENTAL SCIENCE AND ENGINEERING
 
Environmental Science
Environmental ScienceEnvironmental Science
Environmental Science
 
237968686 evs-1
237968686 evs-1237968686 evs-1
237968686 evs-1
 
Environmental science 2nd lecture
Environmental science 2nd lectureEnvironmental science 2nd lecture
Environmental science 2nd lecture
 
Strategic Environmental Assessment (SEA)
Strategic Environmental Assessment (SEA)Strategic Environmental Assessment (SEA)
Strategic Environmental Assessment (SEA)
 
Multidisciplinary nature of environmental studies
Multidisciplinary nature of environmental studiesMultidisciplinary nature of environmental studies
Multidisciplinary nature of environmental studies
 
Evs qb
Evs qbEvs qb
Evs qb
 
Environmental studies
Environmental studiesEnvironmental studies
Environmental studies
 
Ugc20syllabus
Ugc20syllabusUgc20syllabus
Ugc20syllabus
 
Environmental laws, policies and its effectiveness in addressing environmenta...
Environmental laws, policies and its effectiveness in addressing environmenta...Environmental laws, policies and its effectiveness in addressing environmenta...
Environmental laws, policies and its effectiveness in addressing environmenta...
 
Climate Change Environmental Policy 2005, Pakistan
Climate Change Environmental Policy 2005, PakistanClimate Change Environmental Policy 2005, Pakistan
Climate Change Environmental Policy 2005, Pakistan
 
Multidisciplinary nature of enviroment
Multidisciplinary nature of enviromentMultidisciplinary nature of enviroment
Multidisciplinary nature of enviroment
 

Similaire à En 501-2015-original

Environmental Education,Population and Environment
Environmental Education,Population and EnvironmentEnvironmental Education,Population and Environment
Environmental Education,Population and EnvironmentJonayed Rousan
 
The multidiciplinary nature of environmental studies.pptx
The multidiciplinary nature of environmental studies.pptxThe multidiciplinary nature of environmental studies.pptx
The multidiciplinary nature of environmental studies.pptxYashSehrawat20
 
Energy & Environment Notes by Prof SDMane
Energy & Environment Notes by Prof SDManeEnergy & Environment Notes by Prof SDMane
Energy & Environment Notes by Prof SDManeSuresh Mane
 
Ugc net environmental sciences books
Ugc net environmental sciences booksUgc net environmental sciences books
Ugc net environmental sciences booksrutu9292
 
Text Book-Environmental Studies.pdf
Text Book-Environmental Studies.pdfText Book-Environmental Studies.pdf
Text Book-Environmental Studies.pdfTejaswiniMuralidhara
 
Environmental Studies Book.pdf
Environmental Studies Book.pdfEnvironmental Studies Book.pdf
Environmental Studies Book.pdfKshitijSingh519456
 
ENVIRONMENTAL POLLUTION AND ITS PREVENTION ppt unit 1.pptx
ENVIRONMENTAL POLLUTION AND ITS PREVENTION ppt unit 1.pptxENVIRONMENTAL POLLUTION AND ITS PREVENTION ppt unit 1.pptx
ENVIRONMENTAL POLLUTION AND ITS PREVENTION ppt unit 1.pptxAditya235131
 
Environmental_Laws_Presentation_ppt_vers.ppt
Environmental_Laws_Presentation_ppt_vers.pptEnvironmental_Laws_Presentation_ppt_vers.ppt
Environmental_Laws_Presentation_ppt_vers.pptMadel Coyoca
 
Multidisciplinary nature of environmental studies
Multidisciplinary nature of environmental studiesMultidisciplinary nature of environmental studies
Multidisciplinary nature of environmental studiesArunpandu2
 
INTRODUCTION TO ENVIRONMENT & NATURAL RESOURCES
INTRODUCTION TO ENVIRONMENT & NATURAL RESOURCESINTRODUCTION TO ENVIRONMENT & NATURAL RESOURCES
INTRODUCTION TO ENVIRONMENT & NATURAL RESOURCEShkokani2461
 
unit 1 all-Copy.pdf
unit 1 all-Copy.pdfunit 1 all-Copy.pdf
unit 1 all-Copy.pdfWondererBack
 
Environmental studies and disaster management notes AFOR5221
Environmental studies and disaster management notes AFOR5221Environmental studies and disaster management notes AFOR5221
Environmental studies and disaster management notes AFOR5221ISHAN DEWANGAN
 
L1-Environmental Engineering-Inroduction1_7e6b23fe91da5e128d1d98c66aff5813.pdf
L1-Environmental Engineering-Inroduction1_7e6b23fe91da5e128d1d98c66aff5813.pdfL1-Environmental Engineering-Inroduction1_7e6b23fe91da5e128d1d98c66aff5813.pdf
L1-Environmental Engineering-Inroduction1_7e6b23fe91da5e128d1d98c66aff5813.pdfjiranjami46
 
Environmental Health
Environmental HealthEnvironmental Health
Environmental HealthVineeta Singh
 
Introduction to Environmental Studies
Introduction to Environmental StudiesIntroduction to Environmental Studies
Introduction to Environmental StudiesRuchi Pandey
 

Similaire à En 501-2015-original (20)

Environmental Education,Population and Environment
Environmental Education,Population and EnvironmentEnvironmental Education,Population and Environment
Environmental Education,Population and Environment
 
pdf1.pdf
pdf1.pdfpdf1.pdf
pdf1.pdf
 
The multidiciplinary nature of environmental studies.pptx
The multidiciplinary nature of environmental studies.pptxThe multidiciplinary nature of environmental studies.pptx
The multidiciplinary nature of environmental studies.pptx
 
Energy & Environment Notes by Prof SDMane
Energy & Environment Notes by Prof SDManeEnergy & Environment Notes by Prof SDMane
Energy & Environment Notes by Prof SDMane
 
Envinromental Studies ebook
Envinromental Studies ebookEnvinromental Studies ebook
Envinromental Studies ebook
 
Envinromental studies ebook
Envinromental studies ebookEnvinromental studies ebook
Envinromental studies ebook
 
Ugc net environmental sciences books
Ugc net environmental sciences booksUgc net environmental sciences books
Ugc net environmental sciences books
 
comprehensive main.pptx
comprehensive main.pptxcomprehensive main.pptx
comprehensive main.pptx
 
Text Book-Environmental Studies.pdf
Text Book-Environmental Studies.pdfText Book-Environmental Studies.pdf
Text Book-Environmental Studies.pdf
 
Environmental Studies Book.pdf
Environmental Studies Book.pdfEnvironmental Studies Book.pdf
Environmental Studies Book.pdf
 
ENVIRONMENTAL POLLUTION AND ITS PREVENTION ppt unit 1.pptx
ENVIRONMENTAL POLLUTION AND ITS PREVENTION ppt unit 1.pptxENVIRONMENTAL POLLUTION AND ITS PREVENTION ppt unit 1.pptx
ENVIRONMENTAL POLLUTION AND ITS PREVENTION ppt unit 1.pptx
 
Environmental_Laws_Presentation_ppt_vers.ppt
Environmental_Laws_Presentation_ppt_vers.pptEnvironmental_Laws_Presentation_ppt_vers.ppt
Environmental_Laws_Presentation_ppt_vers.ppt
 
Evs.pdf
Evs.pdfEvs.pdf
Evs.pdf
 
Multidisciplinary nature of environmental studies
Multidisciplinary nature of environmental studiesMultidisciplinary nature of environmental studies
Multidisciplinary nature of environmental studies
 
INTRODUCTION TO ENVIRONMENT & NATURAL RESOURCES
INTRODUCTION TO ENVIRONMENT & NATURAL RESOURCESINTRODUCTION TO ENVIRONMENT & NATURAL RESOURCES
INTRODUCTION TO ENVIRONMENT & NATURAL RESOURCES
 
unit 1 all-Copy.pdf
unit 1 all-Copy.pdfunit 1 all-Copy.pdf
unit 1 all-Copy.pdf
 
Environmental studies and disaster management notes AFOR5221
Environmental studies and disaster management notes AFOR5221Environmental studies and disaster management notes AFOR5221
Environmental studies and disaster management notes AFOR5221
 
L1-Environmental Engineering-Inroduction1_7e6b23fe91da5e128d1d98c66aff5813.pdf
L1-Environmental Engineering-Inroduction1_7e6b23fe91da5e128d1d98c66aff5813.pdfL1-Environmental Engineering-Inroduction1_7e6b23fe91da5e128d1d98c66aff5813.pdf
L1-Environmental Engineering-Inroduction1_7e6b23fe91da5e128d1d98c66aff5813.pdf
 
Environmental Health
Environmental HealthEnvironmental Health
Environmental Health
 
Introduction to Environmental Studies
Introduction to Environmental StudiesIntroduction to Environmental Studies
Introduction to Environmental Studies
 

Plus de zubeditufail

International Environmental Impact Assessment - Atkins.pdf
International Environmental Impact Assessment - Atkins.pdfInternational Environmental Impact Assessment - Atkins.pdf
International Environmental Impact Assessment - Atkins.pdfzubeditufail
 
The Holy Quran with Easy Word Meaning
The Holy Quran with Easy Word MeaningThe Holy Quran with Easy Word Meaning
The Holy Quran with Easy Word Meaningzubeditufail
 
Use of fungus bricks in construction sector
Use of fungus bricks in construction sectorUse of fungus bricks in construction sector
Use of fungus bricks in construction sectorzubeditufail
 
SPMC training iso 45001 awareness
SPMC training iso 45001 awarenessSPMC training iso 45001 awareness
SPMC training iso 45001 awarenesszubeditufail
 
SPMC - Pakistan training iso 14001 EMS awareness
SPMC - Pakistan training iso 14001 EMS awarenessSPMC - Pakistan training iso 14001 EMS awareness
SPMC - Pakistan training iso 14001 EMS awarenesszubeditufail
 
SPMC - Pakistan training iso 9001 QMS awareness
SPMC - Pakistan training iso 9001 QMS awarenessSPMC - Pakistan training iso 9001 QMS awareness
SPMC - Pakistan training iso 9001 QMS awarenesszubeditufail
 
SPMC - Pakistan Training Calendar 2020
SPMC - Pakistan Training Calendar 2020SPMC - Pakistan Training Calendar 2020
SPMC - Pakistan Training Calendar 2020zubeditufail
 
ISO 9001:2015 Life Cycle
ISO 9001:2015 Life Cycle ISO 9001:2015 Life Cycle
ISO 9001:2015 Life Cycle zubeditufail
 
CODEX HACCP Short Introduction
CODEX HACCP Short Introduction CODEX HACCP Short Introduction
CODEX HACCP Short Introduction zubeditufail
 
Pakistan Income Tax Ordinance amendment 2016
Pakistan Income Tax Ordinance amendment 2016Pakistan Income Tax Ordinance amendment 2016
Pakistan Income Tax Ordinance amendment 2016zubeditufail
 
Heat stroke by SPMCpk.com
Heat stroke by SPMCpk.comHeat stroke by SPMCpk.com
Heat stroke by SPMCpk.comzubeditufail
 
APPLICATION IN FORM - I FOR PRIOR ENVIRONMENTAL CLEARANCE
APPLICATION IN FORM - I FOR PRIOR ENVIRONMENTAL CLEARANCEAPPLICATION IN FORM - I FOR PRIOR ENVIRONMENTAL CLEARANCE
APPLICATION IN FORM - I FOR PRIOR ENVIRONMENTAL CLEARANCEzubeditufail
 
Resettlement Policy Framework - Karachi Neighborhood Improvement Project (KNIP)
Resettlement Policy Framework - Karachi Neighborhood Improvement Project (KNIP)Resettlement Policy Framework - Karachi Neighborhood Improvement Project (KNIP)
Resettlement Policy Framework - Karachi Neighborhood Improvement Project (KNIP)zubeditufail
 
Environmental and Social Management Framework (ESMF) - Karachi Neighborhood I...
Environmental and Social Management Framework (ESMF) - Karachi Neighborhood I...Environmental and Social Management Framework (ESMF) - Karachi Neighborhood I...
Environmental and Social Management Framework (ESMF) - Karachi Neighborhood I...zubeditufail
 
Ohsas 18001 self assessment checklist
Ohsas 18001 self assessment checklistOhsas 18001 self assessment checklist
Ohsas 18001 self assessment checklistzubeditufail
 
Draft2 guiding principles_and_recommendations_for_businesses_in_and_around_kb...
Draft2 guiding principles_and_recommendations_for_businesses_in_and_around_kb...Draft2 guiding principles_and_recommendations_for_businesses_in_and_around_kb...
Draft2 guiding principles_and_recommendations_for_businesses_in_and_around_kb...zubeditufail
 
A global standard_for_the_identification_of_key_biodiversity_areas_final_web
A global standard_for_the_identification_of_key_biodiversity_areas_final_webA global standard_for_the_identification_of_key_biodiversity_areas_final_web
A global standard_for_the_identification_of_key_biodiversity_areas_final_webzubeditufail
 
The Daily Dawn newspaper - millineium development goals report - Pakistan
The Daily Dawn newspaper - millineium development goals report - PakistanThe Daily Dawn newspaper - millineium development goals report - Pakistan
The Daily Dawn newspaper - millineium development goals report - Pakistanzubeditufail
 
shehri Letter to sepa
shehri Letter to sepashehri Letter to sepa
shehri Letter to sepazubeditufail
 
EIA of Engro Powergen Limited 450 MW RLNG CCPP at PQA, Karachi Sep 29, 2015 b...
EIA of Engro Powergen Limited 450 MW RLNG CCPP at PQA, Karachi Sep 29, 2015 b...EIA of Engro Powergen Limited 450 MW RLNG CCPP at PQA, Karachi Sep 29, 2015 b...
EIA of Engro Powergen Limited 450 MW RLNG CCPP at PQA, Karachi Sep 29, 2015 b...zubeditufail
 

Plus de zubeditufail (20)

International Environmental Impact Assessment - Atkins.pdf
International Environmental Impact Assessment - Atkins.pdfInternational Environmental Impact Assessment - Atkins.pdf
International Environmental Impact Assessment - Atkins.pdf
 
The Holy Quran with Easy Word Meaning
The Holy Quran with Easy Word MeaningThe Holy Quran with Easy Word Meaning
The Holy Quran with Easy Word Meaning
 
Use of fungus bricks in construction sector
Use of fungus bricks in construction sectorUse of fungus bricks in construction sector
Use of fungus bricks in construction sector
 
SPMC training iso 45001 awareness
SPMC training iso 45001 awarenessSPMC training iso 45001 awareness
SPMC training iso 45001 awareness
 
SPMC - Pakistan training iso 14001 EMS awareness
SPMC - Pakistan training iso 14001 EMS awarenessSPMC - Pakistan training iso 14001 EMS awareness
SPMC - Pakistan training iso 14001 EMS awareness
 
SPMC - Pakistan training iso 9001 QMS awareness
SPMC - Pakistan training iso 9001 QMS awarenessSPMC - Pakistan training iso 9001 QMS awareness
SPMC - Pakistan training iso 9001 QMS awareness
 
SPMC - Pakistan Training Calendar 2020
SPMC - Pakistan Training Calendar 2020SPMC - Pakistan Training Calendar 2020
SPMC - Pakistan Training Calendar 2020
 
ISO 9001:2015 Life Cycle
ISO 9001:2015 Life Cycle ISO 9001:2015 Life Cycle
ISO 9001:2015 Life Cycle
 
CODEX HACCP Short Introduction
CODEX HACCP Short Introduction CODEX HACCP Short Introduction
CODEX HACCP Short Introduction
 
Pakistan Income Tax Ordinance amendment 2016
Pakistan Income Tax Ordinance amendment 2016Pakistan Income Tax Ordinance amendment 2016
Pakistan Income Tax Ordinance amendment 2016
 
Heat stroke by SPMCpk.com
Heat stroke by SPMCpk.comHeat stroke by SPMCpk.com
Heat stroke by SPMCpk.com
 
APPLICATION IN FORM - I FOR PRIOR ENVIRONMENTAL CLEARANCE
APPLICATION IN FORM - I FOR PRIOR ENVIRONMENTAL CLEARANCEAPPLICATION IN FORM - I FOR PRIOR ENVIRONMENTAL CLEARANCE
APPLICATION IN FORM - I FOR PRIOR ENVIRONMENTAL CLEARANCE
 
Resettlement Policy Framework - Karachi Neighborhood Improvement Project (KNIP)
Resettlement Policy Framework - Karachi Neighborhood Improvement Project (KNIP)Resettlement Policy Framework - Karachi Neighborhood Improvement Project (KNIP)
Resettlement Policy Framework - Karachi Neighborhood Improvement Project (KNIP)
 
Environmental and Social Management Framework (ESMF) - Karachi Neighborhood I...
Environmental and Social Management Framework (ESMF) - Karachi Neighborhood I...Environmental and Social Management Framework (ESMF) - Karachi Neighborhood I...
Environmental and Social Management Framework (ESMF) - Karachi Neighborhood I...
 
Ohsas 18001 self assessment checklist
Ohsas 18001 self assessment checklistOhsas 18001 self assessment checklist
Ohsas 18001 self assessment checklist
 
Draft2 guiding principles_and_recommendations_for_businesses_in_and_around_kb...
Draft2 guiding principles_and_recommendations_for_businesses_in_and_around_kb...Draft2 guiding principles_and_recommendations_for_businesses_in_and_around_kb...
Draft2 guiding principles_and_recommendations_for_businesses_in_and_around_kb...
 
A global standard_for_the_identification_of_key_biodiversity_areas_final_web
A global standard_for_the_identification_of_key_biodiversity_areas_final_webA global standard_for_the_identification_of_key_biodiversity_areas_final_web
A global standard_for_the_identification_of_key_biodiversity_areas_final_web
 
The Daily Dawn newspaper - millineium development goals report - Pakistan
The Daily Dawn newspaper - millineium development goals report - PakistanThe Daily Dawn newspaper - millineium development goals report - Pakistan
The Daily Dawn newspaper - millineium development goals report - Pakistan
 
shehri Letter to sepa
shehri Letter to sepashehri Letter to sepa
shehri Letter to sepa
 
EIA of Engro Powergen Limited 450 MW RLNG CCPP at PQA, Karachi Sep 29, 2015 b...
EIA of Engro Powergen Limited 450 MW RLNG CCPP at PQA, Karachi Sep 29, 2015 b...EIA of Engro Powergen Limited 450 MW RLNG CCPP at PQA, Karachi Sep 29, 2015 b...
EIA of Engro Powergen Limited 450 MW RLNG CCPP at PQA, Karachi Sep 29, 2015 b...
 

Dernier

Science, Technology and Nation Building.pptx
Science, Technology and Nation Building.pptxScience, Technology and Nation Building.pptx
Science, Technology and Nation Building.pptxgrandmarshall132
 
Asexual-and-Sexual-Reproduction.huhupptx
Asexual-and-Sexual-Reproduction.huhupptxAsexual-and-Sexual-Reproduction.huhupptx
Asexual-and-Sexual-Reproduction.huhupptxMyBrightestStarParkJ
 
Uae-NO1 Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot, Sheik...
Uae-NO1 Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot, Sheik...Uae-NO1 Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot, Sheik...
Uae-NO1 Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot, Sheik...Amil baba
 
Slide deck for the IPCC Briefing to Latvian Parliamentarians
Slide deck for the IPCC Briefing to Latvian ParliamentariansSlide deck for the IPCC Briefing to Latvian Parliamentarians
Slide deck for the IPCC Briefing to Latvian Parliamentariansipcc-media
 
Making a Difference: Understanding the Upcycling and Recycling Difference
Making a Difference: Understanding the Upcycling and Recycling DifferenceMaking a Difference: Understanding the Upcycling and Recycling Difference
Making a Difference: Understanding the Upcycling and Recycling DifferenceSwag Cycle
 
'Upcycling Research' presentation for SNU GSES
'Upcycling Research' presentation for SNU GSES'Upcycling Research' presentation for SNU GSES
'Upcycling Research' presentation for SNU GSESKyungeun Sung
 
Species composition, diversity and community structure of mangroves in Barang...
Species composition, diversity and community structure of mangroves in Barang...Species composition, diversity and community structure of mangroves in Barang...
Species composition, diversity and community structure of mangroves in Barang...Open Access Research Paper
 
Air Pollution Control Technique and application.
Air Pollution Control Technique and application.Air Pollution Control Technique and application.
Air Pollution Control Technique and application.yadavsuyash008
 
885MTAMount DMU University Bachelor's Diploma in Education
885MTAMount DMU University Bachelor's Diploma in Education885MTAMount DMU University Bachelor's Diploma in Education
885MTAMount DMU University Bachelor's Diploma in Educationz xss
 
See How do animals kill their prey for food
See How do animals kill their prey for foodSee How do animals kill their prey for food
See How do animals kill their prey for fooddrsk203
 
原版定制copy澳洲詹姆斯库克大学毕业证JCU毕业证成绩单留信学历认证保障质量
原版定制copy澳洲詹姆斯库克大学毕业证JCU毕业证成绩单留信学历认证保障质量原版定制copy澳洲詹姆斯库克大学毕业证JCU毕业证成绩单留信学历认证保障质量
原版定制copy澳洲詹姆斯库克大学毕业证JCU毕业证成绩单留信学历认证保障质量sehgh15heh
 
9873940964 Full Enjoy 24/7 Call Girls Near Shangri La’s Eros Hotel, New Delhi
9873940964 Full Enjoy 24/7 Call Girls Near Shangri La’s Eros Hotel, New Delhi9873940964 Full Enjoy 24/7 Call Girls Near Shangri La’s Eros Hotel, New Delhi
9873940964 Full Enjoy 24/7 Call Girls Near Shangri La’s Eros Hotel, New Delhidelih Escorts
 
办理英属哥伦比亚大学毕业证成绩单|购买加拿大UBC文凭证书
办理英属哥伦比亚大学毕业证成绩单|购买加拿大UBC文凭证书办理英属哥伦比亚大学毕业证成绩单|购买加拿大UBC文凭证书
办理英属哥伦比亚大学毕业证成绩单|购买加拿大UBC文凭证书zdzoqco
 
NO1 Certified Rohani Amil In Islamabad Amil Baba in Rawalpindi Kala Jadu Amil...
NO1 Certified Rohani Amil In Islamabad Amil Baba in Rawalpindi Kala Jadu Amil...NO1 Certified Rohani Amil In Islamabad Amil Baba in Rawalpindi Kala Jadu Amil...
NO1 Certified Rohani Amil In Islamabad Amil Baba in Rawalpindi Kala Jadu Amil...Amil baba
 
Düsseldorf U学位证,杜塞尔多夫大学毕业证书1:1制作
Düsseldorf U学位证,杜塞尔多夫大学毕业证书1:1制作Düsseldorf U学位证,杜塞尔多夫大学毕业证书1:1制作
Düsseldorf U学位证,杜塞尔多夫大学毕业证书1:1制作f3774p8b
 
Along the Lakefront, "Menacing Unknown"s
Along the Lakefront, "Menacing Unknown"sAlong the Lakefront, "Menacing Unknown"s
Along the Lakefront, "Menacing Unknown"syalehistoricalreview
 
global trend Chapter 1.presentation power point
global trend Chapter 1.presentation power pointglobal trend Chapter 1.presentation power point
global trend Chapter 1.presentation power pointyohannisyohannis54
 
Al Jaddaf Housewife Call Girls +971509530047 Al Jaddaf Call Girls
Al Jaddaf Housewife Call Girls +971509530047 Al Jaddaf Call GirlsAl Jaddaf Housewife Call Girls +971509530047 Al Jaddaf Call Girls
Al Jaddaf Housewife Call Girls +971509530047 Al Jaddaf Call Girlstiril72860
 

Dernier (20)

Science, Technology and Nation Building.pptx
Science, Technology and Nation Building.pptxScience, Technology and Nation Building.pptx
Science, Technology and Nation Building.pptx
 
Hot Sexy call girls in Nehru Place, 🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Nehru Place, 🔝 9953056974 🔝 escort ServiceHot Sexy call girls in Nehru Place, 🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Nehru Place, 🔝 9953056974 🔝 escort Service
 
Asexual-and-Sexual-Reproduction.huhupptx
Asexual-and-Sexual-Reproduction.huhupptxAsexual-and-Sexual-Reproduction.huhupptx
Asexual-and-Sexual-Reproduction.huhupptx
 
Uae-NO1 Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot, Sheik...
Uae-NO1 Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot, Sheik...Uae-NO1 Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot, Sheik...
Uae-NO1 Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot, Sheik...
 
Slide deck for the IPCC Briefing to Latvian Parliamentarians
Slide deck for the IPCC Briefing to Latvian ParliamentariansSlide deck for the IPCC Briefing to Latvian Parliamentarians
Slide deck for the IPCC Briefing to Latvian Parliamentarians
 
Making a Difference: Understanding the Upcycling and Recycling Difference
Making a Difference: Understanding the Upcycling and Recycling DifferenceMaking a Difference: Understanding the Upcycling and Recycling Difference
Making a Difference: Understanding the Upcycling and Recycling Difference
 
'Upcycling Research' presentation for SNU GSES
'Upcycling Research' presentation for SNU GSES'Upcycling Research' presentation for SNU GSES
'Upcycling Research' presentation for SNU GSES
 
Species composition, diversity and community structure of mangroves in Barang...
Species composition, diversity and community structure of mangroves in Barang...Species composition, diversity and community structure of mangroves in Barang...
Species composition, diversity and community structure of mangroves in Barang...
 
Air Pollution Control Technique and application.
Air Pollution Control Technique and application.Air Pollution Control Technique and application.
Air Pollution Control Technique and application.
 
885MTAMount DMU University Bachelor's Diploma in Education
885MTAMount DMU University Bachelor's Diploma in Education885MTAMount DMU University Bachelor's Diploma in Education
885MTAMount DMU University Bachelor's Diploma in Education
 
See How do animals kill their prey for food
See How do animals kill their prey for foodSee How do animals kill their prey for food
See How do animals kill their prey for food
 
原版定制copy澳洲詹姆斯库克大学毕业证JCU毕业证成绩单留信学历认证保障质量
原版定制copy澳洲詹姆斯库克大学毕业证JCU毕业证成绩单留信学历认证保障质量原版定制copy澳洲詹姆斯库克大学毕业证JCU毕业证成绩单留信学历认证保障质量
原版定制copy澳洲詹姆斯库克大学毕业证JCU毕业证成绩单留信学历认证保障质量
 
young call girls in Janakpuri🔝 9953056974 🔝 escort Service
young call girls in Janakpuri🔝 9953056974 🔝 escort Serviceyoung call girls in Janakpuri🔝 9953056974 🔝 escort Service
young call girls in Janakpuri🔝 9953056974 🔝 escort Service
 
9873940964 Full Enjoy 24/7 Call Girls Near Shangri La’s Eros Hotel, New Delhi
9873940964 Full Enjoy 24/7 Call Girls Near Shangri La’s Eros Hotel, New Delhi9873940964 Full Enjoy 24/7 Call Girls Near Shangri La’s Eros Hotel, New Delhi
9873940964 Full Enjoy 24/7 Call Girls Near Shangri La’s Eros Hotel, New Delhi
 
办理英属哥伦比亚大学毕业证成绩单|购买加拿大UBC文凭证书
办理英属哥伦比亚大学毕业证成绩单|购买加拿大UBC文凭证书办理英属哥伦比亚大学毕业证成绩单|购买加拿大UBC文凭证书
办理英属哥伦比亚大学毕业证成绩单|购买加拿大UBC文凭证书
 
NO1 Certified Rohani Amil In Islamabad Amil Baba in Rawalpindi Kala Jadu Amil...
NO1 Certified Rohani Amil In Islamabad Amil Baba in Rawalpindi Kala Jadu Amil...NO1 Certified Rohani Amil In Islamabad Amil Baba in Rawalpindi Kala Jadu Amil...
NO1 Certified Rohani Amil In Islamabad Amil Baba in Rawalpindi Kala Jadu Amil...
 
Düsseldorf U学位证,杜塞尔多夫大学毕业证书1:1制作
Düsseldorf U学位证,杜塞尔多夫大学毕业证书1:1制作Düsseldorf U学位证,杜塞尔多夫大学毕业证书1:1制作
Düsseldorf U学位证,杜塞尔多夫大学毕业证书1:1制作
 
Along the Lakefront, "Menacing Unknown"s
Along the Lakefront, "Menacing Unknown"sAlong the Lakefront, "Menacing Unknown"s
Along the Lakefront, "Menacing Unknown"s
 
global trend Chapter 1.presentation power point
global trend Chapter 1.presentation power pointglobal trend Chapter 1.presentation power point
global trend Chapter 1.presentation power point
 
Al Jaddaf Housewife Call Girls +971509530047 Al Jaddaf Call Girls
Al Jaddaf Housewife Call Girls +971509530047 Al Jaddaf Call GirlsAl Jaddaf Housewife Call Girls +971509530047 Al Jaddaf Call Girls
Al Jaddaf Housewife Call Girls +971509530047 Al Jaddaf Call Girls
 

En 501-2015-original

  • 1. NED University of Engineering and Technology Department of Environmental Engineering EN501: Introduction to Environmental Engineering - Fall 2015 semester Course Plan Week Topic 1 Introduction to Subject, distribution of marks, Natural Resource and its characteristics, Global Environmental Issues, Pakistan Environmental Issues 2 Ecology, Ecosystems and Economic Growth 3 Cycles in Nature 4 Brief introduction to Air Pollution and its Management 5 Brief introduction to Water Pollution and its Management 6 Brief introduction to Solid waste and its Management 7 Brief Introduction to Noise Pollution, Radiation and its Management 8 Interrelations of air, water pollution and solid waste management, radiation, noise pollution 9 Effects of Pathogen and Chemicals on Health 10 Economics of Environmental Pollution Control 11 Environmental Quality Objectives 12 Environmental Legislation 13 Brief Introduction to Environmental Impact Assessment 14 Environmental Standards and Technologies, An Introduction to ISO 14001:2004 15 Student Presentation 16 Student Presentation, Distribution of Course Marks Marks 1. Exams 60 2. Sessional 40 a. Class Test Best 2 of 3 2 x 10 = 20 b. Class Report 10 c. Class Presentation 10 Class Teacher Tufail Ali Zubedi Cell: 0300-3538024 Email: info@SPMCpk.com; Zubeditufail@yahoo.com http://www.SPMCpk.com/
  • 2. Engr.TufailAli Zubedi, PE BE Civil, ME Environmental Engg Environmental Consultant http://www.SPMCpk.com/ EN 501 Introduction to Environmental Engineering
  • 3. Today’s Talk  Round of Introduction  Class etiquettes  Course Syllabus  Distribution of Marks  Introduction to subject
  • 4. Round of Introduction  Tufail Ali Zubedi  Students
  • 5. Class Etiquettes  Student –Teacher relationship  While in class:  Smoking , Eating, Drinking, especially sleeping is not allowed  Mobile / iPod / iPads switched off  Lecture will be provided  Open to suggestions  “Learn by doing”  Language of instruction = English
  • 6. Week Topic 1 Introduction to Subject, distribution of marks, Natural Resource and its characteristics, Global Environmental Issues, Pakistan Environmental Issues 2 Ecology, Ecosystems and Economic Growth 3 Cycles in Nature 4 Brief introduction to Air Pollution and its Management 5 Brief introduction to Water Pollution and its Management 6 Brief introduction to Solid waste and its Management 7 Brief Introduction to Noise Pollution, Radiation and its Management 8 Interrelations of air, water pollution and solid waste management, radiation, noise pollution 9 Effects of Pathogen and Chemicals on Health 10 Economics of Environmental Pollution Control 11 Environmental Quality Objectives 12 Environmental Legislation 13 Brief Introduction to Environmental Impact Assessment 14 Environmental Standards and Technologies, An Introduction to ISO 14001:2004 15 Student Presentation 16 Student Presentation, Course Syllabus
  • 7. Marks Distribution Distribution of Course Marks Marks 1. Exams 60 2. Sessional 40 a. Class Test Best 2 of 3 2 x 10 = 20 b. Class Report 10 c. Class Presentation 10
  • 8. Introduction to Environmental Engineering  The application of  Science and engineering knowledge and concepts  To care for / restore our natural environment &  To resolve environmental problems
  • 9. Who does it affect?  Everyone and Everything!  Plants  Insects  Animals  Humans  Ecosystems  Our planet ..
  • 10. What to Environmental Engineer do?  Environmental Engineers are  Concerned with the negative impacts of human activity on the environment  Also concerned with the positive impacts on the environment  Scale = micro to macro  Individual and holistic activities  Individual and cumulative impacts  Within and outside the project boundaries
  • 11. Natural Resources  Natural resources occur naturally within environments that exist relatively undisturbed by humanity, in a natural form.  A natural resource is often characterized by amounts of biodiversity and geodiversity existent in various ecosystems.  Natural resources are derived from the environment.  Some of them are essential for our survival while most are used for satisfying our desires.
  • 12.  A natural resource may exist as a separate entity such as  Fresh water, and air, as well as a living organism such as a fish, or  it may exist in an alternate form which must be processed to obtain the resource such as  metal ores, oil, and most forms of energy.
  • 13. Classification On the basis of origin, natural resources may be divided into:  Biotic – Biotic resources are obtained from the biosphere (living and organic material), such as forests and animals, and the materials that can be obtained from them.  (Oil / coal)  Abiotic – Abiotic resources are those that come from nonliving, inorganic material.  (land, fresh water, air and heavy metals including ores)
  • 14. Considering their stage of development, natural resources may be:  Potential resources – Potential resources are those that exist in a region and may be used in the future.  (petroleum but until the time it is actually drilled out and put into use, itremains a potential resource.)  Actual resources – Actual resources are those that have been surveyed, their quantity and quality determined and are being used in present times.  (The development of an actual resource, such as wood processing depends upon the technology available and the cost involved.)  Reserve resources –The part of an actual resource which can be developed profitably in the future is called a reserve resource.  Stock resources – Stock resources are those that have been surveyed but cannot be used by organisms due to lack of technology.  (hydrogen. Shale gas)
  • 15.
  • 16.  natural resources can be categorized as either renewable or nonrenewable:  Renewable resources – Renewable resources can be replenished naturally.  (sunlight, air, wind, etc.)  Resources from a human use perspective are classified as renewable only so long as the rate of replenishment/recovery exceeds that of the rate of consumption.  Nonrenewable resources – Nonrenewable resources either form slowly or do not naturally form in the environment.  (fossil fuel)
  • 17.
  • 18. World Charter for Nature  In 1982 the UN developed theWorld Charter for Nature, which recognized the need to protect nature from further depletion due to human activity.  It states that measures need to be taken at all societal levels, from international to individual, to protect nature  READ “UN-World Charter for Nature”  It outlines the need for sustainable use of natural resources and suggests that the protection of resources should be incorporated into national and international systems of law.
  • 19. Reading Assignment  IUCN-Pakistan Conservation Strategy  IUCN- State of Environment and Development (SoED) of Sindh  IUCN-Sindh Strategy for Sustainable Development
  • 21. FINAL WORDS There is much debate worldwide over natural resource allocations, this is partly due to increasing scarcity (depletion of resources) but also because the exportation of natural resources is the basis for many economies (particularly for developed nations). Next Class Global and Pakistan Environmental Issues and solutions
  • 22. TIP  Some natural resources such as sunlight and air can be found everywhere, and are known as ubiquitous resources. However, most resources only occur in small sporadic areas, and are referred to as localized resources.  There are very few resources that are considered inexhaustible (will not run out in foreseeable future) – these are solar radiation, geothermal energy, and air (though access to clean air may not be).The vast majority of resources are exhaustible, which means they have a finite quantity, and can be depleted if managed improperly.
  • 24. 11/20/2015 A/RES/37/7. World Charter for Nature http://www.un.org/documents/ga/res/37/a37r007.htm 1/5 United Nations A/RES/37/7 General Assembly Distr. GENERAL   28 October 1982 ORIGINAL: ENGLISH                                                    A/RES/37/7                                                    48th plenary meeting                                                    28 October 1982          37/7.   World Charter for Nature        The General Assembly,        Having considered the report of the Secretary‐General on the revised draft World Charter for Nature,        Recalling that, in its resolution 35/7 of 30 October 1980, it expressed its conviction that the benefits which could be obtained from nature depended on the maintenance of natural processes and on the diversity of life forms and that those benefits were jeopardized by the excessive exploitation and the destruction of natural habitats,        Further recalling that, in the same resolution, it recognized the need for appropriate measures at the national and international levels to protect nature and promote international co‐operation in that field,        Recalling that, in its resolution 36/6 of 27 October 1981, it again expressed its awareness of the crucial importance attached by the international community to the promotion and development of co‐operation aimed at protecting and safeguarding the balance and quality of nature and invited the Secretary‐General to transmit to Member States the text of the revised version of the draft World Charter for Nature contained in the report of the Ad Hoc Group of Experts on the draft World Charter for Nature, as well as any further observations by States, with a view to appropriate consideration by the General Assembly at its thirty‐seventh session,        Conscious of the spirit and terms of its resolutions 35/7 and 36/6, in which it solemnly invited Member States, in the exercise of their permanent sovereignty over their natural resources, to conduct their activities in recognition of the supreme importance of protecting natural systems, maintaining the balance and quality of nature and conserving natural resources, in the interests of present and future generations,        Having considered the supplementary report of the Secretary‐General,        Expressing its gratitude to the Ad Hoc Group of Experts which, through its work, has assembled the necessary elements for the General Assembly to be able to complete the consideration of and adopt the revised draft World Charter for Nature at its thirty‐seventh session, as it had previously recommended,
  • 25. 11/20/2015 A/RES/37/7. World Charter for Nature http://www.un.org/documents/ga/res/37/a37r007.htm 2/5        Adopts and solemnly proclaims the World Charter for Nature contained in the annex to the present resolution.                                         ANNEX                            World Charter for Nature        The General Assembly,        Reaffirming the fundamental purposes of the United Nations, in particular the maintenance of international peace and security, the development of friendly relations among nations and the achievement of international co‐operation in solving international problems of an economic, social, cultural, technical, intellectual or humanitarian character,        Aware that:        (a)  Mankind is a part of nature and life depends on the uninterrupted functioning of natural systems which ensure the supply of energy and nutrients,        (b)  Civilization is rooted in nature, which has shaped human culture and influenced all artistic and scientific achievement, and living in harmony with nature gives man the best opportunities for the development of his creativity, and for rest and recreation,        Convinced that:        (a)  Every form of life is unique, warranting respect regardless of its worth to man, and, to accord other organisms such recognition, man must be guided by a moral code of action,        (b)  Man can alter nature and exhaust natural resources by his action or its consequences and, therefore, must fully recognize the urgency of maintaining the stability and quality of nature and of conserving natural resources,        Persuaded that:        (a)  Lasting benefits from nature depend upon the maintenance of essential ecological processes and life support systems, and upon the diversity of life forms, which are jeopardized through excessive exploitation and habitat destruction by man,        (b)  The degradation of natural systems owing to excessive consumption and misuse of natural resources, as well as to failure to establish an appropriate economic order among peoples and among States, leads to the breakdown of the economic, social and political framework of civilization,        (c)  Competition for scarce resources creates conflicts, whereas the conservation of nature and natural resources contributes to justice and the maintenance of peace and cannot be achieved until mankind learns to live in peace and to forsake war and armaments,        Reaffirming that man must acquire the knowledge to maintain and enhance his ability to use natural resources in a manner which ensures the preservation of the species and ecosystems for the benefit of present and future generations,        Firmly convinced of the need for appropriate measures, at the national and international, individual and collective, and private and public levels, to protect nature and promote international co‐operation in this field,        Adopts, to these ends, the present World Charter for Nature, which
  • 26. 11/20/2015 A/RES/37/7. World Charter for Nature http://www.un.org/documents/ga/res/37/a37r007.htm 3/5 proclaims the following principles of conservation by which all human conduct affecting nature is to be guided and judged.                               I.  GENERAL PRINCIPLES        1.   Nature shall be respected and its essential processes shall not be impaired.        2.   The genetic viability on the earth shall not be compromised; the population levels of all life forms, wild and domesticated, must be at least sufficient for their survival, and to this end necessary habitats shall be safeguarded.        3.   All areas of the earth, both land and sea, shall be subject to these principles of conservation; special protection shall be given to unique areas, to representative samples of all the different types of ecosystems and to the habitats of rare or endangered species.        4.   Ecosystems and organisms, as well as the land, marine and atmospheric resources that are utilized by man, shall be managed to achieve and maintain optimum sustainable productivity, but not in such a way as to endanger the integrity of those other ecosystems or species with which they coexist.         5.   Nature shall be secured against degradation caused by warfare or other hostile activities.                                   II.  FUNCTIONS        6.   In the decision‐making process it shall be recognized that man's needs can be met only by ensuring the proper functioning of natural systems and by respecting the principles set forth in the present Charter.        7.   In the planning and implementation of social and economic development activities, due account shall be taken of the fact that the conservation of nature is an integral part of those activities.        8.   In formulating long‐term plans for economic development, population growth and the improvement of standards of living, due account shall be taken of the long‐term capacity of natural systems to ensure the subsistence and settlement of the populations concerned, recognizing that this capacity may be enhanced through science and technology.        9.   The allocation of areas of the earth to various uses shall be planned, and due account shall be taken of the physical constraints, the biological productivity and diversity and the natural beauty of the areas concerned.        10.  Natural resources shall not be wasted, but used with a restraint appropriate to the principles set forth in the present Charter, in accordance with the following rules:        (a)  Living resources shall not be utilized in excess of their natural capacity for regeneration;        (b)  The productivity of soils shall be maintained or enhanced through measures which safeguard their long‐term fertility and the process of organic decomposition, and prevent erosion and all other forms of degradation;        (c)  Resources, including water, which are not consumed as they are used shall be reused or recycled;        (d)  Non‐renewable resources which are consumed as they are used shall be exploited with restraint, taking into account their abundance, the rational possibilities of converting them for consumption, and the compatibility of
  • 27. 11/20/2015 A/RES/37/7. World Charter for Nature http://www.un.org/documents/ga/res/37/a37r007.htm 4/5 their exploitation with the functioning of natural systems.        11.  Activities which might have an impact on nature shall be controlled, and the best available technologies that minimize significant risks to nature or other adverse effects shall be used; in particular:        (a)  Activities which are likely to cause irreversible damage to nature shall be avoided;        (b)  Activities which are likely to pose a significant risk to nature shall be preceded by an exhaustive examination; their proponents shall demonstrate that expected benefits outweigh potential damage to nature, and where potential adverse effects are not fully understood, the activities should not proceed;        (c)  Activities which may disturb nature shall be preceded by assessment of their consequences, and environmental impact studies of development projects shall be conducted sufficiently in advance, and if they are to be undertaken, such activities shall be planned and carried out so as to minimize potential adverse effects;        (d)  Agriculture, grazing, forestry and fisheries practices shall be adapted to the natural characteristics and constraints of given areas;        (e)  Areas degraded by human activities shall be rehabilitated for purposes in accord with their natural potential and compatible with the well‐being of affected populations.        12.  Discharge of pollutants into natural systems shall be avoided and:        (a)  Where this is not feasible, such pollutants shall be treated at the source, using the best practicable means available;        (b)  Special precautions shall be taken to prevent discharge of radioactive or toxic wastes.        13.  Measures intended to prevent, control or limit natural disasters, infestations and diseases shall be specifically directed to the causes of these scourges and shall avoid adverse side‐effects on nature.                                III.  IMPLEMENTATION        14.  The principles set forth in the present Charter shall be reflected in the law and practice of each State, as well as at the international level.        15.  Knowledge of nature shall be broadly disseminated by all possible means, particularly by ecological education as an integral part of general education.        16.  All planning shall include, among its essential elements, the formulation of strategies for the conservation of nature, the establishment of inventories of ecosystems and assessments of the effects on nature of proposed policies and activities; all of these elements shall be disclosed to the public by appropriate means in time to permit effective consultation and participation.        17.  Funds, programmes and administrative structures necessary to achieve the objective of the conservation of nature shall be provided.        18.  Constant efforts shall be made to increase knowledge of nature by scientific research and to disseminate such knowledge unimpeded by restrictions of any kind.        19.  The status of natural processes, ecosystems and species shall be closely monitored to enable early detection of degradation or threat, ensure
  • 28. 11/20/2015 A/RES/37/7. World Charter for Nature http://www.un.org/documents/ga/res/37/a37r007.htm 5/5 timely intervention and facilitate the evaluation of conservation policies and methods.         20.  Military activities damaging to nature shall be avoided.        21.  States and, to the extent they are able, other public authorities, international organizations, individuals, groups and corporations shall:        (a)  Co‐operate in the task of conserving nature through common activities and other relevant actions, including information exchange and consultations;        (b)  Establish standards for products and manufacturing processes that may have adverse effects on nature, as well as agreed methodologies for assessing these effects;        (c)  Implement the applicable international legal provisions for the conservation of nature and the protection of the environment;        (d)  Ensure that activities within their jurisdictions or control do not cause damage to the natural systems located within other States or in the areas beyond the limits of national jurisdiction;        (e)  Safeguard and conserve nature in areas beyond national jurisdiction.        22.  Taking fully into account the sovereignty of States over their natural resources, each State shall give effect to the provisions of the present Charter through its competent organs and in co‐operation with other States.        23.  All persons, in accordance with their national legislation, shall have the opportunity to participate, individually or with others, in the formulation of decisions of direct concern to their environment, and shall have access to means of redress when their environment has suffered damage or degradation.        24.  Each person has a duty to act in accordance with the provisions of the present Charter; acting individually, in association with others or through participation in the political process, each person shall strive to ensure that the objectives and requirements of the present Charter are met.       
  • 29. By :Sohail Ahmed NATURAL RESOURCES OF PAKISTAN
  • 30. NATURAL RESOURCES Soil Mountains Rivers and Canals Forests Animals Minerals The resources gifted by the nature to the country and the people are called National Resources. SOHAIL AHMED 2
  • 31. SOIL • Fertile Plains and deserts are important part of natural resources. • More fertile plain a country has means more Agricultural department. • Allah has gifted many fertile plains to Pakistan. • Pakistan Can Cultivate a number of different foods. SOHAIL AHMED 3
  • 32. MOUNTAINS • Mountains are the gift of the nature. • They protect from the cool winds • Mountains are rich in minerals. • Mountain provide water to our rivers. • Mountains of Pakistan are rich in minerals especially the Western Mountain Ranges. SOHAIL AHMED 4
  • 33. RIVERS AND CANALS • The underground water, rivers and oceans are natural resources • The river system of Pakistan is consisted of Indus and other associated rivers. • We use water for drinking purposes and store the water of the rivers and use it for different purposes like irrigation, for hydroelectricity etc. SOHAIL AHMED 5
  • 34. FORESTS • They are helpful in improvement of weather • Protect against windstorms • Help in slow melting of snow to stop floods. • Much More to explain • Normally 25 percent area of a country should be covered with forest. But in Pakistan it is only 4 to 5 percent. SOHAIL AHMED 6
  • 35. ANIMALS • Animals provide milk, meat, hide and skins, wool etc. • They are also used for agriculture and transportation. • They are a source of foreign exchange. • Pakistan is Gifted by Nature a lot of Different types of Animals SOHAIL AHMED 7
  • 36. MINERAL RESOURCES The term Mineral Resource is used to refer to any of a class of naturally occurring solid inorganic substances with a characteristic crystalline form and a homogeneous chemical composition. SOHAIL AHMED 8
  • 37. MINERALS OF PAKISTAN In Pakistan there is wide scale availability of mineral resources, but these resources remained unexploited for years. It is due to lack of technical skill, finance and technology. SOHAIL AHMED 9
  • 38. IMPORTANT MINERALS OF PAKISTAN • Coal • Natural Gas • Iron ore • Chromite • Gypsum • Sulphur • Oil • Uranium SOHAIL AHMED 10
  • 39. COAL • The annual coal production of Pakistan is 3.2 million tones. • Coal is used in power generation. It is basically used as fuel. • It is mostly found in Sindh (Thatta, Tharparkar, Manara) Balochistan (Deegari, Maach), Punjab (Makarwal, Dandot),NWFP (Cherat and Noshera). SOHAIL AHMED 11
  • 40. NATURAL GAS • It is itself a source of energy and fuel. • Used as a source of power generation. • It is found in Sui, Mari, Uch, Khairpur, Jacobabad etc. • Now some new discoveries are also found. SOHAIL AHMED 12
  • 41. IRON ORE • Iron Ore is used for industry, especially steel industry. • Its deposits are found in Chitral, Chaghai, Kohat, Kurram Agency, Mardan, Hazara, Mianwali (Kalabagh) and DG Khan. SOHAIL AHMED 13
  • 42. CHROMITE • Chromite is used in preparing other metals, leather tanning, making of steel products, armament and stainless steel. • Found in Zoab (Muslim Bagh), Chaghai, Malakand, Mahmand, Waziristan, Fort Sandaman etc. SOHAIL AHMED 14
  • 43. GYPSUM • Gypsum is used for plaster of Paris, Paints and Cement. • It is found in Jhelum, Mianwali, DG Khan, Kohat and Loralai. SOHAIL AHMED 15
  • 44. SULPHUR • Sulphur is used by chemical industry. • Its deposits are found in Kalat, Khairpur, Mardan, and Jacobabad etc. SOHAIL AHMED 16
  • 45. OIL • It is a major source of energy. • It is mostly imported from Iran and Gulf states. • Now some valuable reserves are found in Jhelum, Mianwali, Attock, Balkasar, Mial, Chakwal, and Dhodak. SOHAIL AHMED 17
  • 46. URANIUM • It is the basic element for atomic power, indispensable for the defence. • Its deposits are in DG Khan, Hazara and Kohat. SOHAIL AHMED 18
  • 47. Pakistan is blessed with considerable mineral resources. Some of them are explored but much remains to be done for the search for more SOHAIL AHMED 19
  • 49. EN 501 Introduction to Environmental Engineering Engr.TufailAli Zubedi, PE BE Civil, ME Environmental Engg o e ta g ee g Environmental Consultant http://www.SPMCpk.com/
  • 51. In March 1992, the Government of Pakistan adopted the National Conservation Strategy (NCS)Conservation Strategy (NCS). It addresses the issues of conservation and sustainable use of natural resources for economic development. IUCN Pakistan supported the Federal Government for the development of relevant provincial level strategies. IUCN's Sindh Programme was established in 2002.IUCN s Sindh Programme was established in 2002. IUCN Sindh Programme initiated the process of developing a report on the State of Environment and Development of Sindh (SoED) to bridge the existing information gap and to cater to the needs ofto bridge the existing information gap and to cater to the needs of a wide range of stakeholders, who have been striving for the sustainable development of Sindh.
  • 52. The report may also serve as a baseline for policy makers, planners, and development practitioners. The next logical step to the SoED is to develop a Sustainable Development Strategy for SindhDevelopment Strategy for Sindh. The SoED is intended to provide the basis for devising this Strategy, which aims to provide an overall framework togy, p address the Province's environmental and development issues in a holistic manner.
  • 53. SINDH IN THE NATIONAL CONTEXTSINDH IN THE NATIONAL CONTEXT Sindh is located in the south-east of Pakistan. Throughout history it has been known by many names; Sindh comprises of Lower Indus Basin. Is the second-most populous province after the Punjab and Covers 140,914 square kilometre (km), with a northsouth l th f b t 540 k d b dth f b t 250 klength of about 540 km and a breadth of about 250 km. lies between 23° and 28 ° North latitudes and 66° and 71° East longitudesEast longitudes.
  • 54. TopographyTopography Sindh can be divided into four distinct parts dry and barren Kirthar Range in the west, a central alluvial plain bisected by the River Indus, a desert belt in the east anda desert belt in the east, and the Indus delta in the south.
  • 55. Mountainous RangesMountainous Ranges Western Sindh is the only region which is mountainous It includes the hill ranges of Kirthar, P bPab, Laki, and Kohistan.Kohistan. Small hilly tract in the southeast corner of theTharparkary p District known as Nagarparkar.
  • 56. The Kirthar RangeThe Kirthar Range Kirthar has a simple, anticlinal structure with flanks gently dipping towards west and south. These ranges run north to south like a crescent turned towards the low lands and extend up to the northerntowards the low lands and extend up to the northern extremity of the province. The highest altitude known as Kutay-jee- Kabar (Dog'sg y j ( g Grave) is in the Kirthar Range and is 2072.64 meters high.
  • 57. The Laki RangeThe Laki Range The Laki Range, is mainly composed of tertiary rocks and contains a large number of thermal springs.
  • 58.
  • 59. The hilly region of western Sindh consists almost entirely of rocks belonging to the tertiary system of geological nomenclature.y y g g Only along the Laki Range and in its neighborhood that there are some exposures of rocks belonging to the next older system, the Cretaceous. With the exception of some volcanic beds associated with these Cretaceous strata, all the rock formations of western Sindh are of sedimentary origin. All of the more important hill masses consist of limestone. A great majority of these limestone deposits belong to the Nummultic periodA great majority of these limestone deposits belong to the Nummultic period and are largely built up of the accumulated shells of foraminifera, principally those belonging to the genus Nummulites. The isolated hills of Nagarparkar on the northern border of the Rann of Kutch belong to quite a different system both geographically and geologically.
  • 60. A large part of Sindh lies in the deltaic plain of the Lower IndusValley. Most of this region consists of plains overlain by alluvium, trenched with river channels in some places and overridden by raised terraces in othersoverridden by raised terraces in others. A few isolated low limestone hills are the only relieving features in the plains which are otherwise at one level.p The plains may be subdivided into three parts: the western valley, the eastern valley, and The deltaic area.
  • 61. The western valley section is distinguished from the eastern valley by the presence of old alluvium(wind-borne sand) and seasonal nala flowing from the Kirthar mountain range into the Manchar Lakethe Manchar Lake. The deltaic area largely consists of mangrove swamps and sandbars.The chief characteristic of the region is the creeks,g which serve as the changing outlets of the Indus and as inlets for the sea.
  • 62. The eastern part of Sindh consists of theThar Desert which continues into Rajputana (India). The landscape is sandy and rough with sand dunes covering more than 56 percent of the areamore than 56 percent of the area. The sand dunes are mostly longitudinal with a north-east- south-west trend and are stabilized by shrub vegetation andy g grass.
  • 63.
  • 64. VegetationVegetation characteristic features indicative of a rainless climate, dry atmosphere and sandy soil largely impregnated with salt. Another feature of the vegetation in the province is the prominence and variety of grassesprominence and variety of grasses.
  • 65.
  • 66. The most striking characteristic is the predominance of l t ith ll l t ll lik th l flplants with small leaves, or none at all, like the leafless caper, milkbush and the cactus (Euphorbia nereifolia).The large leaved Banyan tree,like the pipal,was introduced later. Except for the irrigated Indus valley, the province is arid and with little vegetation.The dwarf palms, Kher (Acacia rupestris), and Lohirro (Tecoma undulata) trees are typical of the western hilland Lohirro (Tecoma undulata) trees are typical of the western hill region. In the central valley, the babul (known as Babur in Sindhi) tree is the most dominant and occurs in thick forests along the Indus banks.
  • 67. The neem (Azadirachta indica),ber (Zizyphys vulgaris) or jojoba, lai (Tamarix orientalis) and kirirr (Capparis decidua) are among the more common vegetation types. Mango date palms and the more recently introducedMango, date palms, and the more recently introduced banana, guava, orange and chiku are the common fruit-bearing trees of the irrigated areas.g
  • 68. The coastal strip and the creeks abound in semi-aquatic and aquatic plants and the in-shore Indus deltaic islands support forests of timmer (Avicennia marina) (timmer ja bela) and chaunir (Ceriops tagal) treeschaunir (Ceriops tagal) trees. Water lilies grow in abundance in the numerous lakes and ponds, particularly in the Lower Sindh region.p p y g
  • 69.
  • 70. Needs to be updated : 2015-08-15
  • 73. Protected areas of SindhProtected areas of Sindh
  • 74.
  • 75.
  • 77. Bird Count in Wetlands of SindhBird Count in Wetlands of Sindh
  • 78. Mangrove Species in PakistanMangrove Species in Pakistan
  • 79. List of Trees shrubs of SindhList of Trees, shrubs of Sindh
  • 82. Sustainable Solid Waste Management- Application of Modern Landfill Concept Presenter: Mubashir Saleem NED University of Engineering & Technology August 13, 2015
  • 83. - Name: Mubashir Saleem - Professional Experiance: 2 years in the Design and drawing of water and wastewater conveayance and treatment systems + 1.5 year of Teaching - Academic Qualification: • BE (Civil Engineering), NED University (2009) • ME (Environmental Engineering), NED University + University of Padua ,(2013) - Current Affiliation: • Doctoral Research Fellow at The University of Padua, Italy. About Me
  • 85. WHAT IS POLLUTION ? • Some sort of contamination • Unbalanced in the natural system • Accumulation of something bad or unwanted
  • 86. POLLUTION, the other side of the Coin POLLUTION is actually a RESOURCE in the WRONG QUANTITY at the WRONG PLACE An IDEA can change life
  • 87. The Hypocrisy: (Fertilizer application) Fertilizers contain: • Plant Nutrients (Nitrate and Phosphates) • Resource when applied in the field • Becomes a pollutant when they infiltrate into the ground water
  • 88. Definition of solid waste: Difficult ! “Waste is a left-over, a redundant product or material of no or marginal value for the owner and which the owner wants to discard” Courtesy Prof.Christensen •No universally accepted definition exists
  • 89. Waste is a problem
  • 91. Quantity is a problem!
  • 92. The underestimated side : Energy Potential from waste in Pakistan The European Paradigm: UK produces 28 million tones (around 77000 tones per day) of household waste every year.. Currently, UK only 11% of this is utilized for energy production, producing, around 190MW, enough for 300,000 households. Where we are standing: • Only Karachi produce around 12000 tons/ day of solid waste out of which • 20% is collected by the intermediate waste pickers, • 20% is left on the streets at the mercy of nature and • the rest (almost 60%) is picked up and dump in official and/or unofficial dustbins of the city, then transported to the uphill areas located 30-35 km away from the city and disposed in open air • Apart from the Municipal waste the country has an enormous potential of recovering energy through Anaerobic Digestion of agricultural waste, poultry waste, animal manure etc. (Nayyer Alam Zaigham, Proceedings of COMSATS Conference2004 on Renewable Energy Technologies & Sustainable Development, 2005)
  • 93. Quality is a problem! And you about landfill gas? Do you know anything about parachutes?
  • 94. Elementary Composition of MSW 1 Werte aus : NEUPERT, 1989, Stoffl. Zussammensetzung von Haus- u. Gewerbemüll Bayr. Landesamt für Umweltschutz (Hrsg.): Zusammensetzung und Schadstoffgehalt von Siedlungsabfällen, 2003 Zeschmar- Lahl, 2003 Bidlingmeyer, 1990, Schwermetalle im Hausmüll El Dawi, 1997, Vergleich der Müllzusammensetzungen in Abfallbehandlungsanlagen 2 Werte aus: Neumayer, 1999 Döberl, 2004 Substance Ratio 2 [% FS] Lignin 6 Cellulose 16 Hemicellulose 7 Hydrocarbons 9 Proteins 3 Fats, Resins, Waxes 2 Paper additives (org.+anorg.) 8 Plastics 18 Plastic additives (anorg.) 3 Minerals 13 Ash 4 Hazardous substances 1 Metals 10 Summe 100 Microscopical picture of slag from thermal waste treatment Quelle: ise.uni-karlsruhe.de Substance Ratio 1 [Gew.% FS] Water 35 -37 Glass/Minerals 7- 11,2 O2 13,6 H2 2,4 C ges 20 - 22 Zn 0,04 - 0,3 Fe 2,8 Pb 0,011 - 0,063 Cd 0,0006 - 0,001 Hg 0,0004 Cu 0,024 Cr 0,0031 - 0,021 Mn 0,018 Ni 0,0024 Sn 0,002 Al 0,64 As 0,0007 - 0,0009 Ti 0,16 F 0,012 Cl 0,5 S 0,2 N 0,9 P 0,1 Na 0,5 K 0,4 Mg 0,3 Ca 2,1
  • 95. eere.energy.gov Biomass Composition and Degradability Readily degradable under anaerobic landfill conditions Slowly degradable under anaerobic landfill conditionsPersistent under anaerobic landfill conditions A hemicellulose can be any of several different heteropolymers (matrix polysaccharides, most pentose sugars) present in almost all plant cell walls along with cellulose. Hemicellulose is a branched polymer, while cellulose is unbranched. In contrast to cellulose that is crystalline, strong, and resistant to hydrolysis, hemicellulose has a random, amorphous structure with little strength. 500-3000 sugar units 7,000 - 15,000 glucose molecules
  • 96. Lignin structure Lignin is an organic substance binding the cells, fibres and vessels which constitute wood and the lignified elements of plants. After cellulose, it is the most abundant renewable carbon source on Earth. It is not possible to define the precise structure of lignin as a chemical molecule. All lignins show a certain variation in their chemical composition. However the definition common to all is a network polymer of phenyl propene basic units.
  • 97. Recycling is an option
  • 98.
  • 99. Waste to energy is an option
  • 100.
  • 101. Landfilling is an option
  • 102. Modern waste management strategy • Waste production minimisation • Efficient waste management • Recovery of valuable material resources • Global climate changes issues • Reduction of landfilling • Energy balance optimisation • Emissions minimisation, ecotoxilogical control • Health risk minimisation • Environmental sustainability (long term impacts) • Economical and social sustainability Boh!!!
  • 105. Politicians are very interested in wastes (Howard Robinson, 2007)
  • 106. NIMBY NIMO BANANA IDEOLOGIES Business interests Corruption Problems for decision makers Criminality
  • 107.
  • 108.
  • 109.
  • 113. POPs: The Dirty Dozen Chlordane Dieldrin Chlorinated Dioxins and Furans Endrin Heptachlor Hexachlorobenzene Mirex PCBs Toxaphene DDT Aldrin transcis 2,3,7,8-TCDD 2,3,7,8-TCDF
  • 114. Waste Management Traditional • low population • harmony with nature Low amount of waste Today • explosion of population • increasing standard of living huge amount of waste Traditional methods do not fulfill the new requirements! Himba- People / Namibia Pictures: GEO 2001; Greenpeace, Smid 1996 Sao Paulo / Brasil
  • 115. Global Warming Depletion of stratospheric ozone Global Environmental Impacts
  • 116. Global Warming CH4 280 ppm 180 ppm CO2 380 ppm Ice Core Data IPCC 2007
  • 117. Global Warming • Landfills are significant sources (6- 13% of global CH4 emission) • CH4 more GWP than CO2 (28-34 from 2013 IPCC AR5 p714) • Methane oxidation important • Less organic waste in landfills in the future (TH Christensen)
  • 118. Loss of Natural Resources Loss of aestetics and landscaping Water Contamination Environmental damages AIT, Thailand
  • 119. Collection of waste in developing countries - irregular - not efficient - not existing In many cases: Lixeira / Brasil Thailand Thailand Thailand Kampala/ Uganda Kampala/ Uganda Kampala/ Uganda Pakistan
  • 121. Ampang Jaya Landfill Site (Kuala Lumpur) Source: UPM, Malaysia, Dawn news paper Disposal of collected waste - dumps / landfills / open burning - Jam Chakro (Karachi)
  • 122. Disposal of waste – if no collection system is existing - open fires - wild dumps - dump in waterbodies Ilhabela / Brasil Pictures: Santen, 2000; Kraus 2001 and Dawn news paper Kampala/ Uganda Jam Chakro, Karachi
  • 123. Health issues Risk to community Illness Disease - Breeding ground for vermin, insects and scavenging animals  chances of illness and disease -waste pickers: contact with syringes, hospital wastes and other hazardous waste - Burning causes air pollution, and serious health effects - Where these sites are located very close to densely populated areas, or support substantial communities of waste pickers, there are particular public health risks
  • 124. Dumpsite Collapsed in Philippines On 10 July 2000, more than 200 people died and hundreds more were injured when the Payatas dumpsite in Quezon City, the Philippines, collapsed in heavy rains. The collapse buried shanty homes of the nation's poorest. Most of the victims were children, at home on a day declared a holiday because of an impending typhoon. Source: AIT, Thailand 1999: Shacks close to the mountain of garbage which subsided After the Collapse in July 2000 Payatas dumpsite in Quezon City, Philippines
  • 125. Waste as a resource - Waste paper for new paper production - Separated plastics for (like PE, PVC, PP) as a source for new plastic production - Mixed plastic and paper as an energy source (RDF) - Metal recovery for new metal production (including electronic waste) - Kitchen and yard waste as soil conditioner - Sewage sludge and agricultural waste as soil conditioner or fuel
  • 126. Waste as a resource New products from waste - organic waste as a source for the production of fuel, CO2, CH4, alcohol) - organic waste as a source for the production of food for animals - organic waste as a source for the production of e.g. biodegradable plastic
  • 127. Hierarchy of utilisation of waste Direct recycling Downcycling Actual material use Raw material use (as a resource) Material use Energetic use (thermal use) Utilisation for
  • 129. Waste Management Hierarchy Avoidance Material recovery Energy recovery Landfilling Ecoproduction Ecodistribution Packaging control Internal recycling
  • 130. Waste Management Hierarchy Avoidance Material recovery Energy recovery Landfilling 3Rs: Recovery, Reuse,Recycle Separate collection
  • 132.
  • 133.
  • 134.
  • 135.
  • 136. What about the Organics/ Organic Fraction of Municipal Solid waste / Putrescible waste ?
  • 137. Aerobic stabilisation: Composting Biological degradation and transformation process for organic substances by a variety of microbes, in aerobic conditions and in solid state. The process is exergonic, results in heating up of the stabilizingmaterial, and it leads to the formation of carbon dioxide and water. A humus rich material is generated. Under specific quality control of the substrate and of the process the final product may be classified as Compost: a stabilized and sanitised product which is beneficial to plant growth.
  • 138. Mechanism Of Biological Treatment? Aerobic treatment is a biochemical process carried out in the presence of O2 (dissolved). The process uses organic matter, nutrients, and dissolved oxygen, and produces stable solids, carbon dioxide, and more organisms. Organic materials+ Nutrients +O2 CO2+NH3+New Cells Aerobic microbes Organics O2 CO2 Nutrients Stable Solids Growth Microbes
  • 139. Aims of Composting  Reduction of volume and mass of organic waste  Recirculation of organics into the natural cycle  Increasing of the Carbon Sink pool  Energy recovery (if anaerobic digestion is adopted as a treatment before composting)  Stabilisation and hygienization of organic waste as a pretreatment before landfilling  Fulfilment of regulations and laws
  • 140. The Actors • Bacteria • Actinobacteria • Fungi • (Protozoa and animals) Streptococcus Rods Cocci Phycomyces blakesleeanus Phellinius pini Coprinus -Specie Ciliary Flagellates Worms Actinomycetes
  • 141. Degradation Phases during Composting 0 10 20 30 40 50 60 70 80 Meso- Thermophilic Cooling phase easilydeg radable medium degradable Phase anaerobic bacteria aerobic bacteria fungi Maturation hardly degradable substances unwanted Maturation phase : Actynomicetes are very active; phenols and phenolic acids generated by the degradation of lignins, tannins and poliphenols are polymerized to humic substances.
  • 142. The Concept of Zero Waste
  • 144. • Zero waste is a new planning approach for the 21st Century that seeks to redesign the way resources and materials flow through society, taking a ‘whole system’ approach (Zero waste kuvalum, 2004). • Zero waste maximises recycling, minimises waste, reduces consumption and ensures that products are made to be reused, repaired or recycled back into nature or the market place (Grass Roots Recycling Network, 2004). (Cristina Trois, 2008) Zero waste option
  • 145. Zero waste perspectives Zero waste • Waste minimisation • Personal behaviour • Education • Composting, MBT • Thermal treatment • Landfilling Zero illness • Prevention • Personal behaviour • Education • Medicine • Surgeries • Graveyards
  • 146. The Concept of Urban Mining and Sustainability
  • 147. E: extracted raw material ΔR: recycled and reused material (secondary raw materials) ΔL: recovered material from landfill mining (secondary raw materials) di: diffuse mass emissions/loss associated to the specific steps and processes I: immobilized material. (inert material) The Concept of Urban Mining
  • 148. Dispersion of Materials with Time Raw Material Dispersed Material 100% 100% Cycle of Utilization/Time Raw Materials: i.e. steel, paints , textiles, tires, asphalt Processes : i.e. corrosion, abrasion, dissolution, evaporation,
  • 149. E = ∆R ∆L+ I∑di Mass Balance: Flow of Resources + + Sustainability and Urban Mining The diffuse emissions should be carefully controlled and minimised as they are the cause for the progressive deterioration of the global environmental quality. E= ∆R ∆L- I∑di - - • Minimise raw material extraction • Maximize recovery, recycling and reuse of secondary raw materials • Increase the immobilisation of materials in final sinks/geological repositories
  • 150. Waste Management Hierarchy Avoidance Material recovery Energy recovery Landfilling Alternative/ Renewable energy
  • 152. Mechanism Of Biological Treatment? Anaerobic treatment is a biochemical process carried out in the absence of O2 for the stabilization of organic materials by conversion to CH4 and inorganic end-products such as CO2 and NH3 Organics Nutrients Growth Stable Solids CO2 CH4+ Microbes Energy Value: Methane can be used as fuel Organic materials+ Nutrients CH4+CO2+NH3+New Cells Anaerobic microbes
  • 153. Biodegradation of organic waste: Process choice green waste rural biowaste municipal biowaste kitchen waste food waste restaurant waste slaughterhouse waste sewage sludge slurry Composting Digestion Moisture Structure
  • 154. Sludges Waste in Loading Combustion chamber Post-combustion Bag filter Denox Bottom ash Fly ash Control panel Pump Mineralized Water Dégasing unit Air condenser Stack gases 36 MW Incineration
  • 155. Perception & Reality (J. Gronow, H. Robinson, 2007)
  • 156.
  • 157.
  • 158.
  • 159. By definition a sanitary landfill is: • a fully engineered disposal option. • It avoids the harmful effects of uncontrolled dumping by • spreading, • compacting and • Covering the waste on land that has been carefully engineered before use. • Through careful site selection, preparation and management, operators can minimize risks from leachate and gas production both in the present and the future. • Site design and plans consider not only waste disposal but aftercare and ultimate land use once the site closes Sanitary landfill
  • 161. Objectives To prevent or reduce as far as possible negative effects from the landfilling of waste on • the environment • the global environment • human health
  • 162. LANDFILL TYPE 1. Mound leachate migration by gravity out of the landfill (long term) long term landfill identification 2. Pit closer to groundwater leachate control more difficult (eternal pumping) side walls to be lined (avoiding gas and leachate migration)
  • 163. Concept I • Open dump – High impact during operation • Dry tomb landfilling – No air in landfill body →Anaerobic degradation – No water, no leachate →Very low organic waste degradation (mummification) →Long term impacts due to high organic content in landfill body
  • 164. Concept II • Contained landfill (today design) – Controll of biogas and leachate emissions by physical barriers (what will happen when they loose efficiency?) – Some lined landfill could became dry tomb – it depends on top cover and the allowance of leachate recirculation • Sustainable landfill (tomorrow design) – Waste pre-treatment – Aerobic landfilling – Open cover – High ratio Liquid/Solid
  • 165. 2.84 time OPERATION dm/dta dm/dt30 300 AFTERCARE WASTE MANAGEMENT (fee) CONTAMINATED SOIL (social money) Long term landfill accumulation tc Traditional landfill Sustainable landfill SAC (Short term After-Care) landfill dm/dtmax
  • 166. Sustainable landfilling 30 years laterAnaerobic degradation Rain Leachate Mummification Rain Contaminant Leachate 30 years later Degradation and flushing Rain Clean Leachate Aerobic degradation Rain Leachate to treatment Air
  • 167. Long term landfill impact Open dump Dry tomb landfill Contained landfill Sustainable landfill time OPERATION ea e30 300 AFTERCARE tc emax I II III
  • 169. amino acids, saccharid, glycerin, fatty acids Anaerobic Processes (Contained Landfills) fractions and solved polymeres protein carbohydrate fat H2 alcohol CO2 acetic acid Biogas CH4, CO2 organic acids Hydrolysis Acidification Acetogenic phase Methane formation H2 CO2 acetic acid propionic acid, butyric acid Complex & Particulate OM
  • 170. • Particulates made soluble and large polymers converted to simpler monomers – Carbohydrates, fats, and proteins • Large molecules (polymers) broken down into smaller molecules (monomers) – Allow passage through bacterial cell wall • Facultative anaerobes and anaerobes • May be rate limiting step in process for high concentrations of particulate organic matter. Step 1: Hydrolysis
  • 171.  Molecule composed of fatty acids and alcohols R — C O — H O R — C O — H O Fatty Acids: Long-chain hydrocarbon molecule capped by a carboxyl group (COOH) O C H — CH — CH — CH — H O R O C O R O C O R H — CH — CH — CH — H O R O C O R O C O R O C O R O C O R Fats (Lipids) Protein  A macromolecule (polymer) C — C O — H O — NH2 H R amino acid C — C O — H O — NH2 H R C — C O — H O — NH2 H R amino acid C — C O — H O — NH2 H R — N — C — C O H H R’ peptide bond C — C O — H O — NH2 H R — N — C — C O H H R’ peptide bond Step 1: Hydrolysis (Examples)
  • 172. Step 2: Acidogenesis • Glucose, amino acids, and fatty acids converted to C3 and C4 volatile fatty acids (76%), H2 (4%), and acetic acid (20%) • Optimum growth rate occurs near pH 6 • Volatile fatty acids generally not significant consumer of alkalinity • NH3 produced from amino acids Volatile Fatty Acids  "short-chain" or volatile fatty acids are 2 to 4-carbon molecules CH3 — C O — H O CH3 — C O — H O ethanoic acid (acetic acid / vinegar) propionic acid CH3 — CH2 — C O — H O CH3 — CH2 — C O — H O O — H butanonic acid (butyric acid) CH3 — CH2 — CH2 — C O butanonic acid (butyric acid) CH3 — CH2 — CH2 — C O
  • 173. Step 3: Acetogenesis Example: C2H5OH + H2O  acetate (CH3COO-) + H+ + 2H2 Go' = +9.6 kJ/mol • Volatile fatty acids converted to acetic acid (68%) and H2 (32%) • Sensitive to H2 concentration • Syntrophic (mutually beneficial) relationship with the methanogens
  • 174. Step 4: Methanogenesis • Obligate anaerobes – methanogens – Tend to have slower growth rates • H2 utilizing methanogens use H2 to produce methane removing H2 from system • Limited pH range 6.7 to 7.4 – importance of alkalinity in system • Sensitive to temperature change
  • 175. Mechanisms of Methane Formation 2. Reduction of carbon dioxide CO2 + 4H2 => CH4 + 2H2O 1. Splitting of acetic acid CH3COOH => CH4 + CO2 Acetotrophic methanogens 4 CH3COOH  4 CO2 + 2 H2 Methylotrophic methanogens 4 CH3OH + 6 H2  3 CH4 + 2 H2O Hydrogenotrophic methanogens CO2 + 4 H2  CH4 + 2 H2O 1. 2.
  • 176. Sample Methane Yield, m3 /kg VS Mixed MSW 0.186 - 0.222 Mixed Yard Waste 0.143 Office Paper 0.369 Newsprint 0.084 Magazine 0.203 Food Board 0.343 Milk Carton 0.318 Wax Paper 0.341 * From Owens, J.M. and D.P. Chynoweth Biogas Potentials of Different Materials
  • 177. Major abiotic factors Influencing the process
  • 179. Leachate is a wastewater produced by the infiltration of water in the landfill. The water percolating through the waste removes organic compounds, metals and salts. The QUALITY of the leachate depends on: • the quality and type of the waste (MSW, Industrial waste, bottom ashes). • it depends by the conditions of the degradation of waste in the landfill (anaerobic condition, aerobic conditions, semi-aerobic condtions) • and finally it depends by the age of the landfill (new landfill or old landfill). What is leachate?
  • 180. The QUANTITY of leachate depends on: • Characteristics of the site • Climatic & meteorological conditions of the site • Physical characteristics of the waste • Characteristics of the barrier systems What is leachate?
  • 181. Leachate composition BMBF Statusbericht „Deponiekörper“, 1995 Phase I II III IV V
  • 182. NH3 (aq) + H2O NH4 + + OH- Ammonia in Anaerobic Digestion
  • 183. Leachate management options • A. In situ : recirculation • B. On site: leachate treatment plant • C. Off site: co-treatment at external facilities (industrial or domestic) C A B C
  • 184. Selection criteria for treatment Young Medium Old COD (mg/l) > 10.000 500-10.000 < 500 COD/TOC 2,7 2,0-2,7 2,0 BOD5/COD > 0,4 0,1-0,4 < 0,1 Biological treatment Chemical precipitation Ozone Reverse osmosis Activated carbon Ion exchange good good-fair fair fair-poor poor
  • 185. Landfill Gas Phases Vol.% I II III IV V 2 – 5 years several decades
  • 186. 2nd Barriere = quality of the site 3rd Barriere = landfill concept Multi Barrier Concept 1st Barrier = quality of the waste 4th Barrier = landfill drainage & liner
  • 187. Landfill siting The following criteria have to be respected in the course of landfill siting: Geological barrier: thickness > 3 m with kf < 1*10-7 m/s Groundwater: Baseline of the liner 1m above the highest groundwater table, soil should have a low permeability No drinking water catchment area, no nature conservation areas, no floading areas > 300 m distance to residential areas, appropriate traffic location
  • 188. gravel layer (drainage) mineral layer plastic liner geotextil e Lining & Leachate Collection
  • 190. Drainage HPDE TUBE DE140 SILICA GRAVEL BARRIERS WASTE
  • 191. ENVIRONMENTAL ISSUES OF SINDH  EACH STUDENTTO PRESENT  Uzma=water Scarcity  Rabab=ground water Contamination  Waseem=solidWaste in Urban Areas  Sheheryar=wetlands  Amin=Urbanization  Amar=X  Ahmer=Noise Pollution (KHI/SUKKUR)  Waqas=Coalfired boiler (2014 SEPA survey)  Tabish=various
  • 192. Tufail Ali Zubedi Environmental Consultant EN501 Introduction to Ecology
  • 193. Today  Evolution of the Solar System  Evolution of Life on Earth  Evolution of Life on Earth  Periodic Extinctions
  • 194. Evolution of the Solar System  The standard model for the formation of the Solar System (including the Earth) is the solar nebula hypothesis.  In this model, the Solar system formed from a large, rotating cloud of interstellar dust and gas called the solar nebula.  It was composed of hydrogen and helium created shortly after the Big Bang 13.8 Ga (billion years ago) and heavier elements ejected by supernovae.  About 4.5 Ga, the nebula began a contraction that may have been triggered by the shock wave of a nearby supernova.  A shock wave would have also made the nebula rotate.  As the cloud began to accelerate, its angular momentum, gravity and inertia flattened it into a protoplanetary disk perpendicular to its axis of rotation.  Small perturbations due to collisions and the angular momentum of other large debris created the means by which kilometer-sized protoplanets began to form, orbiting the nebular center.
  • 195.  The center of the nebula, not having much angular momentum, collapsed rapidly.  The compression heating it until nuclear fusion of hydrogen into helium began.  After more contraction, aTTauri star ignited and evolved into the Sun.  The solar wind of the newly formedTTauri star cleared out most of the material in the disk that had not already condensed into larger bodies.  The same process is expected to produce accretion disks around virtually all newly forming stars in the universe, some of which yield planets
  • 196.  In the outer part of the nebula, gravity caused matter to condense around density perturbations and dust particles.  The rest of the protoplanetary disk began separating into rings.  Successively larger fragments of dust and debris clumped together to form planets (called runaway accretion)
  • 197.  Earth formed in this manner about 4.54 billion years ago (with an uncertainty of 1%) and was largely completed within 10–20 million years  The proto-Earth grew by accretion until its interior was hot enough to melt the heavy, siderophile metals.  Having higher densities than the silicates, these metals sank.  This so-called iron catastrophe resulted in the separation of a primitive mantle and a (metallic) core  Only 10 million years after the Earth began to form, producing the layered structure of Earth and setting up the formation of Earth's magnetic field.
  • 199. Evolution of Life on Earth  Biologists reason that all living organisms on Earth must share a single universal ancestor.  The earliest organisms fossil is available of bacteria.  The lack of fossil or geochemical evidence for earlier organisms has left plenty of scope for hypotheses.  Two main groups:  1) that life arose spontaneously on Earth or  2) that it was "seeded" from elsewhere in the Universe
  • 200. Life "seeded" from elsewhere  There are three main versions of the "seeded from elsewhere" hypothesis:  from elsewhere in our Solar System via fragments knocked into space by a large meteor impact, in which case the most credible sources are Mars andVenus;  by alien visitors, possibly as a result of accidental contamination by microorganisms that they brought with them;  and from outside the Solar System but by natural means.  Greek philosopher Anaximander, physical chemist Svante Arrhenius, astronomers Fred Hoyle and Chandra Wickramasinghe, and by molecular biologist Francis Crick and chemist Leslie Orgel.
  • 201. Independent emergence on Earth  Life on Earth is based on carbon and water. Carbon provides stable frameworks for complex chemicals and can be easily extracted from the environment, especially from carbon dioxide  Water is an excellent solvent  Research on how life might have emerged from non-living chemicals focuses on three possible starting points:  self-replication, an organism's ability to produce offspring that are very similar to itself;  metabolism, its ability to feed and repair itself; and  external cell membranes, which allow food to enter and waste products to leave, but exclude unwanted substances
  • 203. Evolution of Life on Earth  Timeline of evolution of life represents the current scientific theory outlining the major events during the development of life on planet Earth.  In biology, evolution is any change across successive generations in the heritable characteristics of biological populations.  Evolutionary processes give rise to diversity at every level of biological organization, from kingdoms to species, and individual organisms and molecules, such as DNA and proteins.
  • 204. Basic Timeline In its 4.6 billion years circling the Sun, the Earth has harbored an increasing diversity of life forms: 1. for the last 3.6 billion years, simple cells (prokaryotes); 2. for the last 3.4 billion years, cyanobacteria performing photosynthesis; 3. for the last 2 billion years, complex cells (eukaryotes); 4. for the last 1.2 billion years, eukaryotes which sexually reproduce 5. for the last 1 billion years, multicellular life; 6. for the last 600 million years, simple animals; 7. for the last 550 million years, bilaterians, water life forms with a front and a back; 8. for the last 500 million years, fish and proto-amphibians; 9. for the last 475 million years, land plants;
  • 205. Basic Timeline 10. for the last 400 million years, insects and seeds; 11. for the last 360 million years, amphibians; 12. for the last 300 million years, reptiles; 13. for the last 200 million years, mammals; 14. for the last 150 million years, birds; 15. for the last 130 million years, flowers; 16. for the last 60 million years, the primates, 17. for the last 20 million years, the family Hominidae (great apes); 18. for the last 2.5 million years, the genus Homo (including humans and their predecessors); 19. for the last 250,000 years, anatomically modern humans.
  • 207. Periodic Extinctions Periodic extinctions have temporarily reduced diversity, eliminating:  2.4 billion years ago, many obligate anaerobes (Obligate anaerobes are poisoned by oxygen), in the Great Oxygenation Event;  252 million years ago, the trilobites (Trilobites (3 lobes) are a fossil group of extinct marine arthropods that form the class Trilobita.), in the Permian–Triassic extinction event;  65 million years ago, the pterosaurs (Pterosaurs ("winged lizard") were the earliest vertebrates flying reptiles known to have evolved powered flight and of order Pterosauria. Pterosaurs), non-avian dinosaurs, in the Cretaceous– Paleogene extinction event.
  • 209.
  • 210.
  • 211.
  • 212.
  • 213.
  • 214.
  • 215.
  • 216.
  • 217.
  • 218.
  • 219.
  • 220.
  • 221.
  • 222.
  • 223.
  • 224.
  • 225.
  • 226.
  • 227.
  • 228.
  • 229.
  • 230.
  • 231. TAZ/NED/Fall2015En501/20150822/v1 Handout Accretion In astrophysics, accretion is the growth of particles into a massive object by gravitationally attracting more matter, typically gaseous matter in an accretion disc. This attracted matter accelerates the growth of the particles into boulder-sized planetesimals. The more massive planetesimals accrete some smaller ones, while others shatter in collisions. Some dynamics in the disc are necessary to allow orbiting gas to lose angular momentum and fall onto the central massive object. Occasionally, this can result in stellar surface fusion. accretion disc An accretion disk is a structure (often a circumstellar disk) formed by diffused material in orbital motion around a massive central body. The central body is typically a star. Gravity causes material in the disc to spiral inward towards the central body. Gravitational and frictional forces compress and raise the temperature of the material causing the emission of electromagnetic radiation. The frequency range of that radiation depends on the central object's mass. Accretion discs of young stars and protostars radiate in the infrared; those around neutron stars and black holes in the X-ray part of the spectrum. The study of oscillation modes in accretion discs is referred to as diskoseismology Big Bang The Big Bang theory is the prevailing cosmological model for the universe from the earliest known periods through its subsequent large-scale evolution. It states that the universe expanded from a very high density state The Big Bang theory offers a comprehensive explanation for a broad range of observed phenomena, including the abundance of light elements, the cosmic microwave background, large scale structure, and Hubble's Law. The framework for the Big Bang model relies on Albert Einstein's theory of general relativity and on simplifying assumptions such as homogeneity and isotropy of space. circumstellar disk A circumstellar disk is a torus, pancake or ring-shaped accumulation of matter composed of gas, dust, planetesimals, asteroids or collision fragments in orbit around a star. Around the youngest stars, they are the reservoirs of material out of which planets may form. Around mature stars, they indicate that planetesimal formation has taken place and around white dwarfs, they indicate that planetary material survived the whole of stellar evolution. Such a disk can manifest itself in various ways. Herbig Ae/Be star A Herbig Ae/Be star (HABe) is a pre-main-sequence star – a young (<10Myr) star of spectral types A or B. These stars are still embedded in gas-dust envelopes and are sometimes accompanied by circumstellar disks. They are 2-8 Solar mass (M☉) objects Hydrogen and calcium emission lines are observed in their spectra Luminosity In astronomy, luminosity is the total amount of energy emitted by a star, galaxy, or other astronomical object per unit time. It is related to the brightness, which is the luminosity of an object in a given spectral region. Milky Way The Milky Way is the galaxy that contains our Solar System. Its name "milky" is derived from its appearance as a dim glowing band arching across the night sky whose individual stars cannot be distinguished by the naked eye.
  • 232. TAZ/NED/Fall2015En501/20150822/v1 The Milky Way is a barred spiral galaxy that has a diameter usually considered to be roughly 100,000–120,000 light-years but may be 150,000–180,000 light-years. The Milky Way is estimated to contain 100–400 billion stars, although this number may be as high as one trillion. There are probably at least 100 billion planets in the Milky Way. The Solar System is located within the disk, about 27,000 light-years from the Galactic Center, on the inner edge of one of the spiral-shaped concentrations of gas and dust called the Orion Arm. Nebula A nebula (Latin for "cloud";[2] pl. nebulae, nebulæ, or nebulas) is an interstellar cloud of dust, hydrogen, helium and other ionized gases. Originally, nebula was a name for any diffuse astronomical object, including galaxies beyond the Milky Way. The Andromeda Galaxy, for instance, was referred to as the Andromeda Nebula (and spiral galaxies in general as "spiral nebulae") before the true nature of galaxies was confirmed in the early 20th century by Vesto Slipher, Edwin Hubble and others. pre-main sequence stars A pre-main-sequence star (also known as a PMS star and PMS object) is a star in the stage when it has not yet reached the main sequence. A protostar grows by accretion, acquiring mass from its surrounding envelope of interstellar dust and gas. By the time it is visible, the main accretion phase has ended and it has acquired virtually all of its mass but has not yet started hydrogen burning (i.e. nuclear fusion of hydrogen). The end of the main accretion phase to the start of hydrogen burning (i.e. zero age main sequence) is the pre-main sequence stage. Protoplanetary disk A protoplanetary disk is a rotating circumstellar disk of dense gas surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may also be considered an accretion disc for the star itself, because gasses or other material may be falling from the inner edge of the disk onto the surface of the star. But this process should not be confused with the accretion process thought to build up the planets themselves. Protoplanets Protoplanets are large planetary embryos that originate within protoplanetary discs and have undergone internal melting to produce differentiated interiors. runaway accretion Siderophile Siderophile (from sideron, "iron", and philia, "love") elements are the high-density transition metals which tend to sink into the core because they dissolve readily in iron either as solid solutions or in the molten state. The siderophile elements include gold, cobalt, iron, iridium, manganese, molybdenum, nickel, osmium, palladium, platinum, rhenium, rhodium and ruthenium. Stars vs planets Stellar relating to a star or stars supernova remnant This shock wave sweeps up an expanding shell of gas and dust called a supernova remnant. Supernovae A supernova is a stellar explosion that briefly outshines an entire galaxy, radiating as much energy as the Sun or any ordinary star is expected to emit over its entire life span, before fading from view over several weeks or months.
  • 233. TAZ/NED/Fall2015En501/20150822/v1 The extremely luminous burst of radiation expels much or all of a star's material at a velocity of up to 30,000 km/s (10% of the speed of light), driving a shock wave into the surrounding interstellar medium. This shock wave sweeps up an expanding shell of gas and dust called a supernova remnant. Supernovae are potentially strong galactic sources of gravitational waves Supernovae are more energetic than novae. Nova means "new" in Latin, referring to what appears to be a very bright new star shining in the celestial sphere; the prefix "super-" distinguishes supernovae from ordinary novae, which are far less luminous. Supernovae can be triggered in one of two ways: by the sudden re-ignition of nuclear fusion in a degenerate star; or by the gravitational collapse of the core of a massive star The last directly observed supernova in the Milky Way was Kepler's Star of 1604 (SN 1604); remnants of two more recent supernovae have been found retrospectively T Tauri star T Tauri stars (TTS) are a class of variable stars named after their prototype – T Tauri. They are found near molecular clouds and identified by their optical variability and strong chromospheric lines. T Tauri stars are pre-main sequence stars in the process of contracting to the main sequence along the Hayashi track, a luminosity-temperature relationship obeyed by infant stars of less than 3 solar masses (M☉) in the pre-main-sequence phase of stellar evolution.
  • 234. HANDOUT-Timeline of natural history In the earliest solar system history, the Sun, the planetesimals and the jovian planets were formed. The inner solar system aggregated more slowly than the outer, so the terrestrial planets were not yet formed, including Earth and Moon.  c. 4,570 Ma: A supernova explosion (known as the primal supernova) seeds our galactic neighborhood with heavy elements that will be incorporated into the Earth, and results in a shock wave in a dense region of the Milky Way galaxy. The Ca-Al-rich inclusions, which formed 2 million years before the chondrules,[1] are a key signature of a supernova explosion.  4,567±3 Ma: Rapid collapse of hydrogen molecular cloud, forming a third-generation Population I star, the Sun, in a region of the Galactic Habitable Zone(GHZ), about 25,000 light years from the center of the Milky Way Galaxy.[2]  4,566±2 Ma: A protoplanetary disc (from which Earth eventually forms) emerges around the young Sun, which is in its T Tauri stage.  4,560–4550 Ma: Proto-Earth forms at the outer (cooler) edge of the habitable zone of the Solar System. At this stage the solar constant of the Sun was only about 73% of its current value, but liquid water may have existed on the surface of the Proto-Earth, probably due to the greenhouse warming of high levels ofmethane and carbon dioxide present in the atmosphere. Early Bombardment Phase begins: because the solar neighbourhood is rife with large planetoids and debris, Earth experiences a number of giant impacts that help to increase its overall size Hadean Eon[edit]  4,533 Ma: Hadean Eon, Precambrian Supereon and unofficial Cryptic era start as the Earth– Moon system forms, possibly as a result of a glancing collision between proto–Earth and the hypothetical protoplanet Theia. (The Earth was considerably smaller than now, before this impact.) This impact vaporized a large amount of the crust, and sent material into orbit around Earth, which lingered as rings, similar to those of Saturn, for a few million years, until they coalesced to become the Moon. The Moon geology pre-Nectarian period starts. Earth was covered by a magmatic ocean 200 kilometres (120 mi) deep resulting from the impact energy from this and other planetesimals during the early bombardment phase, and energy released by the planetary core forming. Outgassing from crustal rocks gives Earth a reducing atmosphere of methane, nitrogen, hydrogen, ammonia, and water vapour, with lesser amounts of hydrogen sulfide, carbon monoxide, then carbon dioxide. With further full outgassing over 1000–1500 K, nitrogen and ammonia become lesser constituents, and comparable amounts of methane, carbon monoxide, carbon dioxide, water vapour, and hydrogen are released.
  • 235.  4,500 Ma: Sun enters main sequence: a solar wind sweeps the Earth-Moon system clear of debris (mainly dust and gas). End of the Early Bombardment Phase.Basin Groups Era begins on Earth  4,450 Ma: 100 million years after the Moon formed, the first lunar crust, formed of lunar anorthosite, differentiates from lower magmas. The earliest Earth crust probably forms similarly out of similar material. On Earth the pluvial period starts, in which the Earth's crust cools enough to let oceans form.  4,300 Ma: Nectarian Era begins on Earth  4,404 Ma: First known mineral, found at Jack Hills in Western Australia. Detrital zircons show presence of a solid crust and liquid water. Latest possible date for a secondary atmosphere to form, produced by the Earth's crust outgassing, reinforced by water and possibly organic molecules delivered by comet impacts andcarbonaceous chondrites (including type CI shown to be high in a number of amino acids and polycyclic aromatic hydrocarbons (PAH)).  4,250 Ma: Earliest evidence for life, based on unusually high amounts of light isotopes of carbon, a common sign of life, found in Earth's oldest mineral deposits located in the Jack Hills of Western Australia.[3]  4,100 Ma: Early Imbrian Era begins on Earth. Late heavy bombardment of the Moon (and probably of the Earth as well) by bolides and asteroids, produced possibly by the planetary migration of Neptune into the Kuiper belt as a result of orbital resonances between Jupiter and Saturn.[4]  4,030 Ma: Acasta Gneiss of Northwest Territories, Canada, first known oldest rock, or aggregate of minerals. Archean Eon[edit] Main article: Archean Eoarchean Era[edit] Main article: Eoarchean  4,000 Ma: Archean Eon and Eoarchean Era start. Possible first appearance of plate tectonic activity in the Earth's crust as plate structures may have begun appearing. Possible beginning of Napier Mountains Orogeny forces of faulting and folding create first metamorphic rocks. Origins of life.  3,930 Ma: Possible stabilization of Canadian Shield begins  3,920–3,850 Ma: Final phase of Late Heavy Bombardment  3,850 Ma: Greenland apatite shows evidence of 12 C enrichment, characteristic of the presence of photosynthetic life.[5]
  • 236.  3,850 Ma: Evidence of life: Akilia Island graphite off Western Greenland contains evidence of kerogen, of a type consistent with photosynthesis.[citation needed]  3,800 Ma: Oldest banded iron formations found.[citation needed] . First complete continental masses or cratons, formed of granite blocks, appear on Earth. Occurrence of initial felsic igneous activity on eastern edge of Antarctic craton as first great continental mass begins to coalesce. East European Craton begins to form - first rocks of the Ukrainian Shield and Voronezh Massif are laid down  3,750 Ma: Nuvvuagittuq Greenstone Belt forms  3,700 Ma: Graphite found to be biogenic in 3.7 billion-year-old metasedimentary rocks discovered in Western Greenland[6] Stabilization of Kaapval cratonbegins: old tonaltic gneisses laid down Paleoarchean Era[edit]  3,600 Ma: Paleoarchean Era starts. Possible assembly of the Vaalbara supercontinent: Oldest cratons on Earth (such as the Canadian Shield, East European Craton and Kaapval) begin growing as a result of crustal disturbances along continents coalescing into Vaalbara - Pilbara Craton stabilizes. Formation ofBarberton greenstone belt: Makhonjwa Mountains uplifts on the eastern edge of Kaapval craton, oldest mountains in Africa - area called the "genesis of life" for exceptional preservation of fossils. Narryer Gneiss Terrane stabilizes: these gniesses become the "bedrock" for the formation of the Yilgarn Craton in Australia - noted for the survival of the Jack Hills where the oldest mineral, a zircon was uncovered  3,500 Ma: Lifetime of the last Universal ancestor: split between bacteria and archaea occurs as "tree of life" begins branching out - varieties of Eubacteria begin to radiate out globally. Fossils resembling cyanobacteria, found at Warrawoona, Western Australia.[citation needed]  3,480 Ma: Fossils of microbial mat found in 3.48 billion-year-old sandstone discovered in Western Australia.[7][8] First appearance of stromatolitic organisms that grow at interfaces between different types of material, mostly on submerged or moist surfaces  3,460 Ma: Fossils of bacteria in chert.[citation needed] Zimbabwe Craton stabilizes from the suture of two smaller crustal blocks, the Tokwe Segment to the south and the Rhodesdale Segment or Rhodesdale gneiss to the north  3.400 Ma: Eleven taxa of prokaryotes are preserved in the Apex Chert of the Pilbara craton in Australia. Because chert is fine-grained silica-rich microcrystalline,cryptocrystalline or microfibrious material, it preserves small fossils quite well. Stabilization of Baltic Shield begins  3.340 Ma: Johannesburg Dome forms in South Africa: located in the central part of Kaapvaal Craton and consists of trondhjemitic and tonalitic granitic rocks intruded into mafic-ultramafic greenstone - the oldest granitoid phase recognised so far.
  • 237.  3,300 Ma: Onset of compressional tectonics[9] Intrusion of granitic plutons on the Kaapvaal Craton  3,260 Ma: One of the largest recorded impact events occurs near the Barberton Greenstone Belt, when a 58 km (36 mi) asteroid leaves a hole almost 480 km (300 mi) across – two and a half times larger in diameter than the Chicxulub crater.[10] Mesoarchean Era[edit]  3,200 Ma: Mesoarchean Era starts. Onverwacht series in South Africa form - contain some of the oldest microfossils mostly spheroidal and carbonaceous alga-like bodies  3,200–2600 Ma: Assembly of the Ur supercontinent to cover between 12–16% of the current continental crust. Formation of Limpopo Belt  3.1 Ma: Fig Tree Formation: second round of fossilizations including Archaeosphaeroides barbertonensis and Eobacterium. Gneiss and greenstone belts in the Baltic Shield are laid down in Kola Peninsula, Karelia and northeastern Finland  3 Ma: Humboldt Orogeny in Antarctica: possible formation of Humboldt Mountains in Queen Maud Land. Photosynthesizing cyanobacteria evolve; they use water as a reducing agent, thereby producing oxygen as a waste product. The oxygen initially oxidizes dissolved iron in the oceans, creating iron ore - over time oxygen concentration in the atmosphere slowly rises, acting as a poison for many bacteria. As Moon is still very close to Earth and causes tides 1,000 feet (305 m) high, the Earth is continually wracked by hurricane-force winds - these extreme mixing influences are thought to stimulate evolutionary processes. Rise ofStromatolites: microbial mats become successful forming the first reef building communities on Earth in shallow warm tidal pool zones (to 1.5 Gyr). Tanzania Craton forms  2.940 Ma: Yilgarn Craton of western Australia forms by the accretion of a multitude of formerly present blocks or terranes of existing continental crust  2,900 Ma: Assembly of the Kenorland supercontinent, based upon the core of the Baltic shield, formed at 3100 Ma. Narryer Gniess Terrane (including Jack Hills) of Western Australia undergoes extensive metamorphism Neoarchean Era[edit]  2,800 Ma: Neoarchean Era starts. Breakup of the Vaalbara: Breakup of supercontinent Ur as it becomes a part of the major supercontinent Kenorland. Kaapvaal and Zimbabwe cratons join together  2,770 Ma: Formation of Hamersley Basin on the southern margin of Pilbara Craton - last stable submarine-fluviatile environment between the Yilgarn and Pilbara prior to rifting, contraction and assembly of the intracratonic Gascoyne Complex  2,750 Ma: Renosterkoppies Greenstone Belt forms on the northern edge of the Kaapvaal Craton
  • 238.  2,736 Ma: Formation of the Temagami Greenstone Belt in Temagami, Ontario, Canada  2,707 Ma: Blake River Megacaldera Complex begins to form in present- day Ontario and Quebec - first known Precambrian supervolcano - first phase results in creation of 8km long, 40km wide, east-west striking Misema Caldera - coalescence of at least two large mafic shield volcanoes  2,705 Ma: Major komatiite eruption, possibly global[9] - possible mantle overturn event  2.704 Ma: Blake River Megacaldera Complex: second phase results in creation of 30 km long, 15 km wide northwest-southeast trending New Senator Caldera - thick massive mafic sequences which has been inferred to be a subaqueous lava lake  2,700 Ma: Biomarkers of cyanobacteria discovered, together with steranes (sterols of cholesterol), associated with films of eukaryotes, in shales located beneath banded iron formation hematite beds, in Hamersley Range, Western Australia[11] Skewed sulfur isotope ratios found in pyrites shows a small rise in oxygen concentration in the atmosphere[12] Sturgeon Lake Caldera, forms in Wabigoon greenstone belt: contains well perserved homoclinal chain of greenschist facies, metamorphosed intrusive, volcanic and sedimentary layers - Mattabi pyroclastic flow considered third most voluminous eruptive event. Stromatolites of Bulawayo series in Zimbabwe form: first verified reef community on Earth. Skewed sulfur isotope ratios found in pyrites shows a small rise in oxygen concentration in the atmosphere  2,696 Ma: Blake River Megacaldera Complex: third phase of activity constructs classic east- northeast striking Noranda Caldera which contains a 7-to-9-km-thick succession of mafic and felsic rocks erupted during five major series of activity. Abitibi greenstone belt in present-day Ontario and Quebec begins to form: considered world's largest series of Archean greenstone belts, appears to represent a series of thrusted subterranes  2,690 Ma: Formation of high pressure granulites in the Limpopo Central Region  2,650 Ma: Insell Orogeny: occurrence of a very-high grade discrete tectonothermal event (a UHT metamorphic event)  2,600 Ma: Oldest known giant carbonate platform.[9] Saturation of oxygen in ocean sediments is reached as oxygen now begins to dramatically appear in Earth's atmosphere Proterozoic Eon[edit] Main article: Proterozoic Paleoproterozoic Era[edit] Main article: Paleoproterozoic Siderian Period[edit]
  • 239.  2,500 Ma: Proterozoic Eon, Paleoproterozoic Era, and Siderian Period start. Oxygen saturation in the oceans is reached: Banded iron formations form and saturate ocean floor deposits - without an oxygen sink, Earth's atmosphere becomes highly oxygenic. Great Oxygenation Event led by cyanobacteria's oxygenic photosynthesis - various forms of Archaea and anoxic bacteria become extinct in first great extinction event on Earth. Algoman Orogeny or Kenoran: assembly of Arctica out of the Canadian Laurentian Shield and Siberian craton - formation of Angaran Shield and Slave Province  2,440 Ma: Formation of Gawler Craton in Australia  2,400 Ma: Huronian glaciation starts, probably from oxidation of earlier methane greenhouse gas produced by burial of organic sediments of photosynthesizers. First cyanobacteria. Formation of Dharwar Craton in southern India  2,400 Ma: Suavjarvi impact structure forms. This is the oldest known impact crater whose remnants are still recognizable. Dharwar Craton in southern India stabilizes Rhyacian Period[edit]  2,300 Ma: Rhyacian period starts.  2,250 Ma: Bushveld Igneous Complex forms: world's largest reserves of platinum-group metals (platinum, palladium, osmium, iridium, rhodium and ruthenium) as well as vast quantities of iron, tin chromium titanium and vanadium appear - formation of Transvaal Basin begins  2,200–1800 Ma: Continental Red Beds found, produced by iron in weathered sandstone being exposed to oxygen. Eburnean Orogeny, series of tectonic, metamorphic and plutonic events establish Eglab Shield to north of West African Craton and Man Shield to its south - Birimian domain of West Africa established and structured  2,200 Ma: Iron content of ancient fossil soils shows an oxygen built up to 5–18% of current levels[13] End of Kenoran Orogeny: invasion of Superior and Slave Provinces by basaltic dikes and sills - Wyoming and Montana arm of Superior Province experiences intrusion of 5 km thick sheet of chromite-bearing gabbroic rock as Stillwater Complex forms  2,100 Ma: Huronian glaciation ends. Earliest known eukaryote fossils found. Earliest multicellular organisms collectively referred to as the "Gabonionta" (Francevillian Group Fossil), Wopmay orogeny along western margin of Canadian Shield  2,090 Ma: Eburnean Orogeny: Eglab Shield experiences syntectonic trondhjemitic pluton intrusion of its Chegga series - most of the intrusion is in the form of a plagioclase called oligoclase  2.070 Ma: Eburnean Orogeny: asthenospheric upwelling releases large volume of post-orogenic magmas - magma events repeatedly reactivated from the Neoproterozoic to the Mesozoic Orosirian Period[edit]
  • 240.  2,050 Ma: Orosirian Period starts. Significant orogeny in most continents.  2,023 Ma: Vredefort impact structure forms.  2,005 Ma: Glenburgh Orogeny (2,005–1,920 Ma) begins: Glenburgh Terrane in western Australia begins to stabilize during period of substantial granite magmatism and deformation; Halfway Gneiss and Moogie Metamorphics result. Dalgaringa Supersuite (2,005–1,985 Ma), comprising sheets, dykes and viens of mesocratic and leucocratic tonalite, stabilizes.  2,000 Ma: The lesser supercontinent Atlantica forms. The Oklo natural nuclear reactor of Gabon produced by uranium-precipitant bacteria.[14] First acritarchs.  1,900 - 1,880 Ma: Gunflint chert biota forms flourishes including prokaryotes like Kakabekia, Gunflintia, Animikiea and Eoastrion  1,850 Ma: Sudbury impact structure. Penokean orogeny. First eukaryotes. Bacterial viruses (bacteriophage) emerge before, or soon after, the divergence of the prokaryotic and eukaryotic lineages.[15]  1,830 Ma: Capricorn Orogeny (1.83 - 1.78 Gyr) stabilizes central and northern Gascoyne Complex: formation of pelitic and psammitic schists known as Morrissey Metamorphics and depositing Pooranoo Metamophics an amphibolite facies Statherian Period[edit]  1,800 Ma: Statherian Period starts. Supercontinent Columbia forms, one of whose fragments being Nena. Oldest ergs develop on several cratons[9] Barramundi Orogeny (ca. 1.8 Gyr) influences MacArthur Basin in Northern Australia.  1,780 Ma Colorado Orogeny (1.78 - 1.65 Gyr) influences southern margin of Wyoming craton - collision of Colorado orogen and Trans-Hudson orogen with stabilized Archean craton structure  1,770 Ma Big Sky Orogeny (1.77 Gyr) influences southwest Montana: collision between Hearne and Wyoming cratons  1,765 Ma As Kimban Orogeny in Australian continent slows, Yapungku Orogeny (1.765 Gyr) begins effecting Yilgarn craton in Western Australia - possible formation of Darling Fault, one of longest and most significant in Australia  1,760 Ma Yavapai Orogeny (1.76 - 1.7 Gyr) impacts mid to south western United States  1.750 Ma Gothian Orogeny (1.75 - 1.5 Gyr): formation of tonalitic-granodioritic plutonic rocks and calc-alkaline volcanites in the East European Craton  1,700 Ma Stabilization of second major continental mass, the Guiana Shield in South America  1,680 Ma Mangaroon Orogeny (1.68 - 1.62 Gyr), on the Gascoyne Complex in Western Australia: Durlacher Supersuite, granite intrusion featuring a northern (Minnie Creek) and southern belt - heavily sheared orthoclase porphyroclastic granites
  • 241.  1.650 Ma Kararan Orogeny (1.65 Gyr) uplifts great mountains on the Gawler Craton in Southern Australia - formation of Gawler Range including picturesque Conical Hill Track and "Organ Pipes" waterfall Mesoproterozoic Era[edit] Main article: Mesoproterozoic Calymmian Period[edit]  1,600 Ma: Mesoproterozoic Era and Calymmian Period start. Platform covers expand. Major orogenic event in Australia: Isan Orogeny (1,600 Ma) influences Mount Isa Block of Queensland - major deposits of lead, silver, copper and zinc are laid down. Mazatzal Orogeny (1,600 Ma - 1,300 Ma) influences mid to south western United States: Precambrian rocks of the Grand Canyon, Vishnu Schist and Grand Canyon Series, are formed establishing basement of Canyon with metamorphosed gniesses that are invaded by granites  1,500 Ma: Supercontinent Columbia collapses: associated with continental rifting along western margin of Laurentia, eastern India, southern Baltica, southeastern Siberia, northwestern South Africa and North China Block - formation of Ghats Province in India First structurally complex eukaryotes (Hododyskia, colonial formamiferian). Ectasian Period[edit]  1,400 Ma: Ectasian Period starts. Platform covers expand. Major increase in Stromatolite diversity with widespread blue-green algae colonies and reefs dominating tidal zones of oceans and seas  1,300 Ma: Break-up of Columbia Supercontinent completed: widespread anorogenic magmatic activity, forming anorthosite-mangerite-charnockite-granite suites in North America, Baltica, Amazonia and North China - stabilization of Amazonian Craton in South America Grenville orogeny(1,300 - 1,000 Ma) in North America: globally associated with assembly of Supercontinent Rodinia establishes Grenville Province in Eastern North America - folded mountains from Newfoundland to North Carolina as Old Rag Mountain forms  1,270 Ma Emplacement of Mackenzie granite mafic dike swarm - one of three dozen dike swarms, forms into Mackenzie Large Igneous Province - formation of Copper Creek deposits  1,250 Ma Sveconorwegian Orogeny (1,250 Ma - 900 Ma) begins: essentially a reworking of previously formed crust on the Baltic Shield  1,240 Ma Second major dike swarm, Sudbury dikes form in Northeastern Ontario around the area of the Sudbury Basin Stenian Period[edit]