Successfully reported this slideshow.
UNIVERSIDAD CENTROAMERICANA
“JOSÉ SIMEÓN CAÑAS”
MATEMATICA IV
SECCIÓN 03
CICLO 01-2015
“INTEGRALES DE LINEA Y TEOREMA DE G...
Ejercicios.
1. Verificar que la longitud de la circunferencia de un circulo de radio k es 2πk.
2. Considere la hélice con ...
11.Si 𝑓( 𝑥, 𝑦, 𝑧) = 𝑥2
𝑧3
+ 𝑦2
y C es el segmento que une el punto inicial (-1,-1,-
1) con el punto final (1,1,1). Hallar ...
TEOREMA DE GREEN.
1. Usando el teorema de Green evalúe ∫ 𝑦𝑑𝑥 + ( 𝑥2
+ 𝑥) 𝑑𝑦𝑐
, donde C es la
circunferencia 𝑥2
+ 𝑦2
= 9.
2...
∫
𝑥
𝑥2+𝑦2
𝑑𝑥 −
𝑦
𝑥2+𝑦2
𝑑𝑦𝑐
. Resp. 2log2.
DATO CURIOSO
Consideremos la integral:
∫ 𝐹. 𝑑𝑟
𝐶
donde:
𝐹( 𝑥, 𝑦) =
−𝑦
𝑥2 + 𝑦2
𝒊̂...
Prochain SlideShare
Chargement dans…5
×

Guia int de_linea_teo_de_green_01_15

707 vues

Publié le

Integrales de Línea y Teorema de Green

Publié dans : Formation
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

Guia int de_linea_teo_de_green_01_15

  1. 1. UNIVERSIDAD CENTROAMERICANA “JOSÉ SIMEÓN CAÑAS” MATEMATICA IV SECCIÓN 03 CICLO 01-2015 “INTEGRALES DE LINEA Y TEOREMA DE GREEN” Profesor: Ing. Eduardo Escapini Peñate Jefe de Instructores: Jonathan Landaverde. INTEGRALES DE LINEA. Un poco de Teoría. 1. Dar la definición de la integral de línea y de la integral de superficie de un campo vectorial y de un campo escalar. 2. Si 𝐹 es un campo de fuerza. ¿Qué Significa ∫ 𝐹. 𝑑𝑟𝑐 ? 3. Si sabemos que ∫ 𝐹. 𝑑𝑟𝑐 es independiente de la trayectoria, ¿qué podemos decir respecto de F? 4. Si un campo vectorial 𝐹 es conservativo. Señale la o las afirmaciones verdaderas. a) ∫ ∇𝑓. 𝑑𝑟𝑐 ≠ 0 : C es una curva cerrada. b) 𝑟𝑜𝑡( 𝐹) = ∇ × 𝐹 ≠ 0 c) 𝐹 = −∇𝑓, para algún campo escalar 𝑓. d) 𝑑𝑖𝑣( 𝐹) = ∇ ∙ 𝐹 = 0 5. Si 𝑓 tiene derivadas continuas parciales sobre ℝ2 y C es cualquier circulo, muestre que ∫ ∇𝑓. 𝑑𝑟𝑐 = 0.
  2. 2. Ejercicios. 1. Verificar que la longitud de la circunferencia de un circulo de radio k es 2πk. 2. Considere la hélice con ecuaciones paramétricas 𝑥( 𝑡) = 2 cos( 𝑡) , 𝑦( 𝑡) = 2𝑠𝑒𝑛( 𝑡), 𝑧( 𝑡) = 𝑡 4 ; 𝑡 ∈ [0,2𝜋]. Verifique que su longitud es: 𝟐𝝅√ 𝟔𝟓 𝟏𝟔 . 3. Calcular las integrales de línea del campo vectorial dado sobre las curvas indicadas: i) 𝐹( 𝑥, 𝑦) = ( 𝑥2 − 2𝑥𝑦) 𝑖 + ( 𝑦2 − 2𝑥𝑦) 𝑗 a lo largo de la parábola 𝑦 = 𝑥2 desde el punto (-2,4) hasta el punto (1,1). Resp. −𝟑𝟔𝟗 𝟏𝟎 . ii) 𝐹( 𝑥, 𝑦, 𝑧) = 𝑥𝑖 + 𝑦𝑗 + ( 𝑥𝑧 − 𝑦) 𝑘 sobre el segmento de recta desde el punto (0,0,0) hasta el punto (1,2,4). Resp. 𝟐𝟑 𝟔 . 4. Calcular la integral ∫ (2𝑥 − 𝑦 + 4) 𝑑𝑥 + (5𝑦 + 3𝑥 − 6) 𝑑𝑦𝑐 sobre las aristas del triangulo en el plano XY de vértices (0,0), (3,0) y (3,2). Resp. 12. 5. Calcular la misma integral del ejercicio anterior pero sobre la circunferencia de radio 4 centrada en el origen. Resp. 64π. 6. Dado el campo vectorial: 𝐹(𝑥, 𝑦) = 𝑥+𝑦 𝑥2+𝑦2 𝑖 + 𝑥+𝑦 𝑥2+𝑦2 𝑗, calcular la integral de línea sobre la circunferencia 𝑥2 + 𝑦2 = 𝑎2 , recorrida en sentido positivo. Resp. 0. 7. Si 𝑓( 𝑥, 𝑦) = 𝑥2 𝑦 y C es el segmento que une los puntos (-1,-1) hasta el punto (2,-1). Halle ∫ ∇𝑓. 𝑑𝑟𝑐 . 8. Considere el campo vectorial 𝐹( 𝑥, 𝑦) = −𝑦 𝑥2+𝑦2 𝑖 + 𝑥 𝑥2+𝑦2 𝑗. Calcule la integral de línea a lo largo de la circunferencia 𝑥2 + 𝑦2 = 1 orientada positivamente. ¿Es el campo conservativo? Explique. Podría aplicarse el teorema de Green para calcular la integral de línea que usted calculó. Explique. 9. Considere C el perímetro del cuadrado unitario orientado en el sentido positivo, con vértices (0,0), (1,0), (1,1) y (0,1). Hallar ∫ 𝑥2 𝑑𝑥 + 𝑦𝑥𝑑𝑦𝑐 . 10.Usando la definición de integral de línea calcule ∫ 𝐹. 𝑑𝑟𝑐 donde 𝐹( 𝑥, 𝑦) = 𝑦𝑖 − 𝑥𝑗 y C es el circulo 𝑥2 + 𝑦2 = 9, orientado positivamente.
  3. 3. 11.Si 𝑓( 𝑥, 𝑦, 𝑧) = 𝑥2 𝑧3 + 𝑦2 y C es el segmento que une el punto inicial (-1,-1,- 1) con el punto final (1,1,1). Hallar ∫ ∇𝑓. 𝑑𝑟𝑐 . 12.Sea 𝐹( 𝑥, 𝑦, 𝑧) = (2𝑦𝑧) 𝑖 + (−4𝑥) 𝑗 + (−3𝑧2) 𝑘, y C la curva que se obtiene al intersecar la superficie 𝑧 = 4 − 𝑥2 con el plano 𝑦 + 𝑧 = 6. Calcular ∫ 𝐹. 𝑑𝑟𝑐 . 13.Verificar que el área limitada por la elipse 𝑥2 𝑎2 + 𝑦2 𝑏2 = 1, es: 𝟐𝝅𝒂𝒃. 14.Considere la siguiente integral de línea ∫ (4𝑥 + 2𝑦 − 𝑧) 𝑑𝑥 + (2𝑥 − 2𝑦 +𝑐 𝑧) 𝑑𝑦 + (−𝑥 + 𝑦 + 2𝑧) 𝑑𝑧. Verifique que la integral no depende de la trayectoria elegida. 15.Sea 𝐹( 𝑥, 𝑦, 𝑧) = (2𝑥𝑙𝑛( 𝑦𝑧) − 5𝑦𝑒 𝑥) 𝑖 + ( 𝑥2 𝑦 − 5𝑒 𝑥 ) 𝑗 + ( 𝑥2 𝑧 − 2𝑧) 𝑘 y sea C la curva que une los puntos: A=(2,2,1) con B=(3,1,e) calcular ∫ 𝐹. 𝑑𝑟𝑐 . 16.Calcular ∫ 𝑦2 𝑑𝑥 + 𝑥2 𝑑𝑦𝑐 , donde C es la elipse 𝑥2 4 + 𝑦2 9 = 1, recorrida en sentido antihorario. 17.Calcular ∫ (𝑥2 + 𝑦2 )2 𝑑𝑠𝑐 , donde C es la circunferencia cuya parametrización es: 𝑥( 𝑡) = 2 cos( 𝑡) , 𝑦( 𝑡) = 2𝑠𝑒𝑛( 𝑡); 𝑡 ∈ [0,2𝜋]. 18.Calcular ∫ 𝑧2 𝑥2+𝑦2𝑐 𝑑𝑠, donde C es la hélice cuya parametrización es la siguiente: 𝑥( 𝑡) = 2 cos( 𝑡) , 𝑦( 𝑡) = 2𝑠𝑒𝑛( 𝑡), 𝑧( 𝑡) = 2𝑡. 19.Determine el trabajo que realiza el campo de fuerza 𝐹( 𝑥, 𝑦, 𝑧) = 𝑧𝑖 + 𝑦𝑗 − 𝑥𝑘, al mover una particula desde (1,0,0) hasta (0,π/2,3) a lo largo de: a) Una recta. b) La hélice 𝑥( 𝑡) = cos( 𝑡) , 𝑦( 𝑡) = 𝑡, 𝑧( 𝑡) = 3𝑠𝑒𝑛( 𝑡). 20.Evaluar la integral de línea ∫ 𝐹. 𝑑𝑟𝐶 , siendo: a) 𝐹 = 𝑥 √𝑥2+𝑦2 𝒊̂ + 𝑦 √𝑥2+𝑦2 𝒋̂ , siendo 𝐶 la parábola 𝑦 = 1 + 𝑥2 entre los puntos (−1,2) ∧ (1,2) b) 𝐹 = (𝑥4 𝑒 𝑦 ) 𝒊̂ + ( 𝑙𝑛 𝑧 ) 𝒋̂ + (√𝑦2 + 𝑧2 )𝒌̂ , donde 𝐶 es el segmento de recta entre los puntos (1,2,1) ∧ (6,4,5)
  4. 4. TEOREMA DE GREEN. 1. Usando el teorema de Green evalúe ∫ 𝑦𝑑𝑥 + ( 𝑥2 + 𝑥) 𝑑𝑦𝑐 , donde C es la circunferencia 𝑥2 + 𝑦2 = 9. 2. Probar el teorema de Green sobre el cuadrado de vértices (0,0), (2,0), (2,2) y (0,2) con el campo vectorial 𝐹( 𝑥, 𝑦) = ( 𝑥2 − 𝑥𝑦3) 𝑖 + ( 𝑦2 − 2𝑥𝑦) 𝑗. 3. Use el teorema de Green para calcular ∫ 𝑦3 𝑑𝑥 − 𝑥3 𝑑𝑦𝑐 , donde C es una curva simple orientada positivamente consistiendo en el segmento que va desde (-2,0) hasta (2,0) y en la parte inferior de la circunferencia 𝑥2 + 𝑦2 = 4. 4. Utilizando el teorema de Green calcular el área del cuadrilátero determinado por los puntos (0,0), (5,1), (4,5) y (0,3). Resp. 𝟑𝟑 𝟐 . 5. Sea C la curva cerrada descrita por el par de graficas: 𝑦 = 𝑠𝑒𝑛( 𝑥), 𝑦 = 2𝑠𝑒𝑛( 𝑥), 𝑥 ∋ [0,2𝜋]. Orientada en sentido positivo. Calcular la integral siguiente directamente utilizando el teorema de Green: ∫ (1 − 𝑦2) 𝑑𝑥 +𝑐 𝑦𝑑𝑦. Resp. −𝟑𝝅 𝟐 . 6. Utilizar el teorema de teorema de Green para calcular el área del cuadrilátero determinado por los puntos (0,0), (5,2), (3,4) y (0,3). Resp. 𝟐𝟑 𝟐 . 7. Sea 𝐶 la frontera del triángulo con vértices (0,0), (1,2) y (0,2). Calcular ∮ 4 𝑥2 𝑦𝑑𝑥 + 2𝑦𝑑𝑦𝑐 . Use el método tradicional (recorriendo la curva en sentido horario y antihorario) y el teorema de Green. 8. Evaluar la integral ∮ ( 𝑥3 − 𝑦3) 𝑑𝑥 + ( 𝑥3 + 𝑦3) 𝑑𝑦𝑐 , donde 𝐶 es la frontera de la región entre los círculos 𝑥2 + 𝑦2 = 1 ∧ 𝑥2 + 𝑦2 = 9 9. ∫ 𝐹. 𝑑𝑟𝐶 , donde 𝐹 = ( 𝑦2 − 𝑥2 𝑦) 𝑖̂ + 𝑥𝑦2 𝑗̂, siendo 𝐶 la región formada por el circulo 𝑥2 + 𝑦2 = 4 entre los puntos (2,0) ∧ (√2, √2) y los segmentos de recta de (√2, √2) a (0,0) y de (0,0) a (2,0) 10.Sea C la curva cerrada y orientada positivamente descrita de la manera siguiente: el segmento 𝑦 = 0, entre 𝑥 = 1 𝑦 𝑥 = 2, el arco 𝑦 = √4 − 𝑥2 en el primer cuadrante, el segmento 𝑥 = 0 entre 𝑦 = 2 ˄ 𝑦 = 1, el arco 𝑦 = √1 − 𝑥2 en el primer cuadrante. Calcular la integral siguiente directamente y utilizando el teorema de Green:
  5. 5. ∫ 𝑥 𝑥2+𝑦2 𝑑𝑥 − 𝑦 𝑥2+𝑦2 𝑑𝑦𝑐 . Resp. 2log2. DATO CURIOSO Consideremos la integral: ∫ 𝐹. 𝑑𝑟 𝐶 donde: 𝐹( 𝑥, 𝑦) = −𝑦 𝑥2 + 𝑦2 𝒊̂ + 𝑥 𝑥2 + 𝑦2 𝒋̂ y 𝑟( 𝑡) = cos 𝑡 𝒊̂ + sin 𝑡 𝒋̂ Como 𝑁𝑥 = 𝑀 𝑦 y 𝐶 es un circulo, cabe esperar que la integral de línea tendrá el valor de 0. Sin embargo, por integración directa resulta ser: ∫ 𝐹. 𝑑𝑟 𝐶 = 2𝜋 ¿Cuál es el resultado correcto y por qué? EJERCICIOS DE APLICACIÓN. Si k(t) = 1 2 mv2 , Donde v es función de t y k(t) representa la energía cinética. Demuestre que si r = ai + bj, entonces: ∫ F. drc = k(b) − k(a). Un hombre de 160 libras de peso sube con una lata de 25 libras de pintura por una escalera helicoidal que rodea un silo, con radio de 20 pies. Si el silo mide 90 pies de alto y el hombre hace exactamente tres revoluciones completas; ¿Cuánto trabajo realiza el hombre contra la gravedad al subir hasta la parte superior?

×