Matemática IV. Ciclo 02/2015 Sección: 03 Guía-Problemas Jonathan λGreen.
UNIVERSIDAD CENTROAMERICANA
“JOSÉ SIMEÓN CAÑAS”
M...
Matemática IV. Ciclo 02/2015 Sección: 03 Guía-Problemas Jonathan λGreen.
Integral de superficie de campos escalares.
1) Ev...
Matemática IV. Ciclo 02/2015 Sección: 03 Guía-Problemas Jonathan λGreen.
6) Calcular ∬ 𝐹 ∙ 𝑁 𝑑𝑠𝑆
, donde 𝐹(𝑥, 𝑦, 𝑧) = 3𝑥𝑦2...
Matemática IV. Ciclo 02/2015 Sección: 03 Guía-Problemas Jonathan λGreen.
5) Calcule, aplicando el teorema de Stokes, la in...
Matemática IV. Ciclo 02/2015 Sección: 03 Guía-Problemas Jonathan λGreen.
3) Determine el flujo térmico que ocurre en el ci...
Prochain SlideShare
Chargement dans…5
×

Guia int de_superficie_teo_de_gauss_y_stokes_02_15

610 vues

Publié le

Cálculo Vectorial

Publié dans : Formation
  • Soyez le premier à commenter

Guia int de_superficie_teo_de_gauss_y_stokes_02_15

  1. 1. Matemática IV. Ciclo 02/2015 Sección: 03 Guía-Problemas Jonathan λGreen. UNIVERSIDAD CENTROAMERICANA “JOSÉ SIMEÓN CAÑAS” MATEMATICA IV SECCIÓN 03 CICLO 02-2015 “INTEGRALES DE SUPERFICIE, TEOREMA DE GAUSS Y STOKES” Profesor: Ing. Eduardo Escapini Peñate Jefe de Instructores: Jonathan Landaverde. Instructores de Células: Silvania Aragón, David Alberto, Jorge Gómez, Sofía García, Jorge Girón. Área de una superficie. 1) Calcular las áreas de las siguientes superficies: i) 𝑧 = 𝑥2 + 𝑦2 , 0 ≤ 𝑧 ≤ 4. 𝑹𝒕𝒂: 𝝅 𝟔 (𝟏𝟕√𝟏𝟕 − 𝟏) ii) 𝑦 = 𝑥2 + 𝑧2 − 1, 0 ≤ 𝑦 ≤ 3. 𝑹𝒕𝒂: 𝝅 𝟔 (𝟏𝟕√𝟏𝟕 − 𝟓√𝟓) iii) 𝑥2 + 𝑦2 + 𝑧2 = 𝑎2 , 𝑧 ≥ 0. 𝑹𝒕𝒂: 𝟐𝝅𝒂 𝟐 2) Hallar las áreas de las superficies siguientes: a) El tronco del cono con ecuación 𝑧 = 𝑎√𝑥2 + 𝑦2 correspondiente a bases de radios 𝑏, 𝑐 con 𝑏 < 𝑐. 𝑹𝒕𝒂: 𝝅√𝟏 + 𝒂 𝟐(𝒄 𝟐 − 𝒃 𝟐 ) b) La superficie esférica 𝑥2 +𝑦2 + 𝑧2 = 9 limitada por el cilindro 𝑥2 +4𝑦2 = 9. 𝑹𝒕𝒂: 𝟏𝟐𝝅 3) Hallar el área del toro circular obtenido al girar una circunferencia de radio 𝑅 alrededor de un eje situado en el plano en el que se encuentra la circunferencia a una distancia 𝑎 > 𝑅 de su centro. 𝑹𝒕𝒂: 𝟒𝝅 𝟐 𝒂𝑹 4) Calcule el área de la porción de superficie conica 𝑥2 +𝑦2 = 𝑧2 , situada por encima del plano 𝑧 = 0 y limitada por la esfera 𝑥2 +𝑦2 + 𝑧2 = 2𝑎𝑥. 𝑹𝒕𝒂: √𝟐𝝅 𝒂 𝟐 𝟒 5) Dado el recinto limitado por los planos 𝑧 = 𝑦 y 𝑧 = 0 y el cilindro 𝑥2 +𝑦2 = 𝑎2 . Calcule el área de la porción de superficie cilindrica comprendida entre los dos planos. 𝑹𝒕𝒂: 𝟒𝒂 𝟐
  2. 2. Matemática IV. Ciclo 02/2015 Sección: 03 Guía-Problemas Jonathan λGreen. Integral de superficie de campos escalares. 1) Evaluar ∬ 𝑥𝑦𝑧 𝑑𝑠𝑆 , donde S es el triángulo de vértices (1,0,0), (0,2,0), (0,1,1). 𝑹𝒕𝒂: √𝟔 𝟑𝟎 2) Evaluar ∬ 𝑧2 𝑑𝑠𝑆 , siendo S la frontera del cubo 𝑆 = [−1, 1] × [−1, 1] × [−1, 1]. 𝑹𝒕𝒂: 𝟒𝟎 𝟑 3) Calcular ∬ (𝑥2 + 𝑦2)𝑑𝑠𝑆 , siendo S la superficie del cono 𝑧2 = 3(𝑥2 + 𝑦2), 0 ≤ 𝑧 ≤ 3. 𝑹𝒕𝒂: 𝟗𝝅 4) Sea S la semiesfera 𝑥2 +𝑦2 + 𝑧2 = 𝑎2 , 𝑧 ≥ 0. Hallar ∬ (𝑥2 +𝑦2 )𝑆 𝑑𝑠. 𝑹𝒕𝒂: 𝟒𝝅𝒂 𝟒 𝟑 5) Calcular ∬ (𝑥4 − 𝑦4 + 𝑦2 𝑧2 − 𝑧2 𝑥2 + 1)𝑑𝑠𝑆 , donde S es el cilindro 𝑥2 +𝑦2 = 2𝑥 que recorta una porción del cono 𝑥2 +𝑦2 = 𝑧2 . 𝑹𝒕𝒂: √𝟐𝝅 Teorema de Gauss. 1) Hallar ∬ ∇ ∙ 𝐹 𝑑𝑠𝑆 , donde S es el elipsoide 𝑥2 + 𝑦2 + 2𝑧2 = 10 y 𝐹(𝑥, 𝑦, 𝑧) = 𝑠𝑒𝑛(𝑥𝑦)𝑖 + 𝑒 𝑥 𝑗 − 𝑦𝑧𝑘. 𝑹𝒕𝒂: 𝟎 2) Sea V un sólido de volumen 13 unidades, limitado por la superficie cerrada S. Sea 𝑅(𝑥, 𝑦, 𝑧) = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘. Hallar ∮ 𝑅 ∙ 𝑑𝑠𝑆 . 𝑹𝒕𝒂: 𝟑𝟗 3) Se considera el campo vectorial 𝐹(𝑥, 𝑦, 𝑧) = 𝑥𝑧𝑖 + 3𝑥𝑦𝑗 − 2𝑧𝑘 y la superficie S, que es el contorno: 𝑉 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3 : 𝑥2 +𝑦2 ≤ 1, 0 ≤ 𝑧 ≤ 3}. Calcular el flujo. 𝑹𝒕𝒂: − 𝟑𝝅 𝟐 4) Se considera el casquete del paraboloide S: 𝑧 = 4 − 𝑥2 − 𝑦2 , 𝑧 ≥ 0 y el campo vectorial 𝐹(𝑥, 𝑦, 𝑧) = 𝑥 (𝑥2+𝑦2+𝑧2) 3 2 𝑖 + 𝑦 (𝑥2+𝑦2+𝑧2) 3 2 𝑗 + 𝑧 (𝑥2+𝑦2+𝑧2) 3 2 𝑘, Hallar el flujo de F a través de S hacia el exterior del paraboloide. 𝑹𝒕𝒂: 𝟐𝝅 5) Sea 𝐹(𝑥, 𝑦, 𝑧) = 𝑦𝑖 + 𝑧𝑗 + 𝑥𝑧𝑘. Evaluar ∬ 𝐹 ∙ 𝑁 𝑑𝑠𝑆 , para cada una de las siguientes regiones S: a) 𝑥2 + 𝑦2 ≤ 𝑧 ≤ 1. 𝑹𝒕𝒂: 𝟎 b) 𝑥2 + 𝑦2 ≤ 𝑧 ≤ 1, 𝑥 ≥ 0. 𝑹𝒕𝒂: 𝟒 𝟏𝟓 c) 𝑥2 + 𝑦2 ≤ 𝑧 ≤ 1, 𝑥 ≤ 0. 𝑹𝒕𝒂: − 𝟒 𝟏𝟓
  3. 3. Matemática IV. Ciclo 02/2015 Sección: 03 Guía-Problemas Jonathan λGreen. 6) Calcular ∬ 𝐹 ∙ 𝑁 𝑑𝑠𝑆 , donde 𝐹(𝑥, 𝑦, 𝑧) = 3𝑥𝑦2 𝑖 + 3𝑥2 𝑦𝑗 + 𝑧3 𝑘 y S es la esfera cuyo radio es la unidad. 𝑹𝒕𝒂: 𝟏𝟐𝝅 𝟓 7) Evaluar ∬ 𝐹 ∙ 𝑁 𝑑𝑠𝑆 , donde 𝐹(𝑥, 𝑦, 𝑧) = 𝑖 + 𝑗 + 𝑧(𝑥2 + 𝑦2 )2 k y S es la superficie del cilindro 𝑥2 + 𝑦2 ≤ 1, 0 ≤ 𝑧 ≤ 1. 𝑹𝒕𝒂: 𝝅 𝟑 8) Sea 𝐹(𝑥, 𝑦, 𝑧) = 2𝑦𝑧𝑖 + (−𝑥 + 3𝑦 + 2)𝑗 + (𝑥2 + 𝑧)𝑘. Calcular ∬ (∇ × 𝐹) ∙ 𝑁 𝑑𝑠𝑆 , donde S es el cilindro 𝑥2 + 𝑦2 ≤ 𝑎2 , 0 ≤ 𝑧 ≤ 1. a) Incluyendo las bases. 𝑹𝒕𝒂: 𝟎 b) Excluyendo las bases. 𝑹𝒕𝒂: 𝟐𝝅𝒂 𝟐 9) Halle el flujo del campo 𝐹(𝑥, 𝑦, 𝑧) = 𝑥3 𝑖 + 𝑦3 𝑗+𝑧3 𝑘 a través de la superficie del cono 𝑥2 + 𝑦2 = 𝑧2 , 𝑐𝑜𝑛 0 ≤ 𝑧 ≤ 𝐻. a) Directamente. 𝑹𝒕𝒂: 𝟏 𝟏𝟎 𝝅𝑯 𝟓 b) Aplicando el Teorema de la Divergencia. 𝑹𝒕𝒂: 𝟏 𝟏𝟎 𝝅𝑯 𝟓 10) Calcule directamente y utilizando el teorema de la divergencia el flujo del campo vectorial 𝐹(𝑥, 𝑦, 𝑧) = 𝑥𝑧𝑖 − 𝑦2 𝑗 + 𝑥𝑧𝑘 a través de la superficie que limita el cilindro 𝑥2 + 𝑦2 ≤ 𝑅2 , 0 ≤ 𝑧 ≤ 3. 𝑹𝒕𝒂: 𝟗 𝟐 𝝅𝑹 𝟐 Teorema de Stokes. 1) Calcular ∮ 2𝑦𝑑𝑥 + 3𝑥𝑑𝑦 − 𝑧2 𝑑𝑧𝑆 , siendo S la circunferencia de ecuaciones paramétricas 𝑥 = 3 cos(𝛾) , 𝑦 = 3𝑠𝑒𝑛(𝛾), 𝑧 = 0, para 0 ≤ 𝛾 ≤ 2𝜋. 𝑹𝒕𝒂: 𝟗𝝅 2) Sea el triángulo de vértices (1,0,0), (0,1,0), (0,0,1). Comprobar el Teorema de Stokes para 𝐹(𝑥, 𝑦, 𝑧) = 𝑦𝑧𝑖 + 𝑥𝑧𝑗 + 𝑥𝑦𝑘. 𝑹𝒕𝒂: 𝑪𝒐𝒎𝒑𝒓𝒖𝒆𝒃𝒆 3) Evaluar ∬ (∇ × 𝐹) ∙ 𝑑𝑆𝑆 , donde 𝐹(𝑥, 𝑦, 𝑧) = (𝑥2 + 𝑦 − 4)𝑖 + 3𝑥𝑦𝑗 + (2𝑥𝑧 + 𝑧2)𝑘 y S es la superficie 𝑥2 + 𝑦2 + 𝑧2 = 16, 𝑧 ≥ 0. a) Directamente. 𝑹𝒕𝒂: − 𝟏𝟔𝝅 b) Mediante el Teorema de Stokes. 𝑹𝒕𝒂: − 𝟏𝟔𝝅 4) Evaluar ∬ (∇ × 𝐹) ∙ 𝑑𝑆𝑆 , donde 𝐹(𝑥, 𝑦, 𝑧) = [(𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘) × (𝑖 + 𝑗 + 𝑘)] y S es la porción de la superficie esférica 𝑥2 + 𝑦2 + 𝑧2 = 1 tal que 𝑥 + 𝑦 + 𝑧 ≥ 1. 𝑹𝒕𝒂: − 𝟒𝝅 √𝟑
  4. 4. Matemática IV. Ciclo 02/2015 Sección: 03 Guía-Problemas Jonathan λGreen. 5) Calcule, aplicando el teorema de Stokes, la integral: ∫ (𝑦 − 1)𝑑𝑥 + 𝑧2 𝑑𝑦 + 𝑦𝑑𝑧𝐶 , donde 𝐶: { 𝑥2 + 𝑦2 = 𝑧2 2 𝑧 = 𝑦 + 1 . 𝑹𝒕𝒂: − √𝟐𝝅 6) Calcule, utilizando el teorema de Stokes, la integral curvilínea: ∫ (2𝑥 + 𝑦 −𝐶 𝑧)𝑑𝑥 + (2𝑥 + 𝑧)𝑑𝑦 + (2𝑥 − 𝑦 − 𝑧)𝑑𝑧, siendo C una parametrización de la curva intersección de las superficies: 4𝑥2 + 4𝑦2 + 𝑧2 = 4 ˄ 2𝑥 − 𝑧 = 0. 𝑹𝒕𝒂: 𝟓𝝅 √𝟐 7) Calcule la integral ∫ 𝑦2 𝑑𝑥 + 𝑥𝑦𝑑𝑦 + 𝑥𝑧𝑑𝑧𝐶 , siendo C la curva intersección del cilindro 𝑥2 + 𝑦2 = 2𝑦 y el plano 𝑦 = 𝑧. a) Directamente. 𝑹𝒕𝒂: 𝟎 b) Aplicando el teorema de Stokes. 𝑹𝒕𝒂: 𝟎 8) Calcule el trabajo realizado por la fuerza 𝐹(𝑥, 𝑦, 𝑧) = (𝑦 − 𝑧)𝑖 + (𝑧 − 𝑥)𝑗 + (𝑥 − 𝑦)𝑘, para trasladar un punto material sobre la curva cerrada C, siendo C una parametrización de la curva dada por las ecuaciones: 𝐶: { 𝑥2 + 𝑦2 = 4 𝑥 = 2 − 2𝑧 .Compruebe el resultado utilizando el teorema de Stokes. 𝑹𝒕𝒂: − 𝟏𝟐𝝅 9) Calcule la integral ∫ 2𝑦𝑧2 𝑑𝑥 + 𝑥𝑧2 𝑑𝑦 + 3𝑥𝑦𝑧𝑑𝑧𝐶 , siendo C la curva intersección de la esfera 𝑥2 + 𝑦2 + 𝑧2 = 4 y el paraboloide 𝑥2 + 𝑦2 = 3𝑧. a) Utilizando integral de línea. b) Aplicando el teorema de Stokes. 𝑹𝒕𝒂: 𝑪𝒐𝒎𝒑𝒓𝒖𝒆𝒃𝒆 10) Halle el flujo del rotacional del campo 𝐹(𝑥, 𝑦, 𝑧) = 𝑥𝑧𝑖 + 𝑦𝑧𝑗 − (𝑥2 + 𝑦2 )𝑘, a través de la porción de la superficie 𝑧 = arctan ( 𝑦 𝑥 ) que se halla dentro del cono 𝑥2 + 𝑦2 = 𝑧2 , entre los planos 𝑧 = 0 𝑦 𝑧 = 3. a) Directamente. b) Utilizando el teorema de Stokes. 𝑹𝒕𝒂: 𝑪𝒐𝒎𝒑𝒓𝒖𝒆𝒃𝒆 Aplicaciones: flujo a través de una superficie. 1) Sea S la superficie cerrada formada por la semiesfera 𝑥2 + 𝑦2 + 𝑧2 = 1, 𝑧 ≥ 0 y su base 𝑥2 + 𝑦2 ≤ 1, 𝑧 = 0. Sea también 𝐸(𝑥, 𝑦, 𝑧) = 2𝑥𝑖 + 2𝑦𝑗 + 2𝑧𝑘 un campo eléctrico definido en ℝ3 . Hallar el flujo a través de S. 𝑹𝒕𝒂: 𝟒𝝅 2) Supongamos que el campo de velocidad de un fluido viene dado por 𝐹(𝑥, 𝑦, 𝑧) = 𝑖 + 𝑥𝑗 + 𝑧𝑘, medido en metros por segundo. Calcular cuántos metros cúbicos de fluido por segundo cruzan la superficie descrita por 𝑥2 + 𝑦2 +𝑧2 = 1, 𝑧 ≥ 0. 𝑹𝒕𝒂: 𝟐𝝅 𝟑 𝒎 𝟑 𝒔
  5. 5. Matemática IV. Ciclo 02/2015 Sección: 03 Guía-Problemas Jonathan λGreen. 3) Determine el flujo térmico que ocurre en el cilindro dado por la ecuación 𝑥2 + 𝑦2 = 4, entre los planos 𝑧 = 1 ˄ 𝑧 = 4, si la temperatura del cuerpo en un momento dado esta dada por 𝑇(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧. 𝑹𝒕𝒂: − 𝟒𝟖𝝅 4) Determine el flujo de fluido hacia afuera (alejándose del eje z) del campo de velocidades dado por 𝑉(𝑥, 𝑦, 𝑧) = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 , si además se sabe que la densidad de dicho fluido es 𝜌 = 𝑘, a través de la superficie del paraboloide 𝑧 = 𝑥2 + 𝑦2 que se encuentra por debajo del plano 𝑧 = 1. 𝑹𝒕𝒂: − 𝟒𝒌𝝅 𝟑 5) Considere una carga puntual 𝑞, cuyo campo eléctrico está definido por 𝐸(𝑥, 𝑦, 𝑧) = 𝑞 4𝜋𝜀𝑟2 (𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘), cuando la carga se encuentra concéntrica con la superficie esférica. Determine el flujo eléctrico, hacia afuera, a través de la esfera de radio a. 𝑹𝒕𝒂: 𝒒 𝜺 Aplicaciones: circulación a través de una superficie. 1) Un fluido de densidad constante gira alrededor del eje z con velocidad 𝑉(𝑥, 𝑦) = 𝜔(−𝑦𝑖 + 𝑥𝑗), donde ω es una constante positiva llamada rapidez angular, muestre que la circulación del campo de velocidades es: ∮ 𝑽 ∙ 𝒅𝒓 = 𝟐𝝅𝝎𝒓 𝟐 𝑪 2) Calcular el trabajo producido por la fuerza 𝐹(𝑥, 𝑦, 𝑧) = −𝑦3 𝑖 + 𝑥3 𝑗 − 𝑧3 𝑘, sobre la trayectoria recorrida en el sentido positivo, dada por la intersección de las superficies 𝑥 + 𝑦 + 𝑧 = 𝑎 ˄ 𝑥2 + 𝑦2 = 𝑎2 . 𝑹𝒕𝒂: 𝟔𝝅𝒂 𝟒 𝟒 3) Calcular y comprobar la circulación del campo de velocidades de un fluido dado por 𝑉(𝑥, 𝑦, 𝑧) = arctan(𝑥2) 𝑖 + 3𝑥𝑗 + 𝑒3𝑧 tan(𝑧) 𝑘, a lo largo de la intersección de la esfera 𝑥2 + 𝑦2 + 𝑧2 = 4 ˄ 𝑥2 + 𝑦2 = 1, 𝑧 > 0. 𝑹𝒕𝒂: 𝟑𝝅 4) Sea el campo de fuerzas 𝐹(𝑥, 𝑦) = (2𝑥𝑦2 + 𝑦)𝑖 + (2𝑥2 𝑦 + 𝑥2 2 + 𝑥) 𝑗. Demostrar que en cualquier camino cerrado simétrico con respecto al eje y, la circulación es cero.

×