SlideShare a Scribd company logo
1 of 104
Download to read offline
2.008x
Machining
MIT 2.008x
Prof. John Hart
2.008x
2.008x
Machine  shop  in  the  DC  printing  office  (1909)
National  Photo  Company  Collection  via  wikimedia.  This  
work  is  in  the  public  domain.
A  present-­day  CNC  machine  shop
“KIM_6446.”  Kim  Becker  (CC  BY  2.0)  via  Flickr
CNC  Tools
“Drill  bit  set”  via  Pixabay.
This  work  is  in  the  public  domain.
2.008x
What  is  the  highest  
volume  CNC  machined  
part  in  history?
2.008x
Manufacturing  the  Macbook ‘unibody’
(+  iPhone  etc)
Excerpt  from:  http://www.youtube.com/watch?v=sxbiIpXZfG8
about  Jony Ive (Apple  VP  of  Design):  http://www.newyorker.com/magazine/2015/02/23/shape-­things-­come  
2.008x
12”  Macbook (released  2015)
Terraced  CNC  housing  to  hold  30%  more  battery  volume;;  single  PCB
2.03  pounds,  0.51”  thick  (max),  9hrs  using  wifi at  75%  brightness
http://www.apple.com/macbook/design/
2.008x
What  is  machining?
§ …  “a  general  term  describing  a  group  of  
processes  that  consist  of  the  removal  of  
material  and  modification   of  the  surfaces
of  a  workpiece  after  it  has  been  produced  
by  various  methods.”  (Kalpakjian and  Schmid)
§ Traditional  machining:  a  rotating  cutter
containing  several  'teeth'  that  removes  
material  from  a  local  region  of  the  part.  
§ Other  machining  processes  that  use  
different  removal  mechanisms  and/or  
energy  sources  include  electron  discharge  
machining  (EDM),  laser  machining,  and  
water  jet  cutting.
Kalpalkian and  Schmid,  Manufacturing  Engineering  and  Technology
2.008x
Machined  parts:  from  small  to  large
Brass  fittings
Image  from  Pixabay.  This  work  is  in  the  public  domain.
iPhone  5  and  6  
housings
Boeing  777  panel  
outboard
Watch  mechanism
https://pixabay.com/en/watch-­
time-­gears-­clock-­time-­clock-­
932693/
2.008x
Diagram  from  Kalpalkian and  Schmid,  Manufacturing  Engineering  and  Technology.
Machining  is  good  at  flat  and  curved  surfaces,  
threads;;  tolerances  ~0.001”
0.5  mm
Brass  fittings
Image  from  Pixabay.  This  work  is  
in  the  public  domain.
2.008x
2 mm
2.008x
Agenda:
Machining
§ Tool-­material  interaction
§ Cutting  mechanics
§ Geometry  and  motion
§ Forces
§ Energy  and  power
§ Demonstration  experiments!
§ Cutting  forces
§ Tools,  finish,  and  wear
§ Milling  (+iPhone  housing)
§ Design  for  machining
§ Conclusion
2.008x
Machining:
2.  Basics  of  
tool-­material  
interaction
2.008x
A  lathe
Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
2.008x
2.008x
CNC  turning  a  chess  rook  (2X  speed)
Turning
Video  excerpt  from:  https://www.youtube.com/watch?v=lcGHtI9Lql4
Diagrams  adopted  from  Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
Contour  turning Facing
Boring  
(internal  turning)
Cutoff  
(with  saw)
2.008x
Basic  cutting  (turning)  nomenclature
§ Feed:  axial  distance  tool  moves  per  
spindle  revolution
§ Depth  of  cut:  amount  of  material  
removed  perpendicular  to  workpiece
§ Spindle  speed:  rotation  speed  of  
workpiece  [RPM]
à The  cutting  tool  is  set  to  a  
certain  depth  of  cut  and  travels  
to  the  left  with  a  certain  
velocity  as  the  workpiece  
rotates  (spindle  speed)
Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
2.008x
Example:  cutting  speed  and  MRR
A  304  stainless  steel  rod  is  being  turned  on  a  lathe.  
§ The  rod  is  initially  2.0  cm  diameter,  and  becomes  1.9  cm  in  a  single  cut.
§ The  spindle  rotates  at  N=300  rpm,  and  the  tool  is  traveling  at  an  axial  speed  of  20  
cm/min.
§ The  specific  cutting  energy  is  4.0  W-­s/mm3
.
à What  is  the  initial  cutting  speed?  (tangential  velocity)
à What  is  the  initial  material  removal  rate  (MRR)?
2.008x
Example:  cutting  speed  and  MRR
à What  is  the  initial  cutting  speed?  (tangential  
velocity)
m/min18.8m/s31.0 === NDV oc π
2.008x
Example:  cutting  speed  and  MRR
à What  is  the  initial  material  removal  rate  (MRR)?
fdVNfdDMRR c== 1π
cm/rev0.067==
N
V
f a
cm0.05
2
=
−
=
fo DD
d
2.008x
Example:  cutting  speed  and  MRR
à What  is  the  initial  material  removal  rate  (MRR)?
fdVNfdDMRR c== 1π
cm/rev0.067==
N
V
f a
cm0.05
2
=
−
=
fo DD
d
/mincm.301 3
== fdVMRR c -­-­-­-­
correct:
6.3  cm3/min
2.008x
Material  removal  =  controlled  failure
Excerpt  from:  https://www.youtube.com/watch?v=mRuSYQ5Npek
Material  is  removed  (and  a  chip  is  produced)  at  the  
head  of  the  tool  by  plastically  deforming  and  
continuously  shearing  the  material
2.008x
What  do  the  tool  and  material  experience  
during  cutting?
§ Force
§ Motion  (sliding,  vibration)
§ Heating
à These  lead  to  deformation  
of  the  workpiece  and  wear  
of  the  tool
à All  of  these  are  coupled  
and  influence  part  quality!
2.008x
How  we’ll  understand  cutting  mechanics
Step  II:
Forces
Step  I:
Motion  &
Deformation
Step  III:
Energy  &
Power
2.008x
Machining:
3.  Tool  motion  and  
material  deformation
2.008x
We  assume  a  2D  (orthogonal)  
cutting  path
Orthogonal  (2D)
Provides  insight  for  understanding
Oblique  (3D)
Realistic,  yet  difficult  to  analyze
x
y
z
x
y
z
2.008x
2D  model:  angles  and  assumptions
Three  important  angles:
§ Rake  angle  α
§ Shear  angle  φ
§ Relief  angle  ε
Shear  plane
Tool
Workpiece
+-­
α
φ
ε
Chip
Assumptions:
§ The  tool  is  perfectly  sharp
§ The  tool  moves  at  a  
constant  V and  t0
§ A  continuous  chip  is  
produced
2.008x
Excerpt  from:  https://www.youtube.com/watch?v=mRuSYQ5Npek
What  type  of  deformation  do  you  see?
α
φ ε
2.008x
Shear  model  of  
orthogonal  cutting
In  reality  the  ‘pages’  are  very  thin  and  
related  to  the  microstructure  of  the  
material  being  cut:  ~0.001-­0.01  mm  
(10-­3-­10-­4  in)  
Tool
Workpiece
Chip
tc
tc
t0
2.008x
Analysis  of  shear  
strain
φ
( ) ( )αφφγ
γ
−+=
+
=
Δ
=
tancot
ac
cdbc
A
x
2.008x
What  do  we  learn?
§ φ ↓  =  γ ↑  or  α ↓  =  γ ↑
§ γ ∼2-­4  (very  large!)
à Think  of  the  material  
‘turning  the  corner’
( ) ( )αφφγ −+= tancot
Shear  plane
Tool
Workpiece
+-­
α
φ
ε
Chip
Analysis  of  shear  strain
2.008x
(Tesla  video)
Here,  digital  image  correlation  (DIC)  is  used  to  map  the  strain  field
NIST  high  speed  videos  of  tool/chip/material  interaction:  http://www.nist.gov/el/isd/sbm/hsds-­machining-­videos.cfm
Mapping  shear  strains  during  cutting
2.008x
Machining:
4.  Cutting  forces
2.008x
Why  do  we  study  
cutting  forces?
§ Forces  are  related  to  the  
material  and  cut  geometry
§ Forces  cause  the  tool  and  
workpiece  to  deform
§ Forces  (and  speed)  
determine  the  power  
required  for  cutting
à The  coupling  of  motion  
and  force  at  the  cutting  
interface  influences  quality,  
tool  life,  and  productivity!
2.008x
Cutting  force  (FC)
Workpiece
+-­
α
φ
Chip
FC
2.008x
Demo  #1:  Measuring  cutting  force
2.008x
Measuring  cutting  force
2.008x
Cut Feedrate
[in/rev]
Spindle
[RPM]
Rake angle
[deg]
Depth of cut
[in]
Diameter
[in]
Force
[lb]
1 0.0042 140 60 0.03 2 0.43
2 0.0147 140 60 0.03 2 0.90
3 0.0147 140 0 0.03 2 1.83
4 0.0147 330 0 0.03 2 2.03
5 0.0147 330 0 0.06 2 3.87
6 0.0147 330 0 0.06 1 3.38
!
Cutting  force  data  from  
video
Tool
Workpiece
+-­
α
φ
ε
Chip
2.008x
Cutting  force  data  for  aluminum  (AA2014)
à Here  too,  cutting  force  depends  strongly  on  feed  (f)  but  not  on  speed  (Vc)
Gokkaya,  “The  Effects  of  Machining  Parameters  on  Cutting  Forces,Surface Roughness,  Built-­Up  Edge  (BUE)  and  Built-­Up  Layer
(BUL)  During  Machining  AA2014  (T4)  Alloy”,  Journal  of  Mechanical  Engineering  56(2010)9,  584-­593
2.008x
Merchant’s  relationship:  relating  the  angles  
(reference  slides  to  be  posted)
is  derived  assuming  that  the  shear  angle  (φ)  self-­adjusts  to  
minimize  the  required  cutting  energy
Tool
Workpiece
+-­
α
φ ε
Chip
à if  rake  angle  ↓  or  friction  angle  ↑:  shear  angle  ↓
à consequences  of  smaller  shear  angle:
§ chip  thickness  ↑
§ energy  dissipation  via  shear  ↑
§ heat  generation  ↑
§ temperature  ↑
224
αβπ
φ +−= [radians]
β =  friction  angle  (µ =  tan  β)
2.008x
Validating  Merchant’s  equation
Chart  adapted  from:  Metal  Cutting  Theory  and  Practice,  
Stephenson  and  Agapiou
224
αβπ
φ +−=
Key  assumptions:
§ Slow,  orthogonal  cutting
§ Constant  material  properties  
with  temperature
§ Simple  sliding  friction
§ No  strain  hardening
α
φ ε
2.008x
Machining:
5.  Field  trip  to  IMTS
2.008x
2.008x
Regular  CNC  machines
Haas  DT1  drill-­tap  center
https://www.haascnc.com/mt_spec1.asp?id=DT-­1&webID=DRILL_TAP_VMC#gsc.tab=0
2.008x
Giant  machines  (25  ton  table  capacity)
2.008x
Lots  of  tools
2.008x
Lots  of  tools
2.008x
2.008x
And  tool  mascots!
2.008x
And  chip  management  systems
2.008x
And  chip  management  systems
2.008x
Machining:
6.  Tools,  finish,  and  
wear
2.008x
Cutting  tools
Monolithic  tool  (e.g.,  HSS  or  Carbide)
Tooling  with  inserts
Diagrams  from  Kalpalkian and  Schmid,  Manufacturing  Engineering  and  Technology
2.008x
Demo  #2:  Tools,  finish,  and  wear
2.008x
Tool
Material
Speed
[RPM]
Depth  of  cut
[in]
Feed  
[in/rev]
MRR
[in3/min]
HSS
90 0.05 0.007 0.40
140 0.05 0.007 0.62
330 0.05 0.007 1.45
Carbide
330 0.05 0.014 2.90
385 0.05 0.014 3.29
585 0.05 0.014 5.15
Demo  #2:  Data
2.008x
Tool  hardness,  temperature  rise
Tmean
∝V a
f b
max
Kalpalkian and  Schmid,  Manufacturing  Engineering  and  Technology
speed  V and  feed  f;;  a  
and  b  are  constants  
that  depend  on  the  tool  
and  part
2.008x
Tool  wear
Depth  of  cut
Flank  wear
Crater
wear
Flank
wear
Crater  wear
on
W
t
Crater Wear
on the Rake
Face
Wear on
the Flank
Face
Deposition
causing a
“Built Up
Edge”
Thermal
Cracking
Images  from  Figure  23.2  Fundamentals  of  Modern  Manufacturing (4th  Edition)  by  Groover.  (c)  Wiley  (2010).
Wear  schematics  from:  http://www.sandvik.coromant.com/en-­us/knowledge/milling/troubleshooting/tool_wear
2.008x
Chips  from  demo:  carbide  tool,  385  RPM
Crater
wear
Flank
wear
à Examine  both  sides
2.008x
Chip  types  (selected)
Continuous chip  (narrow  primary  shear  zone)
§ Ductile  materials  @  high  speed
§ Entanglement  bad  (use  chip  breakers)
Continuous  chip  with  built  up  edge (BUE)
§ Bad  for  surface  finish  and  tool  wear
Discontinuous chip  (good)
§ Brittle  materials;;  very  low  or  very  high  cutting  
speeds
Continuous  chip
Continuous  with  BUE
Discontinuous
Kalpalkian and  Schmid,  Manufacturing  Engineering  and  Technology.
2.008x
What  determines  surface  roughness  of  
machined  parts?
2.008x
Surface  
roughness
Figure  7.44  from  "Product  Design  for  Manufacture  and  Assembly  (2nd  Edition)"  by  
Marinescu,  Boothroyd.  ©  Marcel  Dekker  Publishing  (2002)
2.008x
Taken  using  Zygo profilometer
2.008x
Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology.
Figure  21-­8  from  DeGarmo's Materials  &  Processes  in  Manufacturing (10th  Edition)  by  Black  and  Kohser,  ©  Wiley  (2008).
Improved  tool  materials  à higher  cutting  speed
Layers:  2-­20  μm thick
TiN: low  friction
TiCN: wear  resistance
Al2O3: high  thermal  
stability
Carbide: hardness  and  
fracture  toughness
Rate =  200x  faster  in  
100  years
à ~5%  increase  per  
year,  (1.05)100
à Machine  
requirements?
2.008x
Machining:
7.  Cutting  energy  and  
power
2.008x
Step  II:
Forces
Step  I:
Motion  &
Deformation
Step  III:
Energy  &
Power
2.008x
A  simple estimate  of  cutting  force
FC ~b t0 S
b  =  depth  of  cut  (d  in  turning)
t0 =  feed  (f in  turning)
S  =  strength
Material UTS*  (MPa)
Wax 0.86
Aluminum 110
Aluminum  6061-­T6 310
Steel (high  strength  alloy)  
ASTM  A-­514
760
Titanium  alloys 900
*UTS  =  Ultimate  Tensile  Strength
Shear  strength  ~0.5*UTS
Workpiece
+-­
α
φ
Chip
FC
2.008x
What  other  forces  are  present?
§ Thrust:  Ft
§ Cutting:  Fc
§ Friction:  Ff (µ =  Ff/N)
§ Tool  normal:  N
§ Shear: Fs
§ Chip  Normal: Fn
R
Fc
Ft
Fn
Fs N
Ff
2.008x
Estimating  the  cutting  power
Power  input  =  Power  out  +  Power  dissipated
Power  input:
§ Machine:  Pc =  Fc *  V
Power  dissipation:
§ Shear:  Ps =  Fs *  Vs
§ Friction:  Pf =  Ff *  Vc
Vs V
Vc
Fs
Not  deformed
Plastically  
Deformed
Fc
Fc
α
φ
Chip
-­ +
NOTE
Vc =  velocity  of  chip
V =  cutting  velocity  
(denoted  VC earlier)
2.008x
Contributions  to  cutting  energy
à specific  energy  =  power/MRR
*Kalpakjian
neglects Units  =  
Power/(volume/time)
[W*s/mm3]
Shear +              Friction +              Others                =              TOTAL
Vs V
Vc
Fs
Not  deformed
Plastically  
Deformed
Fc
Fc
α
φ
Chip
-­ +
2.008x
Let’s  estimate  the  cutting  power  and  force
§ A  SS  rod  is  initially  2.0  cm  diameter,  and  
becomes  1.9  cm  in  a  single  cut  (full  rotation).
§ The  spindle  rotates  at  N=400  rpm,  and  the  tool  
is  traveling  at  an  axial  speed  of  20  cm/min.
§ The  specific  cutting  energy  is  4.0  W-­s/mm3
.
à How  much  power  is  required?
MRR = Vfd = πD1Nfd
à
p
d
CKalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
2.008x
Let’s  estimate  the  cutting  power  and  force
§ A  SS  rod  is  initially  2.0  cm  diameter,  and  
becomes  1.9  cm  in  a  single  cut  (full  rotation).
§ The  spindle  rotates  at  N=400  rpm,  and  the  tool  
is  traveling  at  an  axial  speed  of  20  cm/min.
§ The  specific  cutting  energy  is  4.0  W-­s/mm3
.
à How  much  power  is  required?
drive
t
drive
spindle
input
tspindle
MRRuP
P
MRRuP
ηη
==
= MRR = Vfd = πD1Nfd
à
p
d
C
P  =  0.6  kW
with  efficiency  =  0.7  
Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
2.008x
Let’s  estimate  the  cutting  power  and  force
§ A  SS  rod  is  initially  2.0  cm  diameter,  and  
becomes  1.9  cm  in  a  single  cut  (full  rotation).
§ The  spindle  rotates  at  N=400  rpm,  and  the  tool  
is  traveling  at  an  axial  speed  of  20  cm/min.
§ The  specific  cutting  energy  is  4.0  W-­s/mm3
.
à What  is  the  approximate  cutting  force?
MRR = Vfd = πD1Nfd
fdu
V
Vfdu
V
MRRu
F
MRRuVFP
t
tt
c
tcspindle
===
==
à
p
d
C
F =  1  kN
Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
2.008x
Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
Material-­dependent   cutting  energies
à Also  see  ‘machinability  rating’
2.008x
What  did  we  learn  so  far?  (summary)
§ Cutting  removes  material  from  a  workpiece by  (severe)  plastic  
deformation.
§ Using  a  2D  approximation  (applied  to  turning)  we  can  relate  the  
geometry  and  motion  of  the  tool  to  the  cutting  force  and  power  
required.
§ Tool-­material  interaction  is  dominated  by  shear  and  friction,  
causing  deformation  and  heating.
§ Commercial  machine  tools  easily  exert  many  kN of  force  at  
many  kW  of  power.
§ Recommended  cutting  parameters  are  stated  based  on  
material  and  tool  limits.
à Now  let’s  talk  about  milling.
2.008x
Machining:
8.  Milling
2.008x
How  are  milling  and  turning  different?
Excerpt  from  Ingersoll  
https://www.youtube.com/watch?v=IUBQN1JfY80  
Feed  per  tooth  (f)
v =  velocity  of  tool  or  workpiece
N =  rotational  speed
n =  number  of  teeth  (‘flutes’)
Diagrams  from  Kalpalkian and  Schmid,  Manufacturing  Engineering  and  Technology
2.008x
3-­axis  milling  machine
2.008x
Climb milling  versus  
Conventional milling
6061-­T6  Aluminum  with  ¼”  endmill
Spindle  Speed:  4000rpm
Feed:  20.0ipm
Depth  of  cut:  .400”
Width  of  cut:  .070”
Diagrams  from  Kalpalkian and  Schmid,  Manufacturing  Engineering  and  Technology
2.008x
Common  milling  operations
Diagram  from  Kalpalkian and  Schmid,  Manufacturing  Engineering  and  Technology.
2.008x
End$mill
Face$millFly$cutter$
(single$point$for$making$
smooth$surfaces)
2.008x
Front-facing
camera
Faceplate
Screen
(flipped)
Camera
Battery
Logic board
Housing
iPhone 6 chassis assembly
Modified  from:  https://d3nevzfk7ii3be.cloudfront.net/igi/DSCkX6EfcARJYOHa.hug
iPhone  6  teardown
Type	
  of	
  joint Number
Bolted 44
Adhesive 5
Clip 8
Threaded inserts 46
Counted  from  teardown  sequence
2.008x
iPhone  6  housing:  What  do  we  notice?
‘Straight’  
tool  path
‘Curved’  
tool  path
Plastic  insert
Press-­fit  
threaded  
insert
T-­slot  
endmill
2.008x
2.008x
Feature  sizes
0.5  mm
0.5  mm
6  mm
2  mm
2.008x
Tool  paths
Contour-­parallel  tool  path
https://en.wikipedia.or g/wiki /CNC _po
cket_milling
Zig-­zag  tool  path
2.008x
How  the  toolpath for  each  area  is  designed
Add  finishing  passes  
where  needed
Generate  the  pocket  cutting  paths
Contour-­parallel  tool  path Direction-­parallel  tool  path
Begin  with  offset  elements  
of  the  contour  to  generate  
cutting  paths
Step  inwards  or  outwards  
for  subsequent  passes
Select  reference  line  and  mill  along  
parallel  lines
Zig  milling:  Feed  along  spindle  
direction
Zig-­zag:  Both  directions  (includes  
significantly  fewer  tool  retractions)
Finishing  pass  around  features
Contour  parallel  path
Diagrams  from  M.  Held,  On  the  Computational  Geometry  of  Pocket  Machining;;  Lecture  Notes  in  Computer  Science;;  Springer  Berlin  Heidelberg:  Berlin,  
Heidelberg,  1991;;  Vol.  500.
Evaluate  the  shape  of  material  to  be  removed
Boundary  contours  pf  the  pocket
Contours  of  drilled  holes  and  features  such  
as  bosses
2.008x
Optimization  for  
cost  or  time?
Kalpakjian and  Schmid,  Manufacturing Engineering  and  Technology
Cost  of  machining  =
§ Machine  use  ($/time)
§ Tool  cost
§ Tool  change  cost  ($/time)
§ Nonproductive  cost  ($  for  
load/unload  operations  
etc)
Time  (1/rate)  of  machining  =  
§ Machining  time
§ Tool  change  time
§ Nonproductive  time  
(load/unload  etc)
Taylor’s  equation
V*(Tool_life)n =  Constant
2.008x
iPhone  housing:  4  à 5  à 6
§ Materials?
§ Advantages  /  disadvantages  of  each  design?
§ Other  notable  differences?
2.008x
4/5/6  back
2.008x
5-­axis  machining
3-­axis 5-­axis
Photo  from  https://www.youtube.com/watch?v=CqePrbeAQoM
Diagrams  fromhttp://www.awea.com/awea_en/milling/5-­axes/fmv/overview.htm
2.008x
Video  excerpt  from  https://www.youtube.com/watch?v=mudofisRCjA
5-­axis  machining
2.008x
Machining:
9.  Design  guidelines  
for  Machining  
2.008x
Design  for  
Manufacturing  (DFM):  
The  process  of  designing  
parts/products  to  enable  
easier*  and  more  robust**  
manufacturing.
*fewer  steps,  lower  cost
**more  reliable,  better  quality
2.008x
From  Otto  and  Wood,  Product  Design:  Techniques  in  Reverse  Engineering  and  New  Product  Development
Design  for  Machining
Use  standard  dimensions
D  =  0.627” D  =  0.625”
Don’t Do
DoDon’t
Provide  access  for  tools
Avoid  long,  narrow  holes
Avoid  long,  thin  sections  that  
cause  vibration
Do
Don’t Difficult  to  
fixture
Easier  to  
hold
Design  parts  that  are  easy  to  
fixture
Impossible
DoDon’t
Radius  smaller  
than  ¼”
Use  ¼  -­ ½”  
radius  
Design  for  reasonable  internal  
pockets  radii
Impossible
2.008x
DFM:  what’s  wrong  with  this  part?
§ Sharp  internal  corners  are  
impossible!
§ Avoid  thin  sections  à
(deformation,  poor  surface  
finish).
also
§ Minimize  the  number  of  tool  changes,  while  considering  overall  
machining  time  (e.g.,  rough  removal  versus  fine  finishing).
§ Know  the  limits  of  tooling  available  (e.g.  minimum  size,  maximum  depth)!
§ Consider  fixturing (how  you  will  hold  the  part,  and  reference  it  if  re-­
fixtured)
2.008x
Machining:
10.  Conclusion
2.008x
How  is  machining  
advancing  now?
§ Higher  speed  machining,  largely  
driven  by  tool  materials/coatings  
à lower  cost  and  higher  
throughput!
§ Growing  demand  for  machining  
of  advanced  materials,  e.g.,  
titanium,  composites,  etc.
§ Networked  machines  enabling  
remote  process  monitoring  and  
optimization  à toolpath,  cutting  
speed,  tool  life,  surface  quality,  
etc.
2.008x
Excerpt  from:  https://www.youtube.com/watch?v=8Lh600hVyt8  
Figure  adopted  from  20.31,  Degarmo,  Materials  and  Processes  in  Manufacturing
High-­speed  machining:  chip  carries  the  heat  away
Total  heat  generated
%  to  
workpiece
%  to  
tool
%  to  
chip
Cutting  speed
Low High
0
50%
100%
Heat  generated
2.008x
Conclusion:  performance  of  machining
Machining
Rate Low-­Medium
Quality Good!
Cost Wide  range,  depends  on  design,  material,  
production  volume
Flexibility High  (within  machine  
constraints)
2.008x
References
1  Introduction
Photo  of  CNC  Mill  by  Roland  Josch on  Pixabay.  This  work  is  in  the  public  domain.
Photo  of  Machine  Shop  in  DC  Printing  Office  by  National  Photo  Company  from  U.S.  Library  of  
Congress.  This  work  is  in  the  public  domain.
Photo  of  CNC  Machine  Shop  by  Kim  Becker  via  Flickr  (CC  BY)  2.0
Photo  of  Drill  Bit  Set  by  Michael  Schwarzenberger on  Pixabay.  This  work  is  in  the  public  domain.
Video  of  MacBook  Pro  Manufacturing  ©  Apple  Inc.
Image  of  MacBook  Pro  Exploded  View  ©  2016  Apple  Inc.
Machining  Processes:  Figure  1.5e  "Manufacturing  Engineering  &  Technology  (6th  Edition)"  by  
Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2010).
Photo  of  Mechanical  Watch  Mechanism  by  User:  tookapic on  Pixabay.  This  work  is  in  the  public  
domain.
Photo  of  Brass  Fittings  by  Ingbert Merz on  Pixabay.  This  work  is  in  the  public  domain.
Machined  Part:  Figure  IV.3  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  
Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
2.008x
References
2  Basics  of  Tool-­Material-­Interaction
Lathe  Picture:  Figure  23.2   from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  Kalpakjian,  
Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
Video  of  Rook  Machining  ©  2016  Glacern Machine  Tools
Lathe  Cutting  Operations:  Figure  23.1  from  "Manufacturing  Engineering  &  Technology  (6th  Edition)"  
by   Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2009).
Turning  Schematic:  Figure  21.2   from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  Kalpakjian,  
Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
Videos  of  Iscar Chip  Formation  ©  Rick  Steinard.
3  Tool  Motion  and  Material  Interaction
Video  of  Iscar Chip  Formation  ©  Rick  Steinard.
Video  of  Titanium  machining  example,  by  NIST  of  the  U.S.  Dept.  of  Commerce  2009.
Photo  of  CNC  Mill  by  Roland  Josch on  Pixabay.  This  work  is  in  the  public  domain.
2.008x
References
4  Cutting  Forces
Graphs  by  Gokkaya,  “The  Effects  of  Machining  Parameters  on  Cutting  Forces,  Surface  Roughness,  Built-­Up  
Edge  (BUE)  and  Built-­Up  Layer  (BUL)  During  Machining  AA2014  (T4)  Alloy”,  Journal  of  Mechanical  
Engineering  56(2010)9,  584-­593
Shear  Angle  Chart  adapted  from:  Metal  Cutting  Theory  and  Practice,  Stephenson  and  Agapiou
6  Tools  and  Wear
Lathe  Cutting  Tool:  Figure  21.10  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  Kalpakjian,  
Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
Tooling  with  Insert:  Figure  22.3  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  Kalpakjian,  
Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
Temperature  Distribution:  Figure  21.12  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  
Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
Hardness  Chart:  Figure  22.1  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  Kalpakjian,  
Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
2.008x
References
Crater  Wear:  Figure  23.2  from  "Fundamentals  of  Modern  Manufacturing  (4th  Edition)"  by  Groover.  ©  John  
Wiley  &  Sons  Inc.  (2010)
Wear  schematics  images  ©  2000  Sandvik AB
Chip  Types:  Figures  21.5  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  Kalpakjian,  
Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
Machining  Time:  Figure  22.6  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  Kalpakjian,  
Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
Coating  Cross-­Section:  Figure  22.8  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  
Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
Insert:  Figure  21-­8  from  "DeGarmo's Materials  &  Processes  in  Manufacturing  (10th  Edition)"  by  Black  and  
Kohser,  ©  John  Wiley  &  Sons,  Inc.  (2008).
7  Cutting  Energy  and  Power
Turning  Schematic:  Figure  21.2  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  Kalpakjian,  
Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
Cutting  Energies:  Table  21.2  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  Kalpakjian,  
Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
2.008x
References
8  Milling
Video  of  Face  Milling  Slow-­Motion  ©  Ingersoll  Cutting  Tool  Company
Parts  Produced  by  Milling:  Figure  24.1  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  
Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
Milling  Operation  Parameters:  Figure  24.3  b)  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  
by  Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
Conventional  vs.  Climbing:  Figure  24.3  a)  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  
Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
Milling  Operations:  Figure  24.2  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  Kalpakjian,  
Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
Image  of  iPhone  6  ©  2000-­2016  GSMArena.com
Image  of  iPhone  6  Exploded  View  ©  2016  iFixit
Image  of  T-­Slot  End  Mill  Cutter  ©  2003  Bewise Inc.  All  Rights  Reserved
Image  of  Tool  Paths  by  Kangkan iitd on  Wikimedia.  (CC  BY-­SA)  3.0
Pocket  Machining:  Figure  1.3  from  "On  the  Conceptual  Geometry  of  Pocket  Machining"   by  Held  ©  Springer-­
Verlag (1991).
2.008x
References
Toolpaths:  Figure  1.4  from  "On  the  Conceptual  Geometry  of  Pocket  Machining"   by  Held  ©  Springer-­Verlag
(1991).
Cost  Optimization:  Figure  25.17  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  Kalpakjian,  
Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
Diagrams  of  Advantages  of  5-­Axis  Milling  Machines  ©  AWEA  Mechatronic  Co.  LTD.  2016.  All  Rights  
Reserved.
Image   of  5-­Axis  Vertical  Machining  Center  ©  Okuma  America  Corporation.
Video  of  Mazak  Variaxis i700  ©  John  Hart  Pty  Ltd.
9  Design  for  Manufacturing
DFM  Practice  Diagram:  Figure  14.10  from  "Product  Design:  Techniques  in  Reverse  Engineering  and  New  
Product  Development"  by  Otto  and  Wood,  ©  Upper  Saddle  River;;  Pearson  Publishing  (2001)
10  Conclusion
Image  of  Datron M8Cube  ©  2016  DATRON  Dynamics,  Inc.
Heat  vs.  Speed  Diagram:  Figure  20-­31  from  "DeGarmo's Materials  &  Processes  in  Manufacturing  (10th  
Edition)"  by  Black  and  Kohser,  ©  John  Wiley  &  Sons,  Inc.  (2008).

More Related Content

What's hot

Manufacturing engineering and technology - Schmid and Kalpakjian
Manufacturing engineering and technology - Schmid and KalpakjianManufacturing engineering and technology - Schmid and Kalpakjian
Manufacturing engineering and technology - Schmid and Kalpakjianjagdeep_jd
 
Fundamentals of metal forming processes
Fundamentals of metal forming processesFundamentals of metal forming processes
Fundamentals of metal forming processesNaman Dave
 
Finite Element Analysis in Metal Forming processes
Finite Element Analysis in Metal Forming processesFinite Element Analysis in Metal Forming processes
Finite Element Analysis in Metal Forming processesabhishek_hukkerikar
 
Failure analysis of brake disc
Failure analysis of brake discFailure analysis of brake disc
Failure analysis of brake discPankajArvikar1
 
Grinding Machine GTU Manufacturing Process
Grinding Machine GTU Manufacturing ProcessGrinding Machine GTU Manufacturing Process
Grinding Machine GTU Manufacturing ProcessHarsh Patel
 
Metal forming processes with analysis
Metal forming processes with analysisMetal forming processes with analysis
Metal forming processes with analysisGK Arunachalam
 
Metal forming 2
Metal forming 2Metal forming 2
Metal forming 2yagamech
 
Chip formation and types
Chip formation and typesChip formation and types
Chip formation and typesKANNANS94
 
Friction stir welding
Friction stir weldingFriction stir welding
Friction stir weldingluyenkimnet
 
Niaz presentation1
Niaz presentation1Niaz presentation1
Niaz presentation1NIAJ AHMED
 
Advances in tribology
Advances in tribologyAdvances in tribology
Advances in tribologyApurv Tanay
 
CHEMICAL MACHINING - NON TRADITIONAL MACHINING
CHEMICAL MACHINING - NON TRADITIONAL MACHININGCHEMICAL MACHINING - NON TRADITIONAL MACHINING
CHEMICAL MACHINING - NON TRADITIONAL MACHININGSajal Tiwari
 
Mechanics of metal cutting
Mechanics of metal cuttingMechanics of metal cutting
Mechanics of metal cuttingKumar Chirra
 

What's hot (20)

Manufacturing engineering and technology - Schmid and Kalpakjian
Manufacturing engineering and technology - Schmid and KalpakjianManufacturing engineering and technology - Schmid and Kalpakjian
Manufacturing engineering and technology - Schmid and Kalpakjian
 
Fundamentals of metal forming processes
Fundamentals of metal forming processesFundamentals of metal forming processes
Fundamentals of metal forming processes
 
Extrusion
ExtrusionExtrusion
Extrusion
 
Fracture Mechanics & Failure Analysis Lecture 1
Fracture Mechanics & Failure Analysis Lecture 1Fracture Mechanics & Failure Analysis Lecture 1
Fracture Mechanics & Failure Analysis Lecture 1
 
Finite Element Analysis in Metal Forming processes
Finite Element Analysis in Metal Forming processesFinite Element Analysis in Metal Forming processes
Finite Element Analysis in Metal Forming processes
 
Failure analysis of brake disc
Failure analysis of brake discFailure analysis of brake disc
Failure analysis of brake disc
 
Fatigue & Fracture
Fatigue & Fracture Fatigue & Fracture
Fatigue & Fracture
 
Grinding Machine GTU Manufacturing Process
Grinding Machine GTU Manufacturing ProcessGrinding Machine GTU Manufacturing Process
Grinding Machine GTU Manufacturing Process
 
3 d metal printing
3 d metal printing3 d metal printing
3 d metal printing
 
Metal forming processes with analysis
Metal forming processes with analysisMetal forming processes with analysis
Metal forming processes with analysis
 
Metal forming 2
Metal forming 2Metal forming 2
Metal forming 2
 
Ch18
Ch18Ch18
Ch18
 
Chip formation and types
Chip formation and typesChip formation and types
Chip formation and types
 
Friction stir welding
Friction stir weldingFriction stir welding
Friction stir welding
 
Niaz presentation1
Niaz presentation1Niaz presentation1
Niaz presentation1
 
Manufacturing.ppt
Manufacturing.pptManufacturing.ppt
Manufacturing.ppt
 
Advances in tribology
Advances in tribologyAdvances in tribology
Advances in tribology
 
CHEMICAL MACHINING - NON TRADITIONAL MACHINING
CHEMICAL MACHINING - NON TRADITIONAL MACHININGCHEMICAL MACHINING - NON TRADITIONAL MACHINING
CHEMICAL MACHINING - NON TRADITIONAL MACHINING
 
Mechanics of metal cutting
Mechanics of metal cuttingMechanics of metal cutting
Mechanics of metal cutting
 
Sheet metal Fundamentals
Sheet metal Fundamentals Sheet metal Fundamentals
Sheet metal Fundamentals
 

Similar to Machining (MIT 2.008x Lecture Slides)

IRJET- Design and Analysis of Progressive Die for Industrial Component Ta...
IRJET-  	  Design and Analysis of Progressive Die for Industrial Component Ta...IRJET-  	  Design and Analysis of Progressive Die for Industrial Component Ta...
IRJET- Design and Analysis of Progressive Die for Industrial Component Ta...IRJET Journal
 
IRJET- Design and Development of Jig and Fixture for Tacho Bracket
IRJET- Design and Development of Jig and Fixture for Tacho BracketIRJET- Design and Development of Jig and Fixture for Tacho Bracket
IRJET- Design and Development of Jig and Fixture for Tacho BracketIRJET Journal
 
Design and Analysis of Multi Spindle Drilling Head with Adjustable Centre Dis...
Design and Analysis of Multi Spindle Drilling Head with Adjustable Centre Dis...Design and Analysis of Multi Spindle Drilling Head with Adjustable Centre Dis...
Design and Analysis of Multi Spindle Drilling Head with Adjustable Centre Dis...IRJET Journal
 
IRJET- Design and Analysis of Progressive Tool for U-Bracket of Power Met...
IRJET-  	  Design and Analysis of Progressive Tool for U-Bracket of Power Met...IRJET-  	  Design and Analysis of Progressive Tool for U-Bracket of Power Met...
IRJET- Design and Analysis of Progressive Tool for U-Bracket of Power Met...IRJET Journal
 
IRJET-Split Casing Open Differential without Cross Pin and it’s Comparison wi...
IRJET-Split Casing Open Differential without Cross Pin and it’s Comparison wi...IRJET-Split Casing Open Differential without Cross Pin and it’s Comparison wi...
IRJET-Split Casing Open Differential without Cross Pin and it’s Comparison wi...IRJET Journal
 
Portfolio_Huizhe_Zhao_6-19-2016
Portfolio_Huizhe_Zhao_6-19-2016Portfolio_Huizhe_Zhao_6-19-2016
Portfolio_Huizhe_Zhao_6-19-2016Huizhe (Lucy) Zhao
 
Project final edited
Project final editedProject final edited
Project final editedmamamolu
 
Project final edited
Project final editedProject final edited
Project final editedmamamolu
 
Project final edited
Project final editedProject final edited
Project final editedmamamolu
 
Variation and Quality (2.008x Lecture Slides)
Variation and Quality (2.008x Lecture Slides)Variation and Quality (2.008x Lecture Slides)
Variation and Quality (2.008x Lecture Slides)A. John Hart
 
Case study: Understanding Human Factors and Materials in selection of Slitter...
Case study: Understanding Human Factors and Materials in selection of Slitter...Case study: Understanding Human Factors and Materials in selection of Slitter...
Case study: Understanding Human Factors and Materials in selection of Slitter...Stefan
 
DESIGN AND DEVELOPMENT OF ELECTRO-MECHANICAL LIFTING JACK
DESIGN AND DEVELOPMENT OF ELECTRO-MECHANICAL LIFTING JACKDESIGN AND DEVELOPMENT OF ELECTRO-MECHANICAL LIFTING JACK
DESIGN AND DEVELOPMENT OF ELECTRO-MECHANICAL LIFTING JACKIRJET Journal
 
Topic2machining160214 150511102545-lva1-app6892
Topic2machining160214 150511102545-lva1-app6892Topic2machining160214 150511102545-lva1-app6892
Topic2machining160214 150511102545-lva1-app6892manojkumarg1990
 
Topic 2 machining 160214
Topic 2 machining 160214Topic 2 machining 160214
Topic 2 machining 160214Huai123
 
NON-CONVENTIONAL MACHINING PROCESSES
NON-CONVENTIONAL MACHINING PROCESSESNON-CONVENTIONAL MACHINING PROCESSES
NON-CONVENTIONAL MACHINING PROCESSESHasan Akhtar
 
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...Franco Bontempi
 
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...StroNGER2012
 

Similar to Machining (MIT 2.008x Lecture Slides) (20)

Ijmet 06 08_008
Ijmet 06 08_008Ijmet 06 08_008
Ijmet 06 08_008
 
Ijmet 06 08_008
Ijmet 06 08_008Ijmet 06 08_008
Ijmet 06 08_008
 
IRJET- Design and Analysis of Progressive Die for Industrial Component Ta...
IRJET-  	  Design and Analysis of Progressive Die for Industrial Component Ta...IRJET-  	  Design and Analysis of Progressive Die for Industrial Component Ta...
IRJET- Design and Analysis of Progressive Die for Industrial Component Ta...
 
IRJET- Design and Development of Jig and Fixture for Tacho Bracket
IRJET- Design and Development of Jig and Fixture for Tacho BracketIRJET- Design and Development of Jig and Fixture for Tacho Bracket
IRJET- Design and Development of Jig and Fixture for Tacho Bracket
 
Design and Analysis of Multi Spindle Drilling Head with Adjustable Centre Dis...
Design and Analysis of Multi Spindle Drilling Head with Adjustable Centre Dis...Design and Analysis of Multi Spindle Drilling Head with Adjustable Centre Dis...
Design and Analysis of Multi Spindle Drilling Head with Adjustable Centre Dis...
 
IRJET- Design and Analysis of Progressive Tool for U-Bracket of Power Met...
IRJET-  	  Design and Analysis of Progressive Tool for U-Bracket of Power Met...IRJET-  	  Design and Analysis of Progressive Tool for U-Bracket of Power Met...
IRJET- Design and Analysis of Progressive Tool for U-Bracket of Power Met...
 
B012460814
B012460814B012460814
B012460814
 
IRJET-Split Casing Open Differential without Cross Pin and it’s Comparison wi...
IRJET-Split Casing Open Differential without Cross Pin and it’s Comparison wi...IRJET-Split Casing Open Differential without Cross Pin and it’s Comparison wi...
IRJET-Split Casing Open Differential without Cross Pin and it’s Comparison wi...
 
Portfolio_Huizhe_Zhao_6-19-2016
Portfolio_Huizhe_Zhao_6-19-2016Portfolio_Huizhe_Zhao_6-19-2016
Portfolio_Huizhe_Zhao_6-19-2016
 
Project final edited
Project final editedProject final edited
Project final edited
 
Project final edited
Project final editedProject final edited
Project final edited
 
Project final edited
Project final editedProject final edited
Project final edited
 
Variation and Quality (2.008x Lecture Slides)
Variation and Quality (2.008x Lecture Slides)Variation and Quality (2.008x Lecture Slides)
Variation and Quality (2.008x Lecture Slides)
 
Case study: Understanding Human Factors and Materials in selection of Slitter...
Case study: Understanding Human Factors and Materials in selection of Slitter...Case study: Understanding Human Factors and Materials in selection of Slitter...
Case study: Understanding Human Factors and Materials in selection of Slitter...
 
DESIGN AND DEVELOPMENT OF ELECTRO-MECHANICAL LIFTING JACK
DESIGN AND DEVELOPMENT OF ELECTRO-MECHANICAL LIFTING JACKDESIGN AND DEVELOPMENT OF ELECTRO-MECHANICAL LIFTING JACK
DESIGN AND DEVELOPMENT OF ELECTRO-MECHANICAL LIFTING JACK
 
Topic2machining160214 150511102545-lva1-app6892
Topic2machining160214 150511102545-lva1-app6892Topic2machining160214 150511102545-lva1-app6892
Topic2machining160214 150511102545-lva1-app6892
 
Topic 2 machining 160214
Topic 2 machining 160214Topic 2 machining 160214
Topic 2 machining 160214
 
NON-CONVENTIONAL MACHINING PROCESSES
NON-CONVENTIONAL MACHINING PROCESSESNON-CONVENTIONAL MACHINING PROCESSES
NON-CONVENTIONAL MACHINING PROCESSES
 
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
 
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
 

Recently uploaded

(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesPrabhanshu Chaturvedi
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 

Recently uploaded (20)

(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 

Machining (MIT 2.008x Lecture Slides)

  • 3. 2.008x Machine  shop  in  the  DC  printing  office  (1909) National  Photo  Company  Collection  via  wikimedia.  This   work  is  in  the  public  domain. A  present-­day  CNC  machine  shop “KIM_6446.”  Kim  Becker  (CC  BY  2.0)  via  Flickr CNC  Tools “Drill  bit  set”  via  Pixabay. This  work  is  in  the  public  domain.
  • 4. 2.008x What  is  the  highest   volume  CNC  machined   part  in  history?
  • 5. 2.008x Manufacturing  the  Macbook ‘unibody’ (+  iPhone  etc) Excerpt  from:  http://www.youtube.com/watch?v=sxbiIpXZfG8 about  Jony Ive (Apple  VP  of  Design):  http://www.newyorker.com/magazine/2015/02/23/shape-­things-­come  
  • 6. 2.008x 12”  Macbook (released  2015) Terraced  CNC  housing  to  hold  30%  more  battery  volume;;  single  PCB 2.03  pounds,  0.51”  thick  (max),  9hrs  using  wifi at  75%  brightness http://www.apple.com/macbook/design/
  • 7. 2.008x What  is  machining? § …  “a  general  term  describing  a  group  of   processes  that  consist  of  the  removal  of   material  and  modification   of  the  surfaces of  a  workpiece  after  it  has  been  produced   by  various  methods.”  (Kalpakjian and  Schmid) § Traditional  machining:  a  rotating  cutter containing  several  'teeth'  that  removes   material  from  a  local  region  of  the  part.   § Other  machining  processes  that  use   different  removal  mechanisms  and/or   energy  sources  include  electron  discharge   machining  (EDM),  laser  machining,  and   water  jet  cutting. Kalpalkian and  Schmid,  Manufacturing  Engineering  and  Technology
  • 8. 2.008x Machined  parts:  from  small  to  large Brass  fittings Image  from  Pixabay.  This  work  is  in  the  public  domain. iPhone  5  and  6   housings Boeing  777  panel   outboard Watch  mechanism https://pixabay.com/en/watch-­ time-­gears-­clock-­time-­clock-­ 932693/
  • 9. 2.008x Diagram  from  Kalpalkian and  Schmid,  Manufacturing  Engineering  and  Technology. Machining  is  good  at  flat  and  curved  surfaces,   threads;;  tolerances  ~0.001” 0.5  mm Brass  fittings Image  from  Pixabay.  This  work  is   in  the  public  domain.
  • 11. 2.008x Agenda: Machining § Tool-­material  interaction § Cutting  mechanics § Geometry  and  motion § Forces § Energy  and  power § Demonstration  experiments! § Cutting  forces § Tools,  finish,  and  wear § Milling  (+iPhone  housing) § Design  for  machining § Conclusion
  • 12. 2.008x Machining: 2.  Basics  of   tool-­material   interaction
  • 13. 2.008x A  lathe Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
  • 15. 2.008x CNC  turning  a  chess  rook  (2X  speed) Turning Video  excerpt  from:  https://www.youtube.com/watch?v=lcGHtI9Lql4 Diagrams  adopted  from  Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology Contour  turning Facing Boring   (internal  turning) Cutoff   (with  saw)
  • 16. 2.008x Basic  cutting  (turning)  nomenclature § Feed:  axial  distance  tool  moves  per   spindle  revolution § Depth  of  cut:  amount  of  material   removed  perpendicular  to  workpiece § Spindle  speed:  rotation  speed  of   workpiece  [RPM] à The  cutting  tool  is  set  to  a   certain  depth  of  cut  and  travels   to  the  left  with  a  certain   velocity  as  the  workpiece   rotates  (spindle  speed) Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
  • 17. 2.008x Example:  cutting  speed  and  MRR A  304  stainless  steel  rod  is  being  turned  on  a  lathe.   § The  rod  is  initially  2.0  cm  diameter,  and  becomes  1.9  cm  in  a  single  cut. § The  spindle  rotates  at  N=300  rpm,  and  the  tool  is  traveling  at  an  axial  speed  of  20   cm/min. § The  specific  cutting  energy  is  4.0  W-­s/mm3 . à What  is  the  initial  cutting  speed?  (tangential  velocity) à What  is  the  initial  material  removal  rate  (MRR)?
  • 18. 2.008x Example:  cutting  speed  and  MRR à What  is  the  initial  cutting  speed?  (tangential   velocity) m/min18.8m/s31.0 === NDV oc π
  • 19. 2.008x Example:  cutting  speed  and  MRR à What  is  the  initial  material  removal  rate  (MRR)? fdVNfdDMRR c== 1π cm/rev0.067== N V f a cm0.05 2 = − = fo DD d
  • 20. 2.008x Example:  cutting  speed  and  MRR à What  is  the  initial  material  removal  rate  (MRR)? fdVNfdDMRR c== 1π cm/rev0.067== N V f a cm0.05 2 = − = fo DD d /mincm.301 3 == fdVMRR c -­-­-­-­ correct: 6.3  cm3/min
  • 21. 2.008x Material  removal  =  controlled  failure Excerpt  from:  https://www.youtube.com/watch?v=mRuSYQ5Npek Material  is  removed  (and  a  chip  is  produced)  at  the   head  of  the  tool  by  plastically  deforming  and   continuously  shearing  the  material
  • 22. 2.008x What  do  the  tool  and  material  experience   during  cutting? § Force § Motion  (sliding,  vibration) § Heating à These  lead  to  deformation   of  the  workpiece  and  wear   of  the  tool à All  of  these  are  coupled   and  influence  part  quality!
  • 23. 2.008x How  we’ll  understand  cutting  mechanics Step  II: Forces Step  I: Motion  & Deformation Step  III: Energy  & Power
  • 24. 2.008x Machining: 3.  Tool  motion  and   material  deformation
  • 25. 2.008x We  assume  a  2D  (orthogonal)   cutting  path Orthogonal  (2D) Provides  insight  for  understanding Oblique  (3D) Realistic,  yet  difficult  to  analyze x y z x y z
  • 26. 2.008x 2D  model:  angles  and  assumptions Three  important  angles: § Rake  angle  α § Shear  angle  φ § Relief  angle  ε Shear  plane Tool Workpiece +-­ α φ ε Chip Assumptions: § The  tool  is  perfectly  sharp § The  tool  moves  at  a   constant  V and  t0 § A  continuous  chip  is   produced
  • 27. 2.008x Excerpt  from:  https://www.youtube.com/watch?v=mRuSYQ5Npek What  type  of  deformation  do  you  see? α φ ε
  • 28. 2.008x Shear  model  of   orthogonal  cutting In  reality  the  ‘pages’  are  very  thin  and   related  to  the  microstructure  of  the   material  being  cut:  ~0.001-­0.01  mm   (10-­3-­10-­4  in)   Tool Workpiece Chip tc tc t0
  • 29. 2.008x Analysis  of  shear   strain φ ( ) ( )αφφγ γ −+= + = Δ = tancot ac cdbc A x
  • 30. 2.008x What  do  we  learn? § φ ↓  =  γ ↑  or  α ↓  =  γ ↑ § γ ∼2-­4  (very  large!) à Think  of  the  material   ‘turning  the  corner’ ( ) ( )αφφγ −+= tancot Shear  plane Tool Workpiece +-­ α φ ε Chip Analysis  of  shear  strain
  • 31. 2.008x (Tesla  video) Here,  digital  image  correlation  (DIC)  is  used  to  map  the  strain  field NIST  high  speed  videos  of  tool/chip/material  interaction:  http://www.nist.gov/el/isd/sbm/hsds-­machining-­videos.cfm Mapping  shear  strains  during  cutting
  • 33. 2.008x Why  do  we  study   cutting  forces? § Forces  are  related  to  the   material  and  cut  geometry § Forces  cause  the  tool  and   workpiece  to  deform § Forces  (and  speed)   determine  the  power   required  for  cutting à The  coupling  of  motion   and  force  at  the  cutting   interface  influences  quality,   tool  life,  and  productivity!
  • 35. 2.008x Demo  #1:  Measuring  cutting  force
  • 37. 2.008x Cut Feedrate [in/rev] Spindle [RPM] Rake angle [deg] Depth of cut [in] Diameter [in] Force [lb] 1 0.0042 140 60 0.03 2 0.43 2 0.0147 140 60 0.03 2 0.90 3 0.0147 140 0 0.03 2 1.83 4 0.0147 330 0 0.03 2 2.03 5 0.0147 330 0 0.06 2 3.87 6 0.0147 330 0 0.06 1 3.38 ! Cutting  force  data  from   video Tool Workpiece +-­ α φ ε Chip
  • 38. 2.008x Cutting  force  data  for  aluminum  (AA2014) à Here  too,  cutting  force  depends  strongly  on  feed  (f)  but  not  on  speed  (Vc) Gokkaya,  “The  Effects  of  Machining  Parameters  on  Cutting  Forces,Surface Roughness,  Built-­Up  Edge  (BUE)  and  Built-­Up  Layer (BUL)  During  Machining  AA2014  (T4)  Alloy”,  Journal  of  Mechanical  Engineering  56(2010)9,  584-­593
  • 39. 2.008x Merchant’s  relationship:  relating  the  angles   (reference  slides  to  be  posted) is  derived  assuming  that  the  shear  angle  (φ)  self-­adjusts  to   minimize  the  required  cutting  energy Tool Workpiece +-­ α φ ε Chip à if  rake  angle  ↓  or  friction  angle  ↑:  shear  angle  ↓ à consequences  of  smaller  shear  angle: § chip  thickness  ↑ § energy  dissipation  via  shear  ↑ § heat  generation  ↑ § temperature  ↑ 224 αβπ φ +−= [radians] β =  friction  angle  (µ =  tan  β)
  • 40. 2.008x Validating  Merchant’s  equation Chart  adapted  from:  Metal  Cutting  Theory  and  Practice,   Stephenson  and  Agapiou 224 αβπ φ +−= Key  assumptions: § Slow,  orthogonal  cutting § Constant  material  properties   with  temperature § Simple  sliding  friction § No  strain  hardening α φ ε
  • 43. 2.008x Regular  CNC  machines Haas  DT1  drill-­tap  center https://www.haascnc.com/mt_spec1.asp?id=DT-­1&webID=DRILL_TAP_VMC#gsc.tab=0
  • 44. 2.008x Giant  machines  (25  ton  table  capacity)
  • 52. 2.008x Cutting  tools Monolithic  tool  (e.g.,  HSS  or  Carbide) Tooling  with  inserts Diagrams  from  Kalpalkian and  Schmid,  Manufacturing  Engineering  and  Technology
  • 53. 2.008x Demo  #2:  Tools,  finish,  and  wear
  • 54. 2.008x Tool Material Speed [RPM] Depth  of  cut [in] Feed   [in/rev] MRR [in3/min] HSS 90 0.05 0.007 0.40 140 0.05 0.007 0.62 330 0.05 0.007 1.45 Carbide 330 0.05 0.014 2.90 385 0.05 0.014 3.29 585 0.05 0.014 5.15 Demo  #2:  Data
  • 55. 2.008x Tool  hardness,  temperature  rise Tmean ∝V a f b max Kalpalkian and  Schmid,  Manufacturing  Engineering  and  Technology speed  V and  feed  f;;  a   and  b  are  constants   that  depend  on  the  tool   and  part
  • 56. 2.008x Tool  wear Depth  of  cut Flank  wear Crater wear Flank wear Crater  wear on W t Crater Wear on the Rake Face Wear on the Flank Face Deposition causing a “Built Up Edge” Thermal Cracking Images  from  Figure  23.2  Fundamentals  of  Modern  Manufacturing (4th  Edition)  by  Groover.  (c)  Wiley  (2010). Wear  schematics  from:  http://www.sandvik.coromant.com/en-­us/knowledge/milling/troubleshooting/tool_wear
  • 57. 2.008x Chips  from  demo:  carbide  tool,  385  RPM Crater wear Flank wear à Examine  both  sides
  • 58. 2.008x Chip  types  (selected) Continuous chip  (narrow  primary  shear  zone) § Ductile  materials  @  high  speed § Entanglement  bad  (use  chip  breakers) Continuous  chip  with  built  up  edge (BUE) § Bad  for  surface  finish  and  tool  wear Discontinuous chip  (good) § Brittle  materials;;  very  low  or  very  high  cutting   speeds Continuous  chip Continuous  with  BUE Discontinuous Kalpalkian and  Schmid,  Manufacturing  Engineering  and  Technology.
  • 59. 2.008x What  determines  surface  roughness  of   machined  parts?
  • 60. 2.008x Surface   roughness Figure  7.44  from  "Product  Design  for  Manufacture  and  Assembly  (2nd  Edition)"  by   Marinescu,  Boothroyd.  ©  Marcel  Dekker  Publishing  (2002)
  • 62. 2.008x Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology. Figure  21-­8  from  DeGarmo's Materials  &  Processes  in  Manufacturing (10th  Edition)  by  Black  and  Kohser,  ©  Wiley  (2008). Improved  tool  materials  à higher  cutting  speed Layers:  2-­20  μm thick TiN: low  friction TiCN: wear  resistance Al2O3: high  thermal   stability Carbide: hardness  and   fracture  toughness Rate =  200x  faster  in   100  years à ~5%  increase  per   year,  (1.05)100 à Machine   requirements?
  • 64. 2.008x Step  II: Forces Step  I: Motion  & Deformation Step  III: Energy  & Power
  • 65. 2.008x A  simple estimate  of  cutting  force FC ~b t0 S b  =  depth  of  cut  (d  in  turning) t0 =  feed  (f in  turning) S  =  strength Material UTS*  (MPa) Wax 0.86 Aluminum 110 Aluminum  6061-­T6 310 Steel (high  strength  alloy)   ASTM  A-­514 760 Titanium  alloys 900 *UTS  =  Ultimate  Tensile  Strength Shear  strength  ~0.5*UTS Workpiece +-­ α φ Chip FC
  • 66. 2.008x What  other  forces  are  present? § Thrust:  Ft § Cutting:  Fc § Friction:  Ff (µ =  Ff/N) § Tool  normal:  N § Shear: Fs § Chip  Normal: Fn R Fc Ft Fn Fs N Ff
  • 67. 2.008x Estimating  the  cutting  power Power  input  =  Power  out  +  Power  dissipated Power  input: § Machine:  Pc =  Fc *  V Power  dissipation: § Shear:  Ps =  Fs *  Vs § Friction:  Pf =  Ff *  Vc Vs V Vc Fs Not  deformed Plastically   Deformed Fc Fc α φ Chip -­ + NOTE Vc =  velocity  of  chip V =  cutting  velocity   (denoted  VC earlier)
  • 68. 2.008x Contributions  to  cutting  energy à specific  energy  =  power/MRR *Kalpakjian neglects Units  =   Power/(volume/time) [W*s/mm3] Shear +              Friction +              Others                =              TOTAL Vs V Vc Fs Not  deformed Plastically   Deformed Fc Fc α φ Chip -­ +
  • 69. 2.008x Let’s  estimate  the  cutting  power  and  force § A  SS  rod  is  initially  2.0  cm  diameter,  and   becomes  1.9  cm  in  a  single  cut  (full  rotation). § The  spindle  rotates  at  N=400  rpm,  and  the  tool   is  traveling  at  an  axial  speed  of  20  cm/min. § The  specific  cutting  energy  is  4.0  W-­s/mm3 . à How  much  power  is  required? MRR = Vfd = πD1Nfd à p d CKalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
  • 70. 2.008x Let’s  estimate  the  cutting  power  and  force § A  SS  rod  is  initially  2.0  cm  diameter,  and   becomes  1.9  cm  in  a  single  cut  (full  rotation). § The  spindle  rotates  at  N=400  rpm,  and  the  tool   is  traveling  at  an  axial  speed  of  20  cm/min. § The  specific  cutting  energy  is  4.0  W-­s/mm3 . à How  much  power  is  required? drive t drive spindle input tspindle MRRuP P MRRuP ηη == = MRR = Vfd = πD1Nfd à p d C P  =  0.6  kW with  efficiency  =  0.7   Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
  • 71. 2.008x Let’s  estimate  the  cutting  power  and  force § A  SS  rod  is  initially  2.0  cm  diameter,  and   becomes  1.9  cm  in  a  single  cut  (full  rotation). § The  spindle  rotates  at  N=400  rpm,  and  the  tool   is  traveling  at  an  axial  speed  of  20  cm/min. § The  specific  cutting  energy  is  4.0  W-­s/mm3 . à What  is  the  approximate  cutting  force? MRR = Vfd = πD1Nfd fdu V Vfdu V MRRu F MRRuVFP t tt c tcspindle === == à p d C F =  1  kN Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology
  • 72. 2.008x Kalpakjian and  Schmid,  Manufacturing  Engineering  and  Technology Material-­dependent   cutting  energies à Also  see  ‘machinability  rating’
  • 73. 2.008x What  did  we  learn  so  far?  (summary) § Cutting  removes  material  from  a  workpiece by  (severe)  plastic   deformation. § Using  a  2D  approximation  (applied  to  turning)  we  can  relate  the   geometry  and  motion  of  the  tool  to  the  cutting  force  and  power   required. § Tool-­material  interaction  is  dominated  by  shear  and  friction,   causing  deformation  and  heating. § Commercial  machine  tools  easily  exert  many  kN of  force  at   many  kW  of  power. § Recommended  cutting  parameters  are  stated  based  on   material  and  tool  limits. à Now  let’s  talk  about  milling.
  • 75. 2.008x How  are  milling  and  turning  different? Excerpt  from  Ingersoll   https://www.youtube.com/watch?v=IUBQN1JfY80   Feed  per  tooth  (f) v =  velocity  of  tool  or  workpiece N =  rotational  speed n =  number  of  teeth  (‘flutes’) Diagrams  from  Kalpalkian and  Schmid,  Manufacturing  Engineering  and  Technology
  • 77. 2.008x Climb milling  versus   Conventional milling 6061-­T6  Aluminum  with  ¼”  endmill Spindle  Speed:  4000rpm Feed:  20.0ipm Depth  of  cut:  .400” Width  of  cut:  .070” Diagrams  from  Kalpalkian and  Schmid,  Manufacturing  Engineering  and  Technology
  • 78. 2.008x Common  milling  operations Diagram  from  Kalpalkian and  Schmid,  Manufacturing  Engineering  and  Technology.
  • 80. 2.008x Front-facing camera Faceplate Screen (flipped) Camera Battery Logic board Housing iPhone 6 chassis assembly Modified  from:  https://d3nevzfk7ii3be.cloudfront.net/igi/DSCkX6EfcARJYOHa.hug iPhone  6  teardown Type  of  joint Number Bolted 44 Adhesive 5 Clip 8 Threaded inserts 46 Counted  from  teardown  sequence
  • 81. 2.008x iPhone  6  housing:  What  do  we  notice? ‘Straight’   tool  path ‘Curved’   tool  path Plastic  insert Press-­fit   threaded   insert T-­slot   endmill
  • 84. 2.008x Tool  paths Contour-­parallel  tool  path https://en.wikipedia.or g/wiki /CNC _po cket_milling Zig-­zag  tool  path
  • 85. 2.008x How  the  toolpath for  each  area  is  designed Add  finishing  passes   where  needed Generate  the  pocket  cutting  paths Contour-­parallel  tool  path Direction-­parallel  tool  path Begin  with  offset  elements   of  the  contour  to  generate   cutting  paths Step  inwards  or  outwards   for  subsequent  passes Select  reference  line  and  mill  along   parallel  lines Zig  milling:  Feed  along  spindle   direction Zig-­zag:  Both  directions  (includes   significantly  fewer  tool  retractions) Finishing  pass  around  features Contour  parallel  path Diagrams  from  M.  Held,  On  the  Computational  Geometry  of  Pocket  Machining;;  Lecture  Notes  in  Computer  Science;;  Springer  Berlin  Heidelberg:  Berlin,   Heidelberg,  1991;;  Vol.  500. Evaluate  the  shape  of  material  to  be  removed Boundary  contours  pf  the  pocket Contours  of  drilled  holes  and  features  such   as  bosses
  • 86. 2.008x Optimization  for   cost  or  time? Kalpakjian and  Schmid,  Manufacturing Engineering  and  Technology Cost  of  machining  = § Machine  use  ($/time) § Tool  cost § Tool  change  cost  ($/time) § Nonproductive  cost  ($  for   load/unload  operations   etc) Time  (1/rate)  of  machining  =   § Machining  time § Tool  change  time § Nonproductive  time   (load/unload  etc) Taylor’s  equation V*(Tool_life)n =  Constant
  • 87. 2.008x iPhone  housing:  4  à 5  à 6 § Materials? § Advantages  /  disadvantages  of  each  design? § Other  notable  differences?
  • 89. 2.008x 5-­axis  machining 3-­axis 5-­axis Photo  from  https://www.youtube.com/watch?v=CqePrbeAQoM Diagrams  fromhttp://www.awea.com/awea_en/milling/5-­axes/fmv/overview.htm
  • 90. 2.008x Video  excerpt  from  https://www.youtube.com/watch?v=mudofisRCjA 5-­axis  machining
  • 92. 2.008x Design  for   Manufacturing  (DFM):   The  process  of  designing   parts/products  to  enable   easier*  and  more  robust**   manufacturing. *fewer  steps,  lower  cost **more  reliable,  better  quality
  • 93. 2.008x From  Otto  and  Wood,  Product  Design:  Techniques  in  Reverse  Engineering  and  New  Product  Development Design  for  Machining Use  standard  dimensions D  =  0.627” D  =  0.625” Don’t Do DoDon’t Provide  access  for  tools Avoid  long,  narrow  holes Avoid  long,  thin  sections  that   cause  vibration Do Don’t Difficult  to   fixture Easier  to   hold Design  parts  that  are  easy  to   fixture Impossible DoDon’t Radius  smaller   than  ¼” Use  ¼  -­ ½”   radius   Design  for  reasonable  internal   pockets  radii Impossible
  • 94. 2.008x DFM:  what’s  wrong  with  this  part? § Sharp  internal  corners  are   impossible! § Avoid  thin  sections  à (deformation,  poor  surface   finish). also § Minimize  the  number  of  tool  changes,  while  considering  overall   machining  time  (e.g.,  rough  removal  versus  fine  finishing). § Know  the  limits  of  tooling  available  (e.g.  minimum  size,  maximum  depth)! § Consider  fixturing (how  you  will  hold  the  part,  and  reference  it  if  re-­ fixtured)
  • 96. 2.008x How  is  machining   advancing  now? § Higher  speed  machining,  largely   driven  by  tool  materials/coatings   à lower  cost  and  higher   throughput! § Growing  demand  for  machining   of  advanced  materials,  e.g.,   titanium,  composites,  etc. § Networked  machines  enabling   remote  process  monitoring  and   optimization  à toolpath,  cutting   speed,  tool  life,  surface  quality,   etc.
  • 97. 2.008x Excerpt  from:  https://www.youtube.com/watch?v=8Lh600hVyt8   Figure  adopted  from  20.31,  Degarmo,  Materials  and  Processes  in  Manufacturing High-­speed  machining:  chip  carries  the  heat  away Total  heat  generated %  to   workpiece %  to   tool %  to   chip Cutting  speed Low High 0 50% 100% Heat  generated
  • 98. 2.008x Conclusion:  performance  of  machining Machining Rate Low-­Medium Quality Good! Cost Wide  range,  depends  on  design,  material,   production  volume Flexibility High  (within  machine   constraints)
  • 99. 2.008x References 1  Introduction Photo  of  CNC  Mill  by  Roland  Josch on  Pixabay.  This  work  is  in  the  public  domain. Photo  of  Machine  Shop  in  DC  Printing  Office  by  National  Photo  Company  from  U.S.  Library  of   Congress.  This  work  is  in  the  public  domain. Photo  of  CNC  Machine  Shop  by  Kim  Becker  via  Flickr  (CC  BY)  2.0 Photo  of  Drill  Bit  Set  by  Michael  Schwarzenberger on  Pixabay.  This  work  is  in  the  public  domain. Video  of  MacBook  Pro  Manufacturing  ©  Apple  Inc. Image  of  MacBook  Pro  Exploded  View  ©  2016  Apple  Inc. Machining  Processes:  Figure  1.5e  "Manufacturing  Engineering  &  Technology  (6th  Edition)"  by   Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2010). Photo  of  Mechanical  Watch  Mechanism  by  User:  tookapic on  Pixabay.  This  work  is  in  the  public   domain. Photo  of  Brass  Fittings  by  Ingbert Merz on  Pixabay.  This  work  is  in  the  public  domain. Machined  Part:  Figure  IV.3  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by   Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
  • 100. 2.008x References 2  Basics  of  Tool-­Material-­Interaction Lathe  Picture:  Figure  23.2   from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  Kalpakjian,   Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014). Video  of  Rook  Machining  ©  2016  Glacern Machine  Tools Lathe  Cutting  Operations:  Figure  23.1  from  "Manufacturing  Engineering  &  Technology  (6th  Edition)"   by   Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2009). Turning  Schematic:  Figure  21.2   from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  Kalpakjian,   Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014). Videos  of  Iscar Chip  Formation  ©  Rick  Steinard. 3  Tool  Motion  and  Material  Interaction Video  of  Iscar Chip  Formation  ©  Rick  Steinard. Video  of  Titanium  machining  example,  by  NIST  of  the  U.S.  Dept.  of  Commerce  2009. Photo  of  CNC  Mill  by  Roland  Josch on  Pixabay.  This  work  is  in  the  public  domain.
  • 101. 2.008x References 4  Cutting  Forces Graphs  by  Gokkaya,  “The  Effects  of  Machining  Parameters  on  Cutting  Forces,  Surface  Roughness,  Built-­Up   Edge  (BUE)  and  Built-­Up  Layer  (BUL)  During  Machining  AA2014  (T4)  Alloy”,  Journal  of  Mechanical   Engineering  56(2010)9,  584-­593 Shear  Angle  Chart  adapted  from:  Metal  Cutting  Theory  and  Practice,  Stephenson  and  Agapiou 6  Tools  and  Wear Lathe  Cutting  Tool:  Figure  21.10  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  Kalpakjian,   Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014). Tooling  with  Insert:  Figure  22.3  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  Kalpakjian,   Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014). Temperature  Distribution:  Figure  21.12  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by   Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014). Hardness  Chart:  Figure  22.1  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  Kalpakjian,   Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
  • 102. 2.008x References Crater  Wear:  Figure  23.2  from  "Fundamentals  of  Modern  Manufacturing  (4th  Edition)"  by  Groover.  ©  John   Wiley  &  Sons  Inc.  (2010) Wear  schematics  images  ©  2000  Sandvik AB Chip  Types:  Figures  21.5  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  Kalpakjian,   Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014). Machining  Time:  Figure  22.6  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  Kalpakjian,   Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014). Coating  Cross-­Section:  Figure  22.8  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by   Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014). Insert:  Figure  21-­8  from  "DeGarmo's Materials  &  Processes  in  Manufacturing  (10th  Edition)"  by  Black  and   Kohser,  ©  John  Wiley  &  Sons,  Inc.  (2008). 7  Cutting  Energy  and  Power Turning  Schematic:  Figure  21.2  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  Kalpakjian,   Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014). Cutting  Energies:  Table  21.2  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  Kalpakjian,   Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014).
  • 103. 2.008x References 8  Milling Video  of  Face  Milling  Slow-­Motion  ©  Ingersoll  Cutting  Tool  Company Parts  Produced  by  Milling:  Figure  24.1  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by   Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014). Milling  Operation  Parameters:  Figure  24.3  b)  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"   by  Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014). Conventional  vs.  Climbing:  Figure  24.3  a)  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by   Kalpakjian,  Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014). Milling  Operations:  Figure  24.2  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  Kalpakjian,   Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014). Image  of  iPhone  6  ©  2000-­2016  GSMArena.com Image  of  iPhone  6  Exploded  View  ©  2016  iFixit Image  of  T-­Slot  End  Mill  Cutter  ©  2003  Bewise Inc.  All  Rights  Reserved Image  of  Tool  Paths  by  Kangkan iitd on  Wikimedia.  (CC  BY-­SA)  3.0 Pocket  Machining:  Figure  1.3  from  "On  the  Conceptual  Geometry  of  Pocket  Machining"   by  Held  ©  Springer-­ Verlag (1991).
  • 104. 2.008x References Toolpaths:  Figure  1.4  from  "On  the  Conceptual  Geometry  of  Pocket  Machining"   by  Held  ©  Springer-­Verlag (1991). Cost  Optimization:  Figure  25.17  from  "Manufacturing  Engineering  &  Technology  (7th  Edition)"  by  Kalpakjian,   Schmid.  ©  Upper  Saddle  River;;  Pearson  Publishing  (2014). Diagrams  of  Advantages  of  5-­Axis  Milling  Machines  ©  AWEA  Mechatronic  Co.  LTD.  2016.  All  Rights   Reserved. Image   of  5-­Axis  Vertical  Machining  Center  ©  Okuma  America  Corporation. Video  of  Mazak  Variaxis i700  ©  John  Hart  Pty  Ltd. 9  Design  for  Manufacturing DFM  Practice  Diagram:  Figure  14.10  from  "Product  Design:  Techniques  in  Reverse  Engineering  and  New   Product  Development"  by  Otto  and  Wood,  ©  Upper  Saddle  River;;  Pearson  Publishing  (2001) 10  Conclusion Image  of  Datron M8Cube  ©  2016  DATRON  Dynamics,  Inc. Heat  vs.  Speed  Diagram:  Figure  20-­31  from  "DeGarmo's Materials  &  Processes  in  Manufacturing  (10th   Edition)"  by  Black  and  Kohser,  ©  John  Wiley  &  Sons,  Inc.  (2008).