Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features

1 300 vues

Publié le

論文「Deep Clustering for Unsupervised Learning of
Visual Features」について輪読した際の資料です。

Publié dans : Données & analyses
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features

  1. 1. ©2018 ARISE analytics 2018/09/21 担当: 堀越 Deep Clustering for Unsupervised Learning of Visual Features
  2. 2. ©2018 ARISE analytics 2 概要 タイトル: Deep Clustering for Unsupervised Learning of Visual Features 著者: Mathilde Caron, Piotr Bojanowski, Armand Joulin, Matthijs Douze https://arxiv.org/abs/1807.05520 一言で言うと すごい点 感想 CNNで特徴抽出してK-meansを繰り返す 教師なしでもCNNで特徴抽出ができる DeepClusterを使って教師なしで pre-training → 少量の画像で fine-tuning というやり方は現実の問題でも使えそう モチベーション 学習データへのラベルづけが大変なので教師なしでやりたい
  3. 3. ©2018 ARISE analytics 3 Motivation 背景: CNNは画像認識において非常に重要な技術になっている。その中で、オープンな大規模データセットで あるImageNetは非常に大きな役割を果たした。 しかしながら、近年では様々な新手法が提案されているにも関わらず、そのパフォーマンスは上げどまっ ている。ImageNetでは、SOTAな手法のパフォーマンスを評価しきれていないのではないか? 目的: ImageNetより大きなデータセットを、コストをかけずに作りたい。
  4. 4. ©2018 ARISE analytics 4 ImageNetとは ImageNet - 画像1,400万枚、2万クラス以上 ILSVRC2012 ImageNetのサブセット - 1,000 クラス - 学習用データ: 120万枚 - 検証用データ: 5万枚 - 評価用データ: 10万枚
  5. 5. ©2018 ARISE analytics 5 ImageNetの限界 ConvNets and ImageNet Beyond Accuracy: Understanding Mistakes and Uncovering Biases (Stock et al. 2017) https://arxiv.org/abs/1711.11443 Top: Performance evolution of various CNN architectures on ImageNet. Bottom: Some images sampled from the Internet and misclassified by a ResNet-101. Some test samples misclassified by a ResNet-101 (first row) and a Densenet-161(second row). The predicted class is indicated in red, the ground truth in black and in parenthesis. All those examples gathered more than four (4 or 5) positive answers over 5 on AMT. Note that no adversarial noise has been added to the images.
  6. 6. ©2018 ARISE analytics 6 Deep Learningを用いたクラスタリング手法 (既存研究)
  7. 7. ©2018 ARISE analytics 7 Deep Learningを用いたクラスタリング手法 https://arxiv.org/abs/1801.07648 COIL20: Columbia University Image Library Clustering with Deep Learning: Taxonomy and New Methods (Aljalbout et al. 2018) Modified in red (Aljalbout et al. 2018) Splitting GAN (Grinblat et al. 2017) GAN Critic output Wasserstein loss k-Means loss Pretraining and fine tuning k-Means
  8. 8. ©2018 ARISE analytics 8 Encoder / Decoderを使う方法 https://arxiv.org/abs/1511.06335 Unsupervised Deep Embedding for Clustering Analysis (Xie et al. 2015) Encoder / Decoderで学習した表現について、クラスタのKL情報量を最小にするようクラスタリングす る Deep Embedded Clustering (DEC)
  9. 9. ©2018 ARISE analytics 9 クラスタリングのステップをDLへ組み込む方法 https://arxiv.org/abs/1604.03628 Joint Unsupervised Learning of Deep Representations and Image Clusters (Yang et al. 2016) 階層的クラスタリングの併合を周期的プロセスと見立てて、RCNNを学習する Joint Unsupervised Learning (JULE)
  10. 10. ©2018 ARISE analytics 10 CNNの表現を使う方法 https://arxiv.org/abs/1705.07091 CNN-Based Joint Clustering and Representation Learning with Feature Drift Compensation for Large-Scale Image Data (Hsu et al. 2016) ミニバッチ単位で、CNNの学習とk-meansを繰り返す
  11. 11. ©2018 ARISE analytics 11 GANを使う方法 https://arxiv.org/abs/1709.07359 Class-Splitting Generative Adversarial Networks (Grinblat et al. 2017) Critic (Discriminator)の最終層の表現をクラスタリングし、クラスタのラベルでGeneratorを学習さ せる
  12. 12. ©2018 ARISE analytics 12 Deep Clustering for Unsupervised Learning of Visual Features
  13. 13. ©2018 ARISE analytics 13 概要 学習データとなる画像をCNNで教師なし学習させ、その最終層の表現をクラスタリングする。学習の際 の正解データとして、前Epochでのクラスタのラベルを用いる (pseudo-labeling)
  14. 14. ©2018 ARISE analytics 14 定式化 • Given a training set X = {x1, x2, ..., xn} of N images. • each image xn is associated with a label yn in {0, 1}^k. • This label represents the image’s membership to one of k possible predefined classes. • Fθ is a convnet mapping, where θ is the set of corresponding parameters. • The features fθ(xn) produced by the convnet, and clusters them into k distinct groups based on a geometric criterion. • It jointly learns a d*k centroid matrix C and the cluster assignments yn of each image n by solving the following problem.
  15. 15. ©2018 ARISE analytics 15 実装 - Standard AlexNet architecture - Five convolutional layers with 96, 256, 384, 384 and 256 filters. - Three fully connected layers. - Remove the Local Response Normalization layers and use batch normalization. - For the clustering, features are PCA-reduced to 256 dimensions, whitened and l2-normalized. Image Transformation - Sobel Filtering Data Augmentation - Random horizontal flips - Crops of random sizes and aspect ratios Preprocessing CNN Clustering http://nocotan.github.io/chainer/2017/08/04/chainercnn-copy.html PCA 256 k-meansAlexNet
  16. 16. ©2018 ARISE analytics 16 実装上の工夫: 前処理 オブジェクトの分類には色よりもエッジの情報が重要だが、生の画像で学習させると最初のレイヤーが色 情報を抽出してしまう。 →画像にSobel Filterをかけ、エッジを抽出しておく Filters from the first layer of an AlexNet trained on unsupervised ImageNet on raw RGB input (left) or after a Sobel filtering (right).
  17. 17. ©2018 ARISE analytics 17 実装上の工夫: クラスタリング Empty clusters: • 空のクラスタができた場合、空でないクラスタをランダムに選び、そのセントロイドをわずかにずらして二 つのクラスタを作る Trivial parametrization: • クラスタの偏りを防ぐため、学習データを pseudo-labelのが一様分布からサンプリングする or • 損失関数をクラスタの大きさの逆数で重み付けする
  18. 18. ©2018 ARISE analytics 18 評価 a) クラスタと真のラベルとの相互情報量 b) あるEpochと直前のEpochのクラスタの相互情報量 c) クラスタ数 k の影響
  19. 19. ©2018 ARISE analytics 19 評価 a) クラスタと真のラベルとの相互情報量 真のラベルとクラスタのラベルがどの程度一致しているかを示す。真のラベルは学習時には使っていない が、学習が進むにつれクラスタのラベルは真のラベルに近づいている
  20. 20. ©2018 ARISE analytics 20 評価 b) あるEpochと直前のEpochのクラスタの相互情報量 Epoch ごとにCNNを学習→k-meansでクラスタリングしたラベルで再学習を繰り返すため、クラスタの 中身は順次入れ替わっていく。Epochが進んでいくと、クラスタの中身の入れ替わりが少なくなっていく = クラスタが安定していく。 とはいえ、0.8程度で上げどまるため、少なくない割合の画像はEpochのたびに別のクラスタに割り当て られることになる。もっとも、実用上はこれでもそれほど問題なく、単一のモデルに収束していく (ホン ト?)
  21. 21. ©2018 ARISE analytics 21 評価 c) クラスタ数 k の影響 クラスタ数 k を対数スケールで変更した時、ImageNetで300Epoch学習した後、別のデータセット* でのmAPを調べる。最良のパフォーマンスは k=10,000の時に得られた。 真のクラス数(1,000)よりもある程度 大きなクラスタ数を選ぶのが良さそう * Pascal VOC 2007のバリデーションセット, 20クラス
  22. 22. ©2018 ARISE analytics 22 Q&A • そもそも学習できるの? • 処理時間はどれくらい? • どの程度良い表現を学習している? • 別のデータセットでも使える? • 別のモデルでも使える? • 別のクラスタリングアルゴリズムは使える? • 他のタスクにも使える?
  23. 23. ©2018 ARISE analytics 23 そもそも学習できるの? A. できる Deep Learningでは、学習データのラベルをランダム化しても、訓練誤差が0にできることが知られてい る。同じように、ランダムなセントロイドによるクラスタを初期値として学習を始めても、中間層では徐々 に適切な表現を学習していく? Understanding Deep Learning Requires Rethinking Generalization (Zhang et al. 2016) Randomization tests. ...we train several standard architectures on a copy of the data where the true labels were replaced by random labels. Our central finding can be summarized as: Deep neural networks easily fit random labels. More precisely, when trained on a completely random labeling of the true data, neural networks achieve 0 training error.
  24. 24. ©2018 ARISE analytics 24 処理時間はどれくらい? A. 以下の環境で12日くらい - 500エポック - Pascal P100 - 市場価格100万円くらい? 全体の1/3くらいは k-means にかかる時間 →クラスタリングの際に全データをForwardする必要があるため、、通常の学習の1.5倍以上の時間が かかる?
  25. 25. ©2018 ARISE analytics 25 どの程度良い表現を学習している? A. CNNの各層で、他の教師なしと比べて良い表現を学習している 評価方法: 教師なしでpre-trainingしたCNNの各層について、それぞれの直後に線形分類器をおいてfine- tuningした場合のaccuracyを評価 (パフォーマンスがよければ、その層はより良い表現を学習できて いるはず) MIT Places database http://places.csail.mit.edu/
  26. 26. ©2018 ARISE analytics 26 どの程度良い表現を学習している? 深いレイヤーほどより大きな特徴を捉えている。が、畳み込みの最終層のフィルタのいくつかは、それまで の層で捉えた特徴を捉え直しているだけに見えるものもある (下段)
  27. 27. ©2018 ARISE analytics 27 どの程度良い表現を学習している? 最終層のフィルタを見ると、あるフィルタは何らかのクラス、もしくはパターンに対応していそう
  28. 28. ©2018 ARISE analytics 28 別のデータセットでも使える? A. 使える 評価方法: ImageNetは各クラスの画像数が均等になっており、DeepClusterに有利なデータである。 この影響を検証するため、YFCC100M*からランダムに選択した100万枚の画像について、その accuracyを検証した Yahoo Flickr Creative Commons 100 Millionデータセット。クラスに大きな偏りがある
  29. 29. ©2018 ARISE analytics 29 別のモデルでも使える? A. 使える 教師ありの場合と同じように、より深いモデルを使うとパフォーマンスは向上する 評価方法: ImageNetのデータを利用して教師なしでpre-trainingしたモデルを元に、PASCAL VOC 2007 のデータでfine-tuningした際のmAPを評価
  30. 30. ©2018 ARISE analytics 30 別のクラスタリングアルゴリズムは使える? A. 使える PIC (Power Iteration Clustering) を試したところ、大規模なデータセットについてパフォーマンス がよかった 評価方法: 行のデータを利用して教師なしでpre-trainingしたモデルを元に、列のデータでfine-tuningした際の accuracyを評価
  31. 31. ©2018 ARISE analytics 31 他のタスクにも使える? A. 使える 評価方法: ImageNetを利用して教師なしで学習したモデルを元に、列のデータで画像検索した際のmAPを評 価 http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/ http://www.robots.ox.ac.uk/~vgg/data/parisbuildings/
  32. 32. ©2018 ARISE analytics 32 まとめ タイトル: Deep Clustering for Unsupervised Learning of Visual Features 著者: Mathilde Caron, Piotr Bojanowski, Armand Joulin, Matthijs Douze https://arxiv.org/abs/1807.05520 一言で言うと すごい点 感想 CNNで特徴抽出してK-meansを繰り返す 教師なしでもCNNで特徴抽出ができる DeepClusterを使って教師なしで pre-training → 少量の画像で fine-tuning というやり方は現実の問題でも使えそう モチベーション 学習データへのラベルづけが大変なので教師なしでやりたい
  33. 33. ©2018 ARISE analytics 33 GitHub実装 https://github.com/facebookresearch/deepcluster

×