Exponents and powers by arjun rastogi

A
ARJUN RASTOGISOFTWARE DEVELOPER à HOME
Exponents and powers by arjun rastogi
EXPONENTS 
• A quantity representing the power to which 
a given number or expression is to be 
raised, usually expressed as a raised 
symbol beside the number or expression 
(e.g. 3 in 23 = 2 × 2 × 2).
General Enquiry 
• Exponents are shorthand for repeated 
multiplication of the same thing by itself. 
For instance, the shorthand for multiplying 
three copies of the number 5 is shown on 
the right-hand side of the "equals" sign 
in (5)(5)(5) =53. The "exponent", being 3 in 
this example, stands for however many 
times the value is being multiplied. The 
thing that's being multiplied, being5 in this 
example, is called the "base".
Exponents 
 35 Power 
exponent 
base 
3 3 means that is the exponential 
Example: 
form of t 
125 5 5 
he number 
125. 
 
53 means 3 factors of 5 or 5 x 5 x 5
The Laws of Exponent 
Comes From 3 ideas 
• The exponent says how many times to 
use the number in a multiplication. 
• A negative exponent means divide, 
because the opposite of multiplying is 
dividing 
• A fractional exponent like 1/n means 
to take the nth root:
Laws Of Exponent 
• x1 = x 
• x0 = 1 
• x-1 = 1/x 
• xmxn = xm+n 
• xm/xn = xm-n 
• (xm)n = xmn 
• (xy)n = xnyn 
• (x/y)n = xn/yn 
• x-n = 1/xn
The Laws of Exponents: 
#1: Exponential form: The exponent of a power indicates 
how many times the base multiplies itself. 
n 
x  x  x  x  x  x  x  
x 
n  
times 
n factors of x 
Example: 53  555
#2: Multiplying Powers: If you are multiplying Powers 
with the same base, KEEP the BASE & ADD the EXPONENTS! 
m n m n x x x    
So, I get it! 
When you 
multiply 
Powers, you 
add the 
exponents! 
2 6  2 3  2 6  
3  29 
512 

#3: Dividing Powers: When dividing Powers with the 
same base, KEEP the BASE & SUBTRACT the EXPONENTS! 
m 
m n m n 
n 
x 
x x x 
x 
    
So, I get it! 
When you 
divide 
Powers, you 
subtract the 
exponents! 
6 
2 6 2 4 
   
2 2 
16 
2 
2 

#4: Power of a Power: If you are raising a Power to an 
exponent, you multiply the exponents! 
 n 
xm  xmn 
So, when I 
take a Power 
to a power, I 
multiply the 
exponents 
3 2 3 2 5 (5 )  5  5 
#5: Product Law of Exponents: If the product of the 
bases is powered by the same exponent, then the result is a 
multiplication of individual factors of the product, each powered 
by the given exponent. 
 n xy  xn  yn 
So, when I take 
a Power of a 
Product, I apply 
the exponent to 
all factors of 
the product. 
2 2 2 (ab)  a b
#6: Quotient Law of Exponents: If the quotient of the 
bases is powered by the same exponent, then the result is both 
numerator and denominator , each powered by the given exponent. 
n n 
x x 
y y 
n 
  
   
  
So, when I take a 
Power of a 
Quotient, I apply 
the exponent to 
all parts of the 
quotient. 
16 
81 
4 2 
4 
   
 
3 
2 
3 
4 
 
 

Try these: 
   
2 5 1. 3 
   
3 4 2. a 
   
3. 2a 
2 3 4.  2 2 a 5 2 b 
3   
5. (  3a 2 ) 
2  6.  2 3 s t 
4   
 
  
 
 
 
 
5 
7. 
s 
t 
 
   
 
 
  
 
2 
9 
3 
5 
3 
8. 
 
   
 
 
  
 
2 
8 
4 
9. 
st 
rt 
 
   
 
 
  
 
2 
5 8 
a b 
4 5 
36 
4 
10. 
a b
SOLUTIONS 
   
2 5 1. 3 
   
3 4 2. a 
   
2 3 3. 2a 
   
2 5 3 2 4. 2 a b 
  2 2 5. ( 3a ) 
   
2 4 3 6. s t 
10 3 
12a 
3 2 3 6 2 a  8a  
2 2 5 2 3 2 4 10 6 10 6 2 a b  2 a b 16a b    
  2 2 2 4  3  a  9a  
2 3 4 3 6 12 s t  s t  
SOLUTIONS 
 
  
 
 
 
 
5 
7. 
s 
t 
 
   
 
 
  
 
2 
9 
3 
5 
3 
8. 
 
   
 
 
  
 
2 
8 
4 
9. 
st 
rt 
 
   
 
 
  
 
2 
5 8 
a b 
4 5 
36 
4 
10 
a b 
2 8 
5 
5 
s 
t 
 4 2 8 3  3 
s t 
2 
2 
4 
r 
st 
r 
 
   
 
 
  
 
 3 2 2 2 3 2 2 6 9ab  9 a b  81a b 
#7: Negative Law of Exponents: If the base is powered 
by the negative exponent, then the base becomes reciprocal with the 
positive exponent. 
1 m 
m x 
x 
  So, when I have a 
Negative Exponent, I 
switch the base to its 
reciprocal with a 
Positive Exponent. 
Ha Ha! 
If the base with the 
negative exponent is in 
the denominator, it 
moves to the 
numerator to lose its 
negative sign! 
1 
1 
  
3 9 
 
and 
1 
3 
125 
5 
5 
2 
2 
3 
3 
  

#8: Zero Law of Exponents: Any base powered by zero 
exponent equals one. 
0 1 x  
0 
5 1 
1 
and 
0 
0 
 
(5 )  
1 
 
a 
a 
and 
So zero 
factors of a 
base equals 1. 
That makes 
sense! Every 
power has a 
coefficient 
of 1.
Try these: 
   
2 0 1. 2a b 
  2 4 2. y y 
   
5 1 3. a 
4. s 2  4s 
7   2 4 5. 3x y 
3   
   
2 4 0 6. s t
SOLUTIONS 
   
2 0 1. 2a b 
   
5 1 3. a 
1 
a 
  2 7 4. s 4s 
   
2 3 4 5. 3x y 
   
2 4 0 6. s t 
1 
5 
4s 
5   x 
8 
4 8 12 
12 
81 
3 
y 
x y    
1
Presented by 
Arjun Rastogi
1 sur 20

Recommandé

Law of exponent Lecture Slide par
Law of exponent Lecture SlideLaw of exponent Lecture Slide
Law of exponent Lecture SlideGita Pakpahan
5.2K vues11 diapositives
Law of exponent Teacher slide par
Law of exponent Teacher slideLaw of exponent Teacher slide
Law of exponent Teacher slideGita Pakpahan
1.5K vues11 diapositives
Rational expressions par
Rational expressionsRational expressions
Rational expressionsLeslie Amoguis
1.1K vues94 diapositives
Multiply Decimals par
Multiply DecimalsMultiply Decimals
Multiply DecimalsBrooke Young
4.6K vues8 diapositives
Combined Variation par
Combined  VariationCombined  Variation
Combined VariationREYBETH RACELIS
2.1K vues9 diapositives
Exponents par
ExponentsExponents
ExponentsBob Morris
7.6K vues20 diapositives

Contenu connexe

Tendances

Inverse Variation (Mathematics 9) par
Inverse Variation (Mathematics 9)Inverse Variation (Mathematics 9)
Inverse Variation (Mathematics 9)BevBeverlyGelbolingo
2.4K vues8 diapositives
Exponents par
ExponentsExponents
ExponentsDhess Abrera
1.1K vues42 diapositives
Laws of exponents par
Laws of exponentsLaws of exponents
Laws of exponentsNestorJrRamilo
578 vues20 diapositives
Notes - Polynomial Division par
Notes - Polynomial DivisionNotes - Polynomial Division
Notes - Polynomial DivisionLori Rapp
18.1K vues109 diapositives
Rational expressions ppt par
Rational expressions pptRational expressions ppt
Rational expressions pptDoreen Mhizha
4.6K vues30 diapositives
Factoring the Difference of Two Squares par
Factoring the Difference of Two SquaresFactoring the Difference of Two Squares
Factoring the Difference of Two SquaresNara Cocarelli
11.5K vues41 diapositives

Tendances(20)

Notes - Polynomial Division par Lori Rapp
Notes - Polynomial DivisionNotes - Polynomial Division
Notes - Polynomial Division
Lori Rapp18.1K vues
Factoring the Difference of Two Squares par Nara Cocarelli
Factoring the Difference of Two SquaresFactoring the Difference of Two Squares
Factoring the Difference of Two Squares
Nara Cocarelli11.5K vues
Tutorials--Multiplying Fractions par Media4math
Tutorials--Multiplying FractionsTutorials--Multiplying Fractions
Tutorials--Multiplying Fractions
Media4math1.8K vues
9.4 multiplying and dividing rational expressions par hisema01
9.4 multiplying and dividing rational expressions9.4 multiplying and dividing rational expressions
9.4 multiplying and dividing rational expressions
hisema012.8K vues
Multiplying and dividing fractions par Erica Newcomb
Multiplying and dividing fractionsMultiplying and dividing fractions
Multiplying and dividing fractions
Erica Newcomb561 vues
Solving Multi Step Equations par Derek Wright
Solving Multi Step EquationsSolving Multi Step Equations
Solving Multi Step Equations
Derek Wright2.3K vues
Factoring Perfect Square Trinomial par Dhenz Lorenzo
Factoring Perfect Square TrinomialFactoring Perfect Square Trinomial
Factoring Perfect Square Trinomial
Dhenz Lorenzo15.8K vues
Simplifying exponents par swartzje
Simplifying exponentsSimplifying exponents
Simplifying exponents
swartzje5.6K vues
Evaluating Algebraic Expressions par bizarregirl
Evaluating Algebraic ExpressionsEvaluating Algebraic Expressions
Evaluating Algebraic Expressions
bizarregirl41.4K vues
Powers and Exponents par Taleese
Powers and ExponentsPowers and Exponents
Powers and Exponents
Taleese 84.7K vues
Rational exponents and radicals par mooca76
Rational exponents and radicals Rational exponents and radicals
Rational exponents and radicals
mooca763.9K vues
Solving Linear Equations - GRADE 8 MATHEMATICS par CoreAces
Solving Linear Equations - GRADE 8 MATHEMATICSSolving Linear Equations - GRADE 8 MATHEMATICS
Solving Linear Equations - GRADE 8 MATHEMATICS
CoreAces7.7K vues
Roots and radical expressions par holmsted
Roots and radical expressionsRoots and radical expressions
Roots and radical expressions
holmsted10.4K vues

En vedette

Donna G. Bautista par
Donna G. BautistaDonna G. Bautista
Donna G. BautistaDonna Bautista
1K vues19 diapositives
Balanced & unbalanced forces par
Balanced & unbalanced forcesBalanced & unbalanced forces
Balanced & unbalanced forcesrichardsphysics
3.2K vues10 diapositives
Rational expressions and rational equations par
Rational expressions and rational equationsRational expressions and rational equations
Rational expressions and rational equationsarvin efriani
4.3K vues66 diapositives
4 c lesson plan fdp par
4 c lesson plan   fdp 4 c lesson plan   fdp
4 c lesson plan fdp Assurant Learning & Performance Solutions
1.2K vues6 diapositives
Lesson plan in mathematics grade 10 par
Lesson plan in mathematics grade 10Lesson plan in mathematics grade 10
Lesson plan in mathematics grade 10Randel Roy Raluto
15.1K vues5 diapositives
Exponents and power par
Exponents and powerExponents and power
Exponents and powerNidhi Singh
33.4K vues17 diapositives

En vedette(12)

Rational expressions and rational equations par arvin efriani
Rational expressions and rational equationsRational expressions and rational equations
Rational expressions and rational equations
arvin efriani4.3K vues
Exponents and power par Nidhi Singh
Exponents and powerExponents and power
Exponents and power
Nidhi Singh33.4K vues
Pythagorean Theorem Lesson par Ke4498
Pythagorean Theorem LessonPythagorean Theorem Lesson
Pythagorean Theorem Lesson
Ke449818.4K vues
Math lesson plan fourth grade 12 par Charlene Cota
Math lesson plan fourth grade 12Math lesson plan fourth grade 12
Math lesson plan fourth grade 12
Charlene Cota3.4K vues
Detailed Lesson Plan for Mathematics 5 (Identifying Polygons) par 42986
Detailed Lesson Plan for Mathematics 5 (Identifying Polygons)Detailed Lesson Plan for Mathematics 5 (Identifying Polygons)
Detailed Lesson Plan for Mathematics 5 (Identifying Polygons)
4298686.8K vues
Detailed lesson plan in active and passive par dhayhan
Detailed lesson plan in active and passiveDetailed lesson plan in active and passive
Detailed lesson plan in active and passive
dhayhan228.3K vues
MATH Lesson Plan sample for demo teaching par preyaleandrina
MATH Lesson Plan sample for demo teaching MATH Lesson Plan sample for demo teaching
MATH Lesson Plan sample for demo teaching
preyaleandrina267K vues

Similaire à Exponents and powers by arjun rastogi

laws_of_exponents_student_use.ppt par
laws_of_exponents_student_use.pptlaws_of_exponents_student_use.ppt
laws_of_exponents_student_use.pptIzah Catli
17 vues19 diapositives
laws_of_exponents_student_use.ppt par
laws_of_exponents_student_use.pptlaws_of_exponents_student_use.ppt
laws_of_exponents_student_use.pptJennilynBalusdan2
1 vue19 diapositives
laws_of_exponents_student_use.ppt par
laws_of_exponents_student_use.pptlaws_of_exponents_student_use.ppt
laws_of_exponents_student_use.pptBrianMary2
6 vues19 diapositives
laws_of_exponents_student_use.ppt par
laws_of_exponents_student_use.pptlaws_of_exponents_student_use.ppt
laws_of_exponents_student_use.pptJenilynEspejo1
6 vues19 diapositives
laws_of_exponents_student_use.ppt par
laws_of_exponents_student_use.pptlaws_of_exponents_student_use.ppt
laws_of_exponents_student_use.pptmikeebio1
14 vues19 diapositives
Exponents Intro with Practice.ppt par
Exponents Intro with Practice.pptExponents Intro with Practice.ppt
Exponents Intro with Practice.pptIzah Catli
36 vues41 diapositives

Similaire à Exponents and powers by arjun rastogi(20)

laws_of_exponents_student_use.ppt par Izah Catli
laws_of_exponents_student_use.pptlaws_of_exponents_student_use.ppt
laws_of_exponents_student_use.ppt
Izah Catli17 vues
laws_of_exponents_student_use.ppt par BrianMary2
laws_of_exponents_student_use.pptlaws_of_exponents_student_use.ppt
laws_of_exponents_student_use.ppt
BrianMary26 vues
laws_of_exponents_student_use.ppt par mikeebio1
laws_of_exponents_student_use.pptlaws_of_exponents_student_use.ppt
laws_of_exponents_student_use.ppt
mikeebio114 vues
Exponents Intro with Practice.ppt par Izah Catli
Exponents Intro with Practice.pptExponents Intro with Practice.ppt
Exponents Intro with Practice.ppt
Izah Catli36 vues
The Laws of Exponents par IshalKhan6
The Laws of Exponents  The Laws of Exponents
The Laws of Exponents
IshalKhan6111 vues
Mathtest 01 par leoscotch
Mathtest 01Mathtest 01
Mathtest 01
leoscotch2.5K vues
1.3 Radicals and Rational Exponents par smiller5
1.3 Radicals and Rational Exponents1.3 Radicals and Rational Exponents
1.3 Radicals and Rational Exponents
smiller5211 vues
0.6 Rational Exponents par smiller5
0.6 Rational Exponents0.6 Rational Exponents
0.6 Rational Exponents
smiller5284 vues
Unit 1 - dividing a polynomial by a monomial par Lori Rapp
Unit 1 - dividing a polynomial by a monomialUnit 1 - dividing a polynomial by a monomial
Unit 1 - dividing a polynomial by a monomial
Lori Rapp619 vues
Laws of exponents and Power par chandkec
Laws of exponents and PowerLaws of exponents and Power
Laws of exponents and Power
chandkec74 vues
Topic 4 dividing a polynomial by a monomial par Lori Rapp
Topic 4   dividing a polynomial by a monomialTopic 4   dividing a polynomial by a monomial
Topic 4 dividing a polynomial by a monomial
Lori Rapp609 vues

Plus de ARJUN RASTOGI

Advancements in the field of medicines par
Advancements in the field of medicinesAdvancements in the field of medicines
Advancements in the field of medicinesARJUN RASTOGI
537 vues16 diapositives
Vector calculus par
Vector calculusVector calculus
Vector calculusARJUN RASTOGI
4.1K vues7 diapositives
Unsolved mysteries of the world BY ARJUN RASTOGI par
Unsolved mysteries of the world BY ARJUN RASTOGIUnsolved mysteries of the world BY ARJUN RASTOGI
Unsolved mysteries of the world BY ARJUN RASTOGIARJUN RASTOGI
2K vues33 diapositives
kriya vishesharn hindi or adverbs par
kriya vishesharn hindi or adverbs kriya vishesharn hindi or adverbs
kriya vishesharn hindi or adverbs ARJUN RASTOGI
1.5K vues20 diapositives
क्रिया विशेषण par
क्रिया विशेषणक्रिया विशेषण
क्रिया विशेषणARJUN RASTOGI
52.1K vues19 diapositives
Herons formula par
Herons formulaHerons formula
Herons formulaARJUN RASTOGI
5K vues10 diapositives

Plus de ARJUN RASTOGI(9)

Dernier

AI Tools for Business and Startups par
AI Tools for Business and StartupsAI Tools for Business and Startups
AI Tools for Business and StartupsSvetlin Nakov
111 vues39 diapositives
Pharmaceutical Inorganic chemistry UNIT-V Radiopharmaceutical.pptx par
Pharmaceutical Inorganic chemistry UNIT-V Radiopharmaceutical.pptxPharmaceutical Inorganic chemistry UNIT-V Radiopharmaceutical.pptx
Pharmaceutical Inorganic chemistry UNIT-V Radiopharmaceutical.pptxMs. Pooja Bhandare
93 vues51 diapositives
7 NOVEL DRUG DELIVERY SYSTEM.pptx par
7 NOVEL DRUG DELIVERY SYSTEM.pptx7 NOVEL DRUG DELIVERY SYSTEM.pptx
7 NOVEL DRUG DELIVERY SYSTEM.pptxSachin Nitave
61 vues35 diapositives
ACTIVITY BOOK key water sports.pptx par
ACTIVITY BOOK key water sports.pptxACTIVITY BOOK key water sports.pptx
ACTIVITY BOOK key water sports.pptxMar Caston Palacio
745 vues4 diapositives
REPRESENTATION - GAUNTLET.pptx par
REPRESENTATION - GAUNTLET.pptxREPRESENTATION - GAUNTLET.pptx
REPRESENTATION - GAUNTLET.pptxiammrhaywood
107 vues26 diapositives
Create a Structure in VBNet.pptx par
Create a Structure in VBNet.pptxCreate a Structure in VBNet.pptx
Create a Structure in VBNet.pptxBreach_P
75 vues8 diapositives

Dernier(20)

AI Tools for Business and Startups par Svetlin Nakov
AI Tools for Business and StartupsAI Tools for Business and Startups
AI Tools for Business and Startups
Svetlin Nakov111 vues
Pharmaceutical Inorganic chemistry UNIT-V Radiopharmaceutical.pptx par Ms. Pooja Bhandare
Pharmaceutical Inorganic chemistry UNIT-V Radiopharmaceutical.pptxPharmaceutical Inorganic chemistry UNIT-V Radiopharmaceutical.pptx
Pharmaceutical Inorganic chemistry UNIT-V Radiopharmaceutical.pptx
7 NOVEL DRUG DELIVERY SYSTEM.pptx par Sachin Nitave
7 NOVEL DRUG DELIVERY SYSTEM.pptx7 NOVEL DRUG DELIVERY SYSTEM.pptx
7 NOVEL DRUG DELIVERY SYSTEM.pptx
Sachin Nitave61 vues
REPRESENTATION - GAUNTLET.pptx par iammrhaywood
REPRESENTATION - GAUNTLET.pptxREPRESENTATION - GAUNTLET.pptx
REPRESENTATION - GAUNTLET.pptx
iammrhaywood107 vues
Create a Structure in VBNet.pptx par Breach_P
Create a Structure in VBNet.pptxCreate a Structure in VBNet.pptx
Create a Structure in VBNet.pptx
Breach_P75 vues
Dance KS5 Breakdown par WestHatch
Dance KS5 BreakdownDance KS5 Breakdown
Dance KS5 Breakdown
WestHatch86 vues
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively par PECB
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks EffectivelyISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively
PECB 598 vues
11.28.23 Social Capital and Social Exclusion.pptx par mary850239
11.28.23 Social Capital and Social Exclusion.pptx11.28.23 Social Capital and Social Exclusion.pptx
11.28.23 Social Capital and Social Exclusion.pptx
mary850239304 vues
The Accursed House by Émile Gaboriau par DivyaSheta
The Accursed House  by Émile GaboriauThe Accursed House  by Émile Gaboriau
The Accursed House by Émile Gaboriau
DivyaSheta212 vues
11.30.23 Poverty and Inequality in America.pptx par mary850239
11.30.23 Poverty and Inequality in America.pptx11.30.23 Poverty and Inequality in America.pptx
11.30.23 Poverty and Inequality in America.pptx
mary850239167 vues
Education and Diversity.pptx par DrHafizKosar
Education and Diversity.pptxEducation and Diversity.pptx
Education and Diversity.pptx
DrHafizKosar177 vues
Ch. 8 Political Party and Party System.pptx par Rommel Regala
Ch. 8 Political Party and Party System.pptxCh. 8 Political Party and Party System.pptx
Ch. 8 Political Party and Party System.pptx
Rommel Regala53 vues
When Sex Gets Complicated: Porn, Affairs, & Cybersex par Marlene Maheu
When Sex Gets Complicated: Porn, Affairs, & CybersexWhen Sex Gets Complicated: Porn, Affairs, & Cybersex
When Sex Gets Complicated: Porn, Affairs, & Cybersex
Marlene Maheu73 vues

Exponents and powers by arjun rastogi

  • 2. EXPONENTS • A quantity representing the power to which a given number or expression is to be raised, usually expressed as a raised symbol beside the number or expression (e.g. 3 in 23 = 2 × 2 × 2).
  • 3. General Enquiry • Exponents are shorthand for repeated multiplication of the same thing by itself. For instance, the shorthand for multiplying three copies of the number 5 is shown on the right-hand side of the "equals" sign in (5)(5)(5) =53. The "exponent", being 3 in this example, stands for however many times the value is being multiplied. The thing that's being multiplied, being5 in this example, is called the "base".
  • 4. Exponents  35 Power exponent base 3 3 means that is the exponential Example: form of t 125 5 5 he number 125.  53 means 3 factors of 5 or 5 x 5 x 5
  • 5. The Laws of Exponent Comes From 3 ideas • The exponent says how many times to use the number in a multiplication. • A negative exponent means divide, because the opposite of multiplying is dividing • A fractional exponent like 1/n means to take the nth root:
  • 6. Laws Of Exponent • x1 = x • x0 = 1 • x-1 = 1/x • xmxn = xm+n • xm/xn = xm-n • (xm)n = xmn • (xy)n = xnyn • (x/y)n = xn/yn • x-n = 1/xn
  • 7. The Laws of Exponents: #1: Exponential form: The exponent of a power indicates how many times the base multiplies itself. n x  x  x  x  x  x  x  x n  times n factors of x Example: 53  555
  • 8. #2: Multiplying Powers: If you are multiplying Powers with the same base, KEEP the BASE & ADD the EXPONENTS! m n m n x x x    So, I get it! When you multiply Powers, you add the exponents! 2 6  2 3  2 6  3  29 512 
  • 9. #3: Dividing Powers: When dividing Powers with the same base, KEEP the BASE & SUBTRACT the EXPONENTS! m m n m n n x x x x x     So, I get it! When you divide Powers, you subtract the exponents! 6 2 6 2 4    2 2 16 2 2 
  • 10. #4: Power of a Power: If you are raising a Power to an exponent, you multiply the exponents!  n xm  xmn So, when I take a Power to a power, I multiply the exponents 3 2 3 2 5 (5 )  5  5 
  • 11. #5: Product Law of Exponents: If the product of the bases is powered by the same exponent, then the result is a multiplication of individual factors of the product, each powered by the given exponent.  n xy  xn  yn So, when I take a Power of a Product, I apply the exponent to all factors of the product. 2 2 2 (ab)  a b
  • 12. #6: Quotient Law of Exponents: If the quotient of the bases is powered by the same exponent, then the result is both numerator and denominator , each powered by the given exponent. n n x x y y n        So, when I take a Power of a Quotient, I apply the exponent to all parts of the quotient. 16 81 4 2 4     3 2 3 4   
  • 13. Try these:    2 5 1. 3    3 4 2. a    3. 2a 2 3 4.  2 2 a 5 2 b 3   5. (  3a 2 ) 2  6.  2 3 s t 4          5 7. s t          2 9 3 5 3 8.          2 8 4 9. st rt          2 5 8 a b 4 5 36 4 10. a b
  • 14. SOLUTIONS    2 5 1. 3    3 4 2. a    2 3 3. 2a    2 5 3 2 4. 2 a b   2 2 5. ( 3a )    2 4 3 6. s t 10 3 12a 3 2 3 6 2 a  8a  2 2 5 2 3 2 4 10 6 10 6 2 a b  2 a b 16a b      2 2 2 4  3  a  9a  2 3 4 3 6 12 s t  s t  
  • 15. SOLUTIONS        5 7. s t          2 9 3 5 3 8.          2 8 4 9. st rt          2 5 8 a b 4 5 36 4 10 a b 2 8 5 5 s t  4 2 8 3  3 s t 2 2 4 r st r           3 2 2 2 3 2 2 6 9ab  9 a b  81a b 
  • 16. #7: Negative Law of Exponents: If the base is powered by the negative exponent, then the base becomes reciprocal with the positive exponent. 1 m m x x   So, when I have a Negative Exponent, I switch the base to its reciprocal with a Positive Exponent. Ha Ha! If the base with the negative exponent is in the denominator, it moves to the numerator to lose its negative sign! 1 1   3 9  and 1 3 125 5 5 2 2 3 3   
  • 17. #8: Zero Law of Exponents: Any base powered by zero exponent equals one. 0 1 x  0 5 1 1 and 0 0  (5 )  1  a a and So zero factors of a base equals 1. That makes sense! Every power has a coefficient of 1.
  • 18. Try these:    2 0 1. 2a b   2 4 2. y y    5 1 3. a 4. s 2  4s 7   2 4 5. 3x y 3      2 4 0 6. s t
  • 19. SOLUTIONS    2 0 1. 2a b    5 1 3. a 1 a   2 7 4. s 4s    2 3 4 5. 3x y    2 4 0 6. s t 1 5 4s 5   x 8 4 8 12 12 81 3 y x y    1