SlideShare a Scribd company logo
1 of 21
LINEARIZATION OF FUNCTIONS OF TWO OR
MORE VARIABLES & THERMAL PROCESS
EXAMPLE
1
CONTROL PROCESS
FIRST-ORDERDYNAMICSYSTEMS
"Good, better, best. Never let it rest. 'Til your good is better and your better is best." - St. Jerome
LINEARIZATION OF FUNCTIONS OF TWO OR MORE
VARIABLES & THERMAL PROCESS EXAMPLE
IRIS BUSTAMANTE PÁJARO*
ANGIE CASTILLO GUEVARA*
ALVARO JOSE GARCÍA PADILLA *
KARIANA ANDREA MORENO SADDER*
LUIS ALBERTO PATERNINA NUÑEZ*
CHEMICAL ENGINEERING PROGRAM
UNIVERSITY OF CARTAGENA
2
CONTROL PROCESS
FIRST-ORDERDYNAMICSYSTEMS
3
MATHEMATICALTOOLSFORCONTROLSYSTEMS
LINEARIZATION
FUNCTIONS OF TWO OR MORE VARIABLES
Rate of a chemical reactionEquation of state Raoult’s law
𝑘 𝑐 𝐴
2
𝑡 𝑐 𝐵(𝑡)
𝑟 𝑐 𝐴 𝑡 , 𝑐 𝐵(𝑡) ) 𝑦 𝑇 𝑡 , 𝑝 𝑡 , 𝑥(𝑡)
𝑝0
𝑇 𝑡
𝑝 𝑡
𝑥(𝑡)
𝜌 𝑝 𝑡 , 𝑇(𝑡)
𝑀 𝑝(𝑡)
𝑅 𝑇(𝑡)
Smith & Corripio, 2005
4
MATHEMATICALTOOLSFORCONTROLSYSTEMS
LINEARIZATION
Smith & Corripio, 2005
LINEARIZATION OF FUNCTIONS OF TWO OR MORE VARIABLES
Taylor series expansion
𝑓 𝑥1 𝑡 , 𝑥2 𝑡 , … ≈ 𝑓 𝑥1, 𝑥2, … +
𝜕𝑓
𝜕𝑥1
𝑥1 𝑡 − 𝑥1 +
𝜕𝑓
𝜕𝑥2
𝑥2 𝑡 − 𝑥2 + ⋯
𝜕𝑓
𝜕𝑥 𝑘
=
𝜕𝑓
𝜕𝑥 𝑘 𝑥1, 𝑥2,…
Where,
𝑥1, 𝑥2, … basic values of each variable.
5
MATHEMATICALTOOLSFORCONTROLSYSTEMS
LINEARIZATION
Smith & Corripio, 2005
EXAMPLE 2-6.2
FUNCTION
𝑎 𝑤 𝑡 , ℎ(𝑡) = 𝑤 𝑡 ℎ(𝑡)
Area of a rectangle
𝑤 𝑡
ℎ 𝑡
𝑎 𝑤 𝑡 , ℎ(𝑡) ≈ 𝑎 𝑤, ℎ +
𝜕𝑎
𝜕𝑤
𝑤 𝑡 − 𝑤 +
𝜕𝑎
𝜕ℎ
ℎ 𝑡 − ℎ
How to linearize?
𝑎 𝑤 𝑡 , ℎ(𝑡) ≈ 𝑎 𝑤, ℎ + ℎ 𝑤 𝑡 − 𝑤 + 𝑤 ℎ 𝑡 − ℎ
𝑎 𝑤, ℎ
𝑤
ℎ
𝑤 ℎ 𝑡 − ℎ
ℎ𝑤𝑡−𝑤
Error
Small
error
6
MATHEMATICALTOOLSFORCONTROLSYSTEMS
LINEARIZATION
Smith & Corripio, 2005
EXAMPLE 2-6.3
T
p
Density of an ideal gas as function of
pressure and temperature:
𝜌 𝑝 𝑡 , 𝑇(𝑡) =
𝑀 𝑝(𝑡)
𝑅 𝑇(𝑡)
Linear approximation?
Additional information
𝑀 = 20
𝑘𝑔
𝑘𝑚𝑜𝑙 𝑇 = 300 𝐾
𝑃 = 101.3 𝑘𝑃𝑎 𝑅 = 8.314
𝑘𝑃𝑎 ∙ 𝑚3
𝑘𝑚𝑜𝑙 ∙ 𝐾
7
MATHEMATICALTOOLSFORCONTROLSYSTEMS
LINEARIZATION
Smith & Corripio, 2005
How to linearize?
𝜌 𝑝 𝑡 , 𝑇(𝑡) ≈ 𝜌 𝑝, 𝑇 +
𝜕𝜌
𝜕𝑝
𝑝 𝑡 − 𝑝 +
𝜕𝜌
𝜕𝑇
𝑇 𝑡 − 𝑇
𝜕𝜌
𝜕𝑝
=
𝜕𝜌
𝜕𝑝 𝑝, 𝑇
=
𝜕
𝜕𝑝
𝑀 𝑝(𝑡)
𝑅 𝑇(𝑡) 𝑝, 𝑇
=
𝑀
𝑅 𝑇(𝑡) 𝑝, 𝑇
=
𝑀
𝑅 𝑇
𝜕𝜌
𝜕𝑇
=
𝜕𝜌
𝜕𝑇 𝑝, 𝑇
=
𝜕
𝜕𝑇
𝑀 𝑝(𝑡)
𝑅 𝑇(𝑡) 𝑝, 𝑇
= −
𝑀𝑝 𝑡
𝑅 𝑇2 𝑡 𝑝, 𝑇
= −
𝑀 𝑝
𝑅 𝑇2
𝜌 𝑝, 𝑇 =
𝑀 𝑝
𝑅 𝑇
8
MATHEMATICALTOOLSFORCONTROLSYSTEMS
LINEARIZATION
Smith & Corripio, 2005
Linearized function
𝜌 𝑝 𝑡 , 𝑇(𝑡) ≈
𝑀 𝑝
𝑅 𝑇
+
𝑀
𝑅 𝑇
𝑝 𝑡 − 𝑝 −
𝑀 𝑝
𝑅 𝑇2
𝑇 𝑡 − 𝑇
Numerically
𝜌 𝑝 𝑡 , 𝑇(𝑡) ≈ 1.178 + 0.01163 𝑝 𝑡 − 101.3 − 0.00393 𝑇 𝑡 − 300
𝜌 =
𝑘𝑔
𝑚3
; 𝑇 = 𝐾; 𝑝 = 𝑘𝑃𝑎
Where,
9
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
𝐹𝑖, 𝑇𝑖
𝐹𝑜, 𝑇𝑜
Assumptions
Control volume
Liquid is well mixed
Tank is well insulated
Energy input by the stirrer is
negligible
Constant and equal inlet and outlet
volumetric flow, liquid densities and
heat capacity
Question
Mathematical model, 𝑇𝑜 response
to changes in 𝑇𝑖
Case 1: Adiabatic
10
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
Energy balance:
𝐹𝑖 𝜌𝑖ℎ𝑖 𝑡 − 𝐹𝑜 𝜌 𝑜ℎ 𝑜 𝑡 =
𝑑 𝑉 𝜌 𝑢 𝑡
𝑑𝑡
Rate of energy into
control volume
Rate of energy out
of control volume
Rate of change of
energy accumulated in
control volume
𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 = 𝑉 𝜌𝑐 𝑣
𝑑 𝑇 𝑡
𝑑𝑡
Replacing internal energy 𝑢(𝑡) and enthalpy ℎ(𝑡)
𝑢 𝑡 = 𝑐 𝑣 𝑇 𝑡 − 𝑇𝑟𝑒𝑓 ℎ 𝑡 = 𝑐 𝑝 𝑇 𝑡 − 𝑇𝑟𝑒𝑓
Eq. 1
11
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
𝐹𝜌𝑐 𝑝 𝑇𝑖,𝑠𝑠 − 𝐹𝜌𝑐 𝑝 𝑇𝑠𝑠 = 0
Deviation
Subtracting Eq. 1 & 2
Stable State (SS): Eq. 2
𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝑇𝑖,𝑠𝑠 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 − 𝑇𝑠𝑠 = 𝑉 𝜌𝑐 𝑣
𝑑 𝑇 𝑡
𝑑𝑡
𝑇𝑖(𝑡) = 𝑇𝑖 𝑡 − 𝑇𝑖,𝑠𝑠 𝑇(𝑡) = 𝑇 𝑡 − 𝑇𝑠𝑠
𝐹𝜌𝑐 𝑝 𝑇𝑖(𝑡) − 𝐹𝜌𝑐 𝑝 𝑇(𝑡) = 𝑉 𝜌𝑐 𝑣
𝑑 𝑇 𝑡
𝑑𝑡
𝑇𝑖(𝑡) =
𝑉 𝜌𝑐 𝑣
𝐹𝜌𝑐 𝑝
𝑑 𝑇 𝑡
𝑑𝑡
+ 𝑇(𝑡)
𝝉
12
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
Use of Laplace transform yields
ℒ 𝑇𝑖(𝑡) = 𝜏 ℒ
𝑑 𝑇 𝑡
𝑑𝑡
+ ℒ 𝑇(𝑡) ℒ
𝑑 𝑦 𝑡
𝑑𝑡
= 𝑠𝑦 𝑠 − 𝑦(0)
𝑇𝑖(𝑠) = 𝜏 𝑠 𝑇 𝑠 − 𝑇 0 + 𝑇(𝑠) 𝑇 0 = 𝑇 0 − 𝑇𝑠𝑠 = 0
𝑇 𝑠 =
1
(𝜏𝑠 + 1)
𝑇𝑖 (𝑠) Transfer function first-order processes
Assuming inlet
temperature increases of
M degrees in magnitude
𝑇𝑖 𝑡 = 𝑇𝑖,𝑠𝑠
𝑇𝑖 𝑡 = 𝑇𝑖,𝑠𝑠 + 𝑀
𝑡 < 0
𝑡 ≥ 0
13
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
𝑇𝑖 𝑡 = 𝑀 𝑢(𝑡) 𝑇𝑖 𝑠 =
𝑀
𝑠
Unit step function
𝑇 𝑠 =
1
(𝜏𝑠 + 1)
𝑀
𝑠
Partial fractions method
𝑇 𝑠 =
𝑀
𝑠 𝜏𝑠 + 1
=
𝐴
𝑠
+
𝐵
𝜏𝑠 + 1
𝐴 𝜏𝑠 + 1 + 𝐵𝑠 = 𝑀
𝑇 𝑠 =
𝑀
𝑠
+
−𝑀𝜏
𝜏𝑠 + 1
ℒ−1
1
𝑠 + 𝑎
= 𝑒−𝑎𝑡
ℒ−1
1
𝑠
= 𝑒−0𝑡
= 1ℒ−1
𝑇 𝑠 = ℒ−1
𝑀
𝑠
+ ℒ−1
−𝑀𝜏
𝜏𝑠 + 1
Laplace transform inverse
14
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
𝑇 𝑡 = 𝑀 (1 − 𝑒−𝑡/𝜏) 𝑇 𝑡 = 𝑇𝑠𝑠 + 𝑀 (1 − 𝑒−𝑡/𝜏)or
0
M
𝑇 𝑡 , °C
𝑇
𝑇 + 𝑀
𝜏 Time
0.632 𝑀
Figure. Response of a first-order process to a step change in input variable
15
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
Case 2: Non adiabatic
𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 − 𝑞 𝑡 = 𝑉 𝜌𝑐 𝑣
𝑑 𝑇 𝑡
𝑑𝑡
𝑞 𝑡 = 𝑈𝐴 𝑇 𝑡 − 𝑇𝑠(𝑡)Assumption: U constant
𝐹𝜌𝑐 𝑝 𝑇𝑖,𝑠𝑠 − 𝐹𝜌𝑐 𝑝 𝑇𝑠𝑠 − 𝑈𝐴 𝑇𝑠𝑠 − 𝑇𝑠,𝑠𝑠 = 0
Stable State (SS):
Eq. 2
Eq. 1𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 − 𝑈𝐴 𝑇 𝑡 − 𝑇𝑠(𝑡) = 𝑉 𝜌𝑐 𝑣
𝑑 𝑇 𝑡
𝑑𝑡
Subtracting Eq. 1 & 2
16
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝑇𝑖,𝑠𝑠 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 − 𝑇𝑠𝑠 − 𝑈𝐴 𝑇 𝑡 − 𝑇𝑠𝑠 − (𝑇𝑠 𝑡 − 𝑇𝑠,𝑠𝑠) = 𝑉 𝜌𝑐 𝑣
𝑑 𝑇 𝑡
𝑑𝑡
𝑇𝑖(𝑡) = 𝑇𝑖 𝑡 − 𝑇𝑖,𝑠𝑠
𝑇(𝑡) = 𝑇 𝑡 − 𝑇𝑠𝑠
𝑇𝑠(𝑡) = 𝑇𝑠 𝑡 − 𝑇𝑠,𝑠𝑠
𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 − 𝑈𝐴 𝑇(𝑡) − 𝑇𝑠(𝑡) = 𝑉 𝜌𝑐 𝑣
𝑑 𝑇 𝑡
𝑑𝑡
𝑉 𝜌𝑐 𝑣
𝑑 𝑇 𝑡
𝑑𝑡
+ 𝐹𝜌𝑐 𝑝 + 𝑈𝐴 𝑇 𝑡 = 𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 + 𝑈𝐴 𝑇𝑠(𝑡)
17
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
𝑉 𝜌𝑐 𝑣
𝐹𝜌𝑐 𝑝 + 𝑈𝐴
𝑑 𝑇 𝑡
𝑑𝑡
+ 𝑇 𝑡 =
𝐹𝜌𝑐 𝑝
𝐹𝜌𝑐 𝑝 + 𝑈𝐴
𝑇𝑖 𝑡 +
𝑈𝐴
𝐹𝜌𝑐 𝑝 + 𝑈𝐴
𝑇𝑠 (𝑡)
𝝉 𝑲 𝟏 𝑲 𝟐
Use of Laplace transform yields
𝜏 𝑠 𝑇 𝑠 − 𝑇 0 + 𝑇 𝑠 = 𝐾1 𝑇𝑖 𝑠 + 𝐾2 𝑇𝑠 𝑠
𝑇 𝑠 =
𝐾1
𝜏𝑠 + 1
𝑇𝑖 𝑠 +
𝐾2
𝜏𝑠 + 1
𝑇𝑠 𝑠
𝐾 =
∆𝑂
∆𝐼
=
∆ output variable
∆ input variable
18
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
𝑇 𝑠 =
𝐾2
𝜏𝑠 + 1
𝑇𝑠 𝑠
Constant: surrounding temperature
Constant: liquid temperature
𝑇 𝑠 =
𝐾1
𝜏𝑠 + 1
𝑇𝑖 𝑠 𝑇𝑠 𝑡 = 𝑇𝑠,𝑠𝑠; 𝑇𝑠 𝑠 = 0
𝑇𝑖 𝑡 = 𝑇𝑖,𝑠𝑠; 𝑇𝑖 𝑠 = 0
Assuming inlet
temperature increases of
M degrees in magnitude
𝑇𝑖 𝑡 = 𝑇𝑖,𝑠𝑠
𝑇𝑖 𝑡 = 𝑇𝑖,𝑠𝑠 + 𝑀
𝑡 < 0
𝑡 ≥ 0
19
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
𝑇𝑖 𝑡 = 𝑀 𝑢(𝑡) 𝑇𝑖 𝑠 =
𝑀
𝑠
Unit step function
𝑇 𝑠 =
𝐾1
(𝜏𝑠 + 1)
𝑀
𝑠
Partial fractions method
𝑇 𝑠 =
𝐾1 𝑀
𝑠 𝜏𝑠 + 1
=
𝐴
𝑠
+
𝐵
𝜏𝑠 + 1
𝐴 𝜏𝑠 + 1 + 𝐵𝑠 = 𝐾1 𝑀
𝑇 𝑠 =
𝐾1 𝑀
𝑠
+
−𝐾1 𝑀𝜏
𝜏𝑠 + 1
ℒ−1
1
𝑠 + 𝑎
= 𝑒−𝑎𝑡
ℒ−1
1
𝑠
= 𝑒−0𝑡
= 1ℒ−1
𝑇 𝑠 = ℒ−1
𝐾1 𝑀
𝑠
+ ℒ−1
−𝐾1 𝑀𝜏
𝜏𝑠 + 1
Laplace transform inverse
20
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
𝑇 𝑡 = 𝐾1 𝑀 (1 − 𝑒−𝑡/𝜏) 𝑇 𝑡 = 𝑇𝑠𝑠 + 𝐾1 𝑀 (1 − 𝑒−𝑡/𝜏)or
0
M
𝑇 𝑡 , °C
𝑇
𝑇 + 𝐾1 𝑀
Time
𝐾1 𝑀
Figure. Response of a first-order process to a step change in input variable
THANKS !
21

More Related Content

What's hot

VLE Data - Selection and Use
VLE Data - Selection and UseVLE Data - Selection and Use
VLE Data - Selection and Use
Gerard B. Hawkins
 
Estimation of Pressure Drop in Pipe Systems
Estimation of Pressure Drop in Pipe SystemsEstimation of Pressure Drop in Pipe Systems
Estimation of Pressure Drop in Pipe Systems
Gerard B. Hawkins
 
Q921 re1 lec11 v1
Q921 re1 lec11 v1Q921 re1 lec11 v1
Q921 re1 lec11 v1
AFATous
 
Q922+rfp+l02 v1
Q922+rfp+l02 v1Q922+rfp+l02 v1
Q922+rfp+l02 v1
AFATous
 
Q921 re1 lec7 v1
Q921 re1 lec7 v1Q921 re1 lec7 v1
Q921 re1 lec7 v1
AFATous
 
Q922+re2+l06 v1
Q922+re2+l06 v1Q922+re2+l06 v1
Q922+re2+l06 v1
AFATous
 
Q921 re1 lec10 v1
Q921 re1 lec10 v1Q921 re1 lec10 v1
Q921 re1 lec10 v1
AFATous
 
Q922+re2+l05 v1
Q922+re2+l05 v1Q922+re2+l05 v1
Q922+re2+l05 v1
AFATous
 
Q922+re2+l07 v1
Q922+re2+l07 v1Q922+re2+l07 v1
Q922+re2+l07 v1
AFATous
 
Q922+rfp+l08 v1
Q922+rfp+l08 v1Q922+rfp+l08 v1
Q922+rfp+l08 v1
AFATous
 

What's hot (20)

Module 1 - Introduction to Aspen HYSYS
Module 1  - Introduction to Aspen HYSYSModule 1  - Introduction to Aspen HYSYS
Module 1 - Introduction to Aspen HYSYS
 
Study of product distribution in parallel reaction in plug flow; DwSim.
Study of product distribution in parallel reaction in plug flow; DwSim.Study of product distribution in parallel reaction in plug flow; DwSim.
Study of product distribution in parallel reaction in plug flow; DwSim.
 
VLE Data - Selection and Use
VLE Data - Selection and UseVLE Data - Selection and Use
VLE Data - Selection and Use
 
Estimation of Pressure Drop in Pipe Systems
Estimation of Pressure Drop in Pipe SystemsEstimation of Pressure Drop in Pipe Systems
Estimation of Pressure Drop in Pipe Systems
 
Pressure & Rate Transient Analysis.pdf
Pressure & Rate Transient Analysis.pdfPressure & Rate Transient Analysis.pdf
Pressure & Rate Transient Analysis.pdf
 
Q921 re1 lec11 v1
Q921 re1 lec11 v1Q921 re1 lec11 v1
Q921 re1 lec11 v1
 
Q922+rfp+l02 v1
Q922+rfp+l02 v1Q922+rfp+l02 v1
Q922+rfp+l02 v1
 
Chemical Process Calculations – Short Tutorial
Chemical Process Calculations – Short TutorialChemical Process Calculations – Short Tutorial
Chemical Process Calculations – Short Tutorial
 
Q921 re1 lec7 v1
Q921 re1 lec7 v1Q921 re1 lec7 v1
Q921 re1 lec7 v1
 
Q922+re2+l06 v1
Q922+re2+l06 v1Q922+re2+l06 v1
Q922+re2+l06 v1
 
Conjugate Heat Transfer Best Practices in SimScale
Conjugate Heat Transfer Best Practices in SimScaleConjugate Heat Transfer Best Practices in SimScale
Conjugate Heat Transfer Best Practices in SimScale
 
Basic Tutorial on Aspen HYSYS Dynamics - Process control (Tutorial 3)
Basic Tutorial on Aspen HYSYS Dynamics - Process control (Tutorial 3)Basic Tutorial on Aspen HYSYS Dynamics - Process control (Tutorial 3)
Basic Tutorial on Aspen HYSYS Dynamics - Process control (Tutorial 3)
 
Q921 re1 lec10 v1
Q921 re1 lec10 v1Q921 re1 lec10 v1
Q921 re1 lec10 v1
 
Material & Energy Balance for Distillation
Material & Energy Balance for DistillationMaterial & Energy Balance for Distillation
Material & Energy Balance for Distillation
 
Q922+re2+l05 v1
Q922+re2+l05 v1Q922+re2+l05 v1
Q922+re2+l05 v1
 
Q922+re2+l07 v1
Q922+re2+l07 v1Q922+re2+l07 v1
Q922+re2+l07 v1
 
Aspen HYSYS - Basic Course (SS)
Aspen HYSYS - Basic Course (SS)Aspen HYSYS - Basic Course (SS)
Aspen HYSYS - Basic Course (SS)
 
Water influx
Water influxWater influx
Water influx
 
Q922+rfp+l08 v1
Q922+rfp+l08 v1Q922+rfp+l08 v1
Q922+rfp+l08 v1
 
Process Simulation.pptx
Process Simulation.pptxProcess Simulation.pptx
Process Simulation.pptx
 

Similar to LINEARIZATION OF FUNCTIONS OF TWO OR MORE VARIABLES & THERMAL PROCESS EXAMPLE

Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
HebaEng
 
14th_Class_19-03-2024 Control systems.pptx
14th_Class_19-03-2024 Control systems.pptx14th_Class_19-03-2024 Control systems.pptx
14th_Class_19-03-2024 Control systems.pptx
buttshaheemsoci77
 
10). thermodynamics (finished)
10). thermodynamics (finished)10). thermodynamics (finished)
10). thermodynamics (finished)
PhysicsLover
 

Similar to LINEARIZATION OF FUNCTIONS OF TWO OR MORE VARIABLES & THERMAL PROCESS EXAMPLE (20)

Presentation1
Presentation1Presentation1
Presentation1
 
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
 
Capitulo 9
Capitulo 9Capitulo 9
Capitulo 9
 
Chemical Bonding
Chemical BondingChemical Bonding
Chemical Bonding
 
SDF Hysteretic System 1 - Analytical Vaiana Rosati Model
SDF Hysteretic System 1 - Analytical Vaiana Rosati ModelSDF Hysteretic System 1 - Analytical Vaiana Rosati Model
SDF Hysteretic System 1 - Analytical Vaiana Rosati Model
 
Passivity-based control of rigid-body manipulator
Passivity-based control of rigid-body manipulatorPassivity-based control of rigid-body manipulator
Passivity-based control of rigid-body manipulator
 
schluter_presentation (1).pdf
schluter_presentation (1).pdfschluter_presentation (1).pdf
schluter_presentation (1).pdf
 
Mod 3.pptx
Mod 3.pptxMod 3.pptx
Mod 3.pptx
 
SDF Hysteretic System 1 - Differential Vaiana Rosati Model
SDF Hysteretic System 1 - Differential Vaiana Rosati Model SDF Hysteretic System 1 - Differential Vaiana Rosati Model
SDF Hysteretic System 1 - Differential Vaiana Rosati Model
 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptx
 
14th_Class_19-03-2024 Control systems.pptx
14th_Class_19-03-2024 Control systems.pptx14th_Class_19-03-2024 Control systems.pptx
14th_Class_19-03-2024 Control systems.pptx
 
Examen termo final
Examen termo finalExamen termo final
Examen termo final
 
10). thermodynamics (finished)
10). thermodynamics (finished)10). thermodynamics (finished)
10). thermodynamics (finished)
 
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdfTHE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
 
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdfTHE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
 
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdfTHE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
 
Analysis Of A Binary Outcome Variable
Analysis Of A Binary Outcome VariableAnalysis Of A Binary Outcome Variable
Analysis Of A Binary Outcome Variable
 
FM CHAPTER 5.pptx
FM CHAPTER 5.pptxFM CHAPTER 5.pptx
FM CHAPTER 5.pptx
 
2014_12_Sierra
2014_12_Sierra2014_12_Sierra
2014_12_Sierra
 

More from Angel Darío González-Delgado

More from Angel Darío González-Delgado (12)

CONTROL VALVES: CHARACTERISTICS, GAIN & TRANSFER FUNCTION
CONTROL VALVES: CHARACTERISTICS, GAIN & TRANSFER FUNCTION CONTROL VALVES: CHARACTERISTICS, GAIN & TRANSFER FUNCTION
CONTROL VALVES: CHARACTERISTICS, GAIN & TRANSFER FUNCTION
 
Signos de puntuación
Signos de puntuaciónSignos de puntuación
Signos de puntuación
 
Biodiesel from microalgae: A chemical process approach
Biodiesel from microalgae: A chemical process approachBiodiesel from microalgae: A chemical process approach
Biodiesel from microalgae: A chemical process approach
 
Process Optimization Applied to Biofuels production and Development of Bioref...
Process Optimization Applied to Biofuels production and Development of Bioref...Process Optimization Applied to Biofuels production and Development of Bioref...
Process Optimization Applied to Biofuels production and Development of Bioref...
 
Selección de una cepa de microalga para el desarrollo de una biorefinería
Selección de una cepa de microalga para el desarrollo de una biorefineríaSelección de una cepa de microalga para el desarrollo de una biorefinería
Selección de una cepa de microalga para el desarrollo de una biorefinería
 
Humidifier: Foundations, Applications and Scientific Progress
Humidifier: Foundations, Applications and Scientific ProgressHumidifier: Foundations, Applications and Scientific Progress
Humidifier: Foundations, Applications and Scientific Progress
 
Absorption Column: Foundations, Applications and Scientific Progress
Absorption Column: Foundations, Applications and Scientific ProgressAbsorption Column: Foundations, Applications and Scientific Progress
Absorption Column: Foundations, Applications and Scientific Progress
 
Distillation column: Foundations, Applications and Scientific Progress
Distillation column: Foundations, Applications and Scientific ProgressDistillation column: Foundations, Applications and Scientific Progress
Distillation column: Foundations, Applications and Scientific Progress
 
HAZARD & OPERABILITY STUDY (HAZOP) & MATERIAL SAFETY DATA SHEET (MSDS)
HAZARD & OPERABILITY STUDY (HAZOP) & MATERIAL SAFETY DATA SHEET (MSDS)HAZARD & OPERABILITY STUDY (HAZOP) & MATERIAL SAFETY DATA SHEET (MSDS)
HAZARD & OPERABILITY STUDY (HAZOP) & MATERIAL SAFETY DATA SHEET (MSDS)
 
Modelos de solución termodinámicos
Modelos de solución termodinámicosModelos de solución termodinámicos
Modelos de solución termodinámicos
 
Thermodynamics of solutions. Solved problems (Spanish)
Thermodynamics of solutions. Solved problems (Spanish)Thermodynamics of solutions. Solved problems (Spanish)
Thermodynamics of solutions. Solved problems (Spanish)
 
Lineamientos trabajo de grado en Ingeniería Química
Lineamientos trabajo de grado en Ingeniería QuímicaLineamientos trabajo de grado en Ingeniería Química
Lineamientos trabajo de grado en Ingeniería Química
 

Recently uploaded

scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
HenryBriggs2
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
mphochane1998
 

Recently uploaded (20)

DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Air Compressor reciprocating single stage
Air Compressor reciprocating single stageAir Compressor reciprocating single stage
Air Compressor reciprocating single stage
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 

LINEARIZATION OF FUNCTIONS OF TWO OR MORE VARIABLES & THERMAL PROCESS EXAMPLE

  • 1. LINEARIZATION OF FUNCTIONS OF TWO OR MORE VARIABLES & THERMAL PROCESS EXAMPLE 1 CONTROL PROCESS FIRST-ORDERDYNAMICSYSTEMS "Good, better, best. Never let it rest. 'Til your good is better and your better is best." - St. Jerome
  • 2. LINEARIZATION OF FUNCTIONS OF TWO OR MORE VARIABLES & THERMAL PROCESS EXAMPLE IRIS BUSTAMANTE PÁJARO* ANGIE CASTILLO GUEVARA* ALVARO JOSE GARCÍA PADILLA * KARIANA ANDREA MORENO SADDER* LUIS ALBERTO PATERNINA NUÑEZ* CHEMICAL ENGINEERING PROGRAM UNIVERSITY OF CARTAGENA 2 CONTROL PROCESS FIRST-ORDERDYNAMICSYSTEMS
  • 3. 3 MATHEMATICALTOOLSFORCONTROLSYSTEMS LINEARIZATION FUNCTIONS OF TWO OR MORE VARIABLES Rate of a chemical reactionEquation of state Raoult’s law 𝑘 𝑐 𝐴 2 𝑡 𝑐 𝐵(𝑡) 𝑟 𝑐 𝐴 𝑡 , 𝑐 𝐵(𝑡) ) 𝑦 𝑇 𝑡 , 𝑝 𝑡 , 𝑥(𝑡) 𝑝0 𝑇 𝑡 𝑝 𝑡 𝑥(𝑡) 𝜌 𝑝 𝑡 , 𝑇(𝑡) 𝑀 𝑝(𝑡) 𝑅 𝑇(𝑡) Smith & Corripio, 2005
  • 4. 4 MATHEMATICALTOOLSFORCONTROLSYSTEMS LINEARIZATION Smith & Corripio, 2005 LINEARIZATION OF FUNCTIONS OF TWO OR MORE VARIABLES Taylor series expansion 𝑓 𝑥1 𝑡 , 𝑥2 𝑡 , … ≈ 𝑓 𝑥1, 𝑥2, … + 𝜕𝑓 𝜕𝑥1 𝑥1 𝑡 − 𝑥1 + 𝜕𝑓 𝜕𝑥2 𝑥2 𝑡 − 𝑥2 + ⋯ 𝜕𝑓 𝜕𝑥 𝑘 = 𝜕𝑓 𝜕𝑥 𝑘 𝑥1, 𝑥2,… Where, 𝑥1, 𝑥2, … basic values of each variable.
  • 5. 5 MATHEMATICALTOOLSFORCONTROLSYSTEMS LINEARIZATION Smith & Corripio, 2005 EXAMPLE 2-6.2 FUNCTION 𝑎 𝑤 𝑡 , ℎ(𝑡) = 𝑤 𝑡 ℎ(𝑡) Area of a rectangle 𝑤 𝑡 ℎ 𝑡 𝑎 𝑤 𝑡 , ℎ(𝑡) ≈ 𝑎 𝑤, ℎ + 𝜕𝑎 𝜕𝑤 𝑤 𝑡 − 𝑤 + 𝜕𝑎 𝜕ℎ ℎ 𝑡 − ℎ How to linearize? 𝑎 𝑤 𝑡 , ℎ(𝑡) ≈ 𝑎 𝑤, ℎ + ℎ 𝑤 𝑡 − 𝑤 + 𝑤 ℎ 𝑡 − ℎ 𝑎 𝑤, ℎ 𝑤 ℎ 𝑤 ℎ 𝑡 − ℎ ℎ𝑤𝑡−𝑤 Error Small error
  • 6. 6 MATHEMATICALTOOLSFORCONTROLSYSTEMS LINEARIZATION Smith & Corripio, 2005 EXAMPLE 2-6.3 T p Density of an ideal gas as function of pressure and temperature: 𝜌 𝑝 𝑡 , 𝑇(𝑡) = 𝑀 𝑝(𝑡) 𝑅 𝑇(𝑡) Linear approximation? Additional information 𝑀 = 20 𝑘𝑔 𝑘𝑚𝑜𝑙 𝑇 = 300 𝐾 𝑃 = 101.3 𝑘𝑃𝑎 𝑅 = 8.314 𝑘𝑃𝑎 ∙ 𝑚3 𝑘𝑚𝑜𝑙 ∙ 𝐾
  • 7. 7 MATHEMATICALTOOLSFORCONTROLSYSTEMS LINEARIZATION Smith & Corripio, 2005 How to linearize? 𝜌 𝑝 𝑡 , 𝑇(𝑡) ≈ 𝜌 𝑝, 𝑇 + 𝜕𝜌 𝜕𝑝 𝑝 𝑡 − 𝑝 + 𝜕𝜌 𝜕𝑇 𝑇 𝑡 − 𝑇 𝜕𝜌 𝜕𝑝 = 𝜕𝜌 𝜕𝑝 𝑝, 𝑇 = 𝜕 𝜕𝑝 𝑀 𝑝(𝑡) 𝑅 𝑇(𝑡) 𝑝, 𝑇 = 𝑀 𝑅 𝑇(𝑡) 𝑝, 𝑇 = 𝑀 𝑅 𝑇 𝜕𝜌 𝜕𝑇 = 𝜕𝜌 𝜕𝑇 𝑝, 𝑇 = 𝜕 𝜕𝑇 𝑀 𝑝(𝑡) 𝑅 𝑇(𝑡) 𝑝, 𝑇 = − 𝑀𝑝 𝑡 𝑅 𝑇2 𝑡 𝑝, 𝑇 = − 𝑀 𝑝 𝑅 𝑇2 𝜌 𝑝, 𝑇 = 𝑀 𝑝 𝑅 𝑇
  • 8. 8 MATHEMATICALTOOLSFORCONTROLSYSTEMS LINEARIZATION Smith & Corripio, 2005 Linearized function 𝜌 𝑝 𝑡 , 𝑇(𝑡) ≈ 𝑀 𝑝 𝑅 𝑇 + 𝑀 𝑅 𝑇 𝑝 𝑡 − 𝑝 − 𝑀 𝑝 𝑅 𝑇2 𝑇 𝑡 − 𝑇 Numerically 𝜌 𝑝 𝑡 , 𝑇(𝑡) ≈ 1.178 + 0.01163 𝑝 𝑡 − 101.3 − 0.00393 𝑇 𝑡 − 300 𝜌 = 𝑘𝑔 𝑚3 ; 𝑇 = 𝐾; 𝑝 = 𝑘𝑃𝑎 Where,
  • 9. 9 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS 𝐹𝑖, 𝑇𝑖 𝐹𝑜, 𝑇𝑜 Assumptions Control volume Liquid is well mixed Tank is well insulated Energy input by the stirrer is negligible Constant and equal inlet and outlet volumetric flow, liquid densities and heat capacity Question Mathematical model, 𝑇𝑜 response to changes in 𝑇𝑖 Case 1: Adiabatic
  • 10. 10 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS Energy balance: 𝐹𝑖 𝜌𝑖ℎ𝑖 𝑡 − 𝐹𝑜 𝜌 𝑜ℎ 𝑜 𝑡 = 𝑑 𝑉 𝜌 𝑢 𝑡 𝑑𝑡 Rate of energy into control volume Rate of energy out of control volume Rate of change of energy accumulated in control volume 𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 = 𝑉 𝜌𝑐 𝑣 𝑑 𝑇 𝑡 𝑑𝑡 Replacing internal energy 𝑢(𝑡) and enthalpy ℎ(𝑡) 𝑢 𝑡 = 𝑐 𝑣 𝑇 𝑡 − 𝑇𝑟𝑒𝑓 ℎ 𝑡 = 𝑐 𝑝 𝑇 𝑡 − 𝑇𝑟𝑒𝑓 Eq. 1
  • 11. 11 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS 𝐹𝜌𝑐 𝑝 𝑇𝑖,𝑠𝑠 − 𝐹𝜌𝑐 𝑝 𝑇𝑠𝑠 = 0 Deviation Subtracting Eq. 1 & 2 Stable State (SS): Eq. 2 𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝑇𝑖,𝑠𝑠 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 − 𝑇𝑠𝑠 = 𝑉 𝜌𝑐 𝑣 𝑑 𝑇 𝑡 𝑑𝑡 𝑇𝑖(𝑡) = 𝑇𝑖 𝑡 − 𝑇𝑖,𝑠𝑠 𝑇(𝑡) = 𝑇 𝑡 − 𝑇𝑠𝑠 𝐹𝜌𝑐 𝑝 𝑇𝑖(𝑡) − 𝐹𝜌𝑐 𝑝 𝑇(𝑡) = 𝑉 𝜌𝑐 𝑣 𝑑 𝑇 𝑡 𝑑𝑡 𝑇𝑖(𝑡) = 𝑉 𝜌𝑐 𝑣 𝐹𝜌𝑐 𝑝 𝑑 𝑇 𝑡 𝑑𝑡 + 𝑇(𝑡) 𝝉
  • 12. 12 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS Use of Laplace transform yields ℒ 𝑇𝑖(𝑡) = 𝜏 ℒ 𝑑 𝑇 𝑡 𝑑𝑡 + ℒ 𝑇(𝑡) ℒ 𝑑 𝑦 𝑡 𝑑𝑡 = 𝑠𝑦 𝑠 − 𝑦(0) 𝑇𝑖(𝑠) = 𝜏 𝑠 𝑇 𝑠 − 𝑇 0 + 𝑇(𝑠) 𝑇 0 = 𝑇 0 − 𝑇𝑠𝑠 = 0 𝑇 𝑠 = 1 (𝜏𝑠 + 1) 𝑇𝑖 (𝑠) Transfer function first-order processes Assuming inlet temperature increases of M degrees in magnitude 𝑇𝑖 𝑡 = 𝑇𝑖,𝑠𝑠 𝑇𝑖 𝑡 = 𝑇𝑖,𝑠𝑠 + 𝑀 𝑡 < 0 𝑡 ≥ 0
  • 13. 13 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS 𝑇𝑖 𝑡 = 𝑀 𝑢(𝑡) 𝑇𝑖 𝑠 = 𝑀 𝑠 Unit step function 𝑇 𝑠 = 1 (𝜏𝑠 + 1) 𝑀 𝑠 Partial fractions method 𝑇 𝑠 = 𝑀 𝑠 𝜏𝑠 + 1 = 𝐴 𝑠 + 𝐵 𝜏𝑠 + 1 𝐴 𝜏𝑠 + 1 + 𝐵𝑠 = 𝑀 𝑇 𝑠 = 𝑀 𝑠 + −𝑀𝜏 𝜏𝑠 + 1 ℒ−1 1 𝑠 + 𝑎 = 𝑒−𝑎𝑡 ℒ−1 1 𝑠 = 𝑒−0𝑡 = 1ℒ−1 𝑇 𝑠 = ℒ−1 𝑀 𝑠 + ℒ−1 −𝑀𝜏 𝜏𝑠 + 1 Laplace transform inverse
  • 14. 14 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS 𝑇 𝑡 = 𝑀 (1 − 𝑒−𝑡/𝜏) 𝑇 𝑡 = 𝑇𝑠𝑠 + 𝑀 (1 − 𝑒−𝑡/𝜏)or 0 M 𝑇 𝑡 , °C 𝑇 𝑇 + 𝑀 𝜏 Time 0.632 𝑀 Figure. Response of a first-order process to a step change in input variable
  • 15. 15 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS Case 2: Non adiabatic 𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 − 𝑞 𝑡 = 𝑉 𝜌𝑐 𝑣 𝑑 𝑇 𝑡 𝑑𝑡 𝑞 𝑡 = 𝑈𝐴 𝑇 𝑡 − 𝑇𝑠(𝑡)Assumption: U constant 𝐹𝜌𝑐 𝑝 𝑇𝑖,𝑠𝑠 − 𝐹𝜌𝑐 𝑝 𝑇𝑠𝑠 − 𝑈𝐴 𝑇𝑠𝑠 − 𝑇𝑠,𝑠𝑠 = 0 Stable State (SS): Eq. 2 Eq. 1𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 − 𝑈𝐴 𝑇 𝑡 − 𝑇𝑠(𝑡) = 𝑉 𝜌𝑐 𝑣 𝑑 𝑇 𝑡 𝑑𝑡 Subtracting Eq. 1 & 2
  • 16. 16 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS 𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝑇𝑖,𝑠𝑠 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 − 𝑇𝑠𝑠 − 𝑈𝐴 𝑇 𝑡 − 𝑇𝑠𝑠 − (𝑇𝑠 𝑡 − 𝑇𝑠,𝑠𝑠) = 𝑉 𝜌𝑐 𝑣 𝑑 𝑇 𝑡 𝑑𝑡 𝑇𝑖(𝑡) = 𝑇𝑖 𝑡 − 𝑇𝑖,𝑠𝑠 𝑇(𝑡) = 𝑇 𝑡 − 𝑇𝑠𝑠 𝑇𝑠(𝑡) = 𝑇𝑠 𝑡 − 𝑇𝑠,𝑠𝑠 𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 − 𝑈𝐴 𝑇(𝑡) − 𝑇𝑠(𝑡) = 𝑉 𝜌𝑐 𝑣 𝑑 𝑇 𝑡 𝑑𝑡 𝑉 𝜌𝑐 𝑣 𝑑 𝑇 𝑡 𝑑𝑡 + 𝐹𝜌𝑐 𝑝 + 𝑈𝐴 𝑇 𝑡 = 𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 + 𝑈𝐴 𝑇𝑠(𝑡)
  • 17. 17 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS 𝑉 𝜌𝑐 𝑣 𝐹𝜌𝑐 𝑝 + 𝑈𝐴 𝑑 𝑇 𝑡 𝑑𝑡 + 𝑇 𝑡 = 𝐹𝜌𝑐 𝑝 𝐹𝜌𝑐 𝑝 + 𝑈𝐴 𝑇𝑖 𝑡 + 𝑈𝐴 𝐹𝜌𝑐 𝑝 + 𝑈𝐴 𝑇𝑠 (𝑡) 𝝉 𝑲 𝟏 𝑲 𝟐 Use of Laplace transform yields 𝜏 𝑠 𝑇 𝑠 − 𝑇 0 + 𝑇 𝑠 = 𝐾1 𝑇𝑖 𝑠 + 𝐾2 𝑇𝑠 𝑠 𝑇 𝑠 = 𝐾1 𝜏𝑠 + 1 𝑇𝑖 𝑠 + 𝐾2 𝜏𝑠 + 1 𝑇𝑠 𝑠 𝐾 = ∆𝑂 ∆𝐼 = ∆ output variable ∆ input variable
  • 18. 18 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS 𝑇 𝑠 = 𝐾2 𝜏𝑠 + 1 𝑇𝑠 𝑠 Constant: surrounding temperature Constant: liquid temperature 𝑇 𝑠 = 𝐾1 𝜏𝑠 + 1 𝑇𝑖 𝑠 𝑇𝑠 𝑡 = 𝑇𝑠,𝑠𝑠; 𝑇𝑠 𝑠 = 0 𝑇𝑖 𝑡 = 𝑇𝑖,𝑠𝑠; 𝑇𝑖 𝑠 = 0 Assuming inlet temperature increases of M degrees in magnitude 𝑇𝑖 𝑡 = 𝑇𝑖,𝑠𝑠 𝑇𝑖 𝑡 = 𝑇𝑖,𝑠𝑠 + 𝑀 𝑡 < 0 𝑡 ≥ 0
  • 19. 19 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS 𝑇𝑖 𝑡 = 𝑀 𝑢(𝑡) 𝑇𝑖 𝑠 = 𝑀 𝑠 Unit step function 𝑇 𝑠 = 𝐾1 (𝜏𝑠 + 1) 𝑀 𝑠 Partial fractions method 𝑇 𝑠 = 𝐾1 𝑀 𝑠 𝜏𝑠 + 1 = 𝐴 𝑠 + 𝐵 𝜏𝑠 + 1 𝐴 𝜏𝑠 + 1 + 𝐵𝑠 = 𝐾1 𝑀 𝑇 𝑠 = 𝐾1 𝑀 𝑠 + −𝐾1 𝑀𝜏 𝜏𝑠 + 1 ℒ−1 1 𝑠 + 𝑎 = 𝑒−𝑎𝑡 ℒ−1 1 𝑠 = 𝑒−0𝑡 = 1ℒ−1 𝑇 𝑠 = ℒ−1 𝐾1 𝑀 𝑠 + ℒ−1 −𝐾1 𝑀𝜏 𝜏𝑠 + 1 Laplace transform inverse
  • 20. 20 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS 𝑇 𝑡 = 𝐾1 𝑀 (1 − 𝑒−𝑡/𝜏) 𝑇 𝑡 = 𝑇𝑠𝑠 + 𝐾1 𝑀 (1 − 𝑒−𝑡/𝜏)or 0 M 𝑇 𝑡 , °C 𝑇 𝑇 + 𝐾1 𝑀 Time 𝐾1 𝑀 Figure. Response of a first-order process to a step change in input variable