Publicité
Publicité

Contenu connexe

Publicité

30.803.004.pptx

  1. Conjuntos Autor: Antony Rodriguez
  2. Definicion de conjuntos: En matemáticas, un conjunto es una colección de elementos considerada en sí misma como un objeto. Los elementos de un conjunto, pueden ser las siguientes: personas, números, colores, letras, figuras, etc. Se dice que un elemento pertenece al conjunto si está definido como incluido de algún modo dentro de él. 2
  3. Operaciones con conjuntos Las operaciones con conjuntos también conocidas como álgebra de conjuntos, nos permiten realizar operaciones sobre los conjuntos para obtener otro conjunto. De las operaciones con conjuntos veremos las siguientes unión, intersección, diferencia, diferencia simétrica y complemento. 3
  4. Es la operación que nos permite unir dos o más conjuntos para formar otro conjunto que contendrá a todos los elementos que queremos unir pero sin que se repitan. Es decir dado un conjunto A y un conjunto B, la unión de los conjuntos A y B será otro conjunto formado por todos los elementos de A, con todos los elementos de B sin repetir ningún elemento. Unión o reunión de conjuntos 4
  5. Ejemplo 1 Dados dos conjuntos A={1,2,3,4,5,6,7,} y B={8,9,10,11} la unión de estos conjuntos será A∪B={1,2,3,4,5,6,7,8,9,10,11}. Usando diagramas de Venn se tendría lo siguiente: También se puede graficar del siguiente modo:
  6. Intersección de conjuntos. Es la operación que nos permite formar un conjunto, sólo con los elementos comunes involucrados en la operación. Es decir dados dos conjuntos A y B, la de intersección de los conjuntos A y B, estará formado por los elementos de A y los elementos de B que sean comunes, los elementos no comunes A y B, será excluidos 6
  7. Ejemplo 1. Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la intersección de estos conjuntos será A∩B={4,5}. Usando diagramas de Venn se tendría lo siguiente:
  8. Diferencia de conjuntos. Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que tendrá todos los elementos que pertenecen al primero pero no al segundo. Es decir dados dos conjuntos A y B, la diferencia de los conjuntos entra A y B, estará formado por todos los elementos de A que no pertenezcan a B. 8
  9. Ejemplo 1. Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia de estos conjuntos será A-B={1,2,3}. Usando diagramas de Venn se tendría lo siguiente:
  10. Diferencia de simétrica de conjuntos. 10 ◦ Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que tendrá todos los elementos que no sean comunes a ambos conjuntos. Es decir dados dos conjuntos A y B, la diferencia simétrica estará formado por todos los elementos no comunes a los conjuntos A y B.
  11. Ejemplo 1. Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia simétrica de estos conjuntos será A △ B={1,2,3,6,7,8,9}. Usando diagramas de Venn se tendría lo siguiente:
  12. Complemento de un conjunto. Es la operación que nos permite formar un conjunto con todos los elementos del conjunto de referencia o universal, que no están en el conjunto. Es decir dado un conjunto A que esta incluido en el conjunto universal U, entonces el conjunto complemento de A es el conjunto formado por todos los elementos del conjunto universal pero sin considerar a los elementos que pertenezcan al conjunto A. En esta operación el complemento de un conjunto se denota con un apostrofe sobre el conjunto que se opera, algo como esto A' en donde el el conjunto A es el conjunto del cual se hace la operación de complemento. 12
  13. Ejemplo 1. Dado el conjunto Universal U={1,2,3,4,5,6,7,8,9} y el conjunto A={1,2,9}, el conjunto A' estará formado por los siguientes elementos A'={3,4,5,6,7,8}. Usando diagramas de Venn se tendría lo siguiente:
  14. Números Reales En matemáticas, el conjunto de los números reales incluye tanto los números racionales como los números irracionales;​ y en otro enfoque, a los trascendentes y a los algebraicos. El conjunto de los números reales contiene a todos los números que tienen un lugar en la recta numérica. 14
  15. 15 En matemáticas, una desigualdad es una relación de orden que se da entre dos valores cuando estos son distintos. Si los valores en cuestión son elementos de un conjunto ordenado, como los enteros o los reales, entonces pueden ser comparados. La notación a < b significa a es menor que b; Desigualdades matemáticas
  16. 16 El valor absoluto es un concepto que está presente en diversos contextos de la Física y las Matemáticas, por ejemplo en las nociones de magnitud, distancia, y norma. En casos más complejos es un concepto muy útil, como en las definiciones de cuaterniones, anillos ordenados, cuerpos o espacios vectoriales. El valor absoluto o módulo de un número real cualquiera es el mismo número pero con signo positivo. En otras palabras, es el valor numérico sin tener en cuenta su signo, ya sea positivo o negativo. Por ejemplo, el valor absoluto del número −4−4 se representa como |−4||−4| y equivale a 44, y el valor absoluto de 44 se representa como |4||4|, lo cual también equivale a 44. Valor absoluto
  17. 17 DESIGUALDADES DE VALOR ABSOLUTO Una desigualdad de valor absoluto es una desigualdad que tiene un signo de valor absoluto con una variable dentro.
  18. 18 Resolver Desigualdades que Contienen Valores Absolutos: La desigualdad dice, “el valor absoluto de x es menor o igual a 4.” Si se te pide resolver x, quieres encontrar los valores de x que están a 4 unidades o menos de 0 en la recta numérica. Podrías empezar imaginando la recta numérica y los valores de x que satisfacen esta ecuación. 4 y −4 están a cuatro unidades del 0, entonces son soluciones. 3 y −3 también son soluciones porque cada uno de estos valores está a menos de cuatro unidades del 0. Al igual que el 1 y el −1, el 0.5 y el −0.5, etc. — hay un número infinito de valores de x que satisfacen la desigualdad. La gráfica de esta desigualdad tendrá dos círculos cerrados, en 4 y en −4. La distancia entre estos dos círculos en la recta numérica está coloreada de azul porque estos son los valores que satisfacen la ecuación. Apliquemos lo que ya sabes sobre resolver ecuaciones que contienen valores absolutos y lo que sabes sobre desigualdades para resolver desigualdades que contienen valores absolutos. Empecemos con una desigualdad simple.
  19. 19 La situación es un poco distinta cuando el signo de desigualdad es “mayor que” o “mayor o igual a.” Considera la desigualdad simple También, podrías pensar en la recta numérica y los valores de x mayores de tres unidades a partir del 0. Esta vez, 3 y −3 no están incluidos en la solución, entonces hay dos círculos abiertos en estos valores. 2 y −2 no serían soluciones porque no están a más de tres unidades del 0. Pero 5 y −5 si están y también lo están todos los valores extendiéndose a la izquierda de −3 y a la derecha de 3. La gráfica se vería como la que está abajo. La solución se puede escribir de esta manera: −4 x 4. La solución de esta desigualdad puede escribirse: x < −3 o x > 3.
  20. 20 Ejercicios:
  21. Gracias por su atención!!!
Publicité