SlideShare a Scribd company logo
1 of 40
Dr. Zakieldeen Mohammed Eltayeb Elhassan
zakideenzain@yahoo.com
Karary University –college of Engineering
Department of Electrical and Computer Engineering
1/4/2023 DC motor T.F 1
‫الرحيم‬ ‫الرحمن‬ ‫هللا‬ ‫بسم‬
1/4/2023 DC motor T.F 2
 Find the DC motor Transfer function.
 Compute the time response of DC motor based on inputs types.
 Signify a DC motor mechanical load based on mathematical
model.
 Study the influence of negative feedback to dc motor
performance.
The main objective of this lecture is that the student after this
presentation will be able to Generate and analysis performance
of DC motor
Separately Excited DC Motors
1/4/2023 DC motor T.F 3
Consider steady-state model
wm
ia = armature current
eb= back emf
ea= armature terminal voltage
wm = motor speed (rad/sec)
T = motor torque
Tf = static friction torque
Ra = armature resistance
La = armature inductance
Jm = rotational inertia
Bm = viscous friction
Review the steady-state relationships
Of machine
1/4/2023 DC motor T.F 4
Steady-State Operation of Separately
Excited DC Motors
1/4/2023 DC motor T.F 5
Relationships of Separately Excited Dc Motor
ia
T
-Tf
DT
Dia
KT=DT/Dia
Torque-Current Curve Back EMF Curve
wm
eb
DT
Dia
KT=DT/Dia
Speed-Torque Curve
T
wm
DT
Dwm
wm=wnl – (Dwm/DT)T
wnl
Steady-State Motor Equations
1/4/2023 DC motor T.F 6
Developed Torque
m
-
N
T
i
K
T f
a
T 

=
T = motor torque
KT = torque constant
Tf = motor friction torque
ia = armature current
KVL in Armature Circuit
V
e
R
i
e b
a
a
a 

=
wm= shaft speed (rad/s)
eb = back emf
Ke = back emf constant
Back EMF
V
K
e m
e
b w

=
Developed Power
W
T
P m 
w
=
ea= armature voltage
eb = back emf
Ra = armature resistance
P = shaft power
Steady-State Motor Equations
1/4/2023 DC motor T.F 7
Combining the previous equations gives:
e
T
a
f
a
T
m
K
K
R
)
T
T
(
e
K





=
w
e
a
a
a
m
K
R
i
e 

=
w
If the load torque is zero (T=0) then the above equation (1) gives the no-load
speed
(1) (2)
e
T
a
f
a
T
nl
K
K
R
)
T
(
e
K




=
w (3)
Steady-State Motor Operation
1/4/2023 DC motor T.F 8
Example 1: An armature-controlled dc motor has
the following ratings: Tf=0.012 N-m, Ra=1.2
ohms, KT=0.06 N-m/A, Ke=0.06 V-s/rad. It has a
maximum speed of 500 rad/s with a maximum
current of 2 A. Find:
a) maximum output torque.
b) maximum mechanical output power.
c) maximum armature voltage.
d) no-load speed at maximum armature voltage.
Example 1 Solution
1/4/2023 DC motor T.F 9
Define given variables
a) Tmax occurs at Imax so….
Answer
b) Find Pmax
Answer
Example 1 Solution
1/4/2023 DC motor T.F 10
c) Find maximum back emf
Answer
d) Find no-load motor speed
At no-load, T=0. Load torque is zero.
T=0
Transfer Function of Armature-
Controlled DC Motor
1/4/2023 DC motor T.F 11
Write all variables as time functions
Jm
Bm
La
T(t)
eb(t)
ia(t)
ea(t)
+ +
Ra
Write electrical equations and
mechanical equations. Use the
electromechanical
relationships to couple the two
equations.
Consider ea(t) and eb(t) as inputs and ia(t) as output. Write KVL around
armature
=
)
t
(
ea 
 )
t
(
i
R a
a
dt
t
di
L a
a
)
(
 )
t
(
eb

Mechanical Dynamics )
t
(
B
dt
)
t
(
d
J
)
t
(
T m
m
m
m w


w

=
Transfer Function of Armature-
Controlled Dc Motor
1/4/2023 DC motor T.F 12
Electromechanical equations
)
t
(
i
K
)
t
(
T
)
t
(
K
)
t
(
e
a
T
m
E
b

=
w

=
Find the transfer function between armature voltage and motor speed
?
)
s
(
E
)
s
(
a
m
=

Take Laplace transform of equations and write in I/O form
 
)
s
(
E
)
s
(
E
R
s
L
1
)
s
(
I
)
s
(
I
)
R
s
L
(
)
s
(
E
)
s
(
E
)
s
(
E
)
s
(
I
)
R
s
L
(
)
s
(
E
)
s
(
E
)
s
(
I
R
)
s
(
I
s
L
)
s
(
E
b
a
a
a
a
a
b
a
b
a
a
a
b
a
a
a
a









=



=





=





=
Transfer Function of Armature-
Controlled Dc Motor
1/4/2023 DC motor T.F 13
)
s
(
I
K
)
s
(
T
)
s
(
K
)
s
(
E
a
E
m
E
b

=


=
Laplace Transform of Electromechanical Equations
)
s
(
B
)
s
(
s
J
)
s
(
T m
m
m
m 





=
Laplace Transform of Mechanical System Dynamics
)
t
(
B
dt
)
t
(
d
J
)
t
(
T m
m
m
m w


w

=
Rewrite mechanical equation as I/O equation
         
s
T
B
s
J
1
s
s
B
s
J
s
T
m
m
m
m
m
m 








=






=
Block Diagram of Armature-
Controlled DC Motor
1/4/2023
DC
motor
T.F
14
Draw block diagram from the following equations
 
)
s
(
E
)
s
(
E
R
s
L
1
)
s
(
I b
a
a
a 








=
1/(Las+Ra)
Ea(s) Ia(s)
+ -
KT
Eb(s)
)
s
(
I
K
)
s
(
T a
T 
=
1/(Jms+Bm
)
T(s)
   
s
T
B
s
J
1
s
m
m
m 








=

m(s)
)
s
(
K
)
s
(
E m
E
b 

=
Ke
Note: The dc motor has an inherent feedback
from the CEMF. This can improve system stability
by adding a electromechanical damping
Transfer Function of Armature-
Controlled DC Motor
1/4/2023 DC motor T.F 15
Use the feedback formula to reduce the block diagram
   
   
s
H
s
G
1
s
G
)
s
(
E
s
a
m


=

E
K
)
s
(
H =
G(s) is the product of all the blocks in the forward path
1/(Las+Ra) KT 1/(Jms+Bm
)
 
   
m
m
a
a
T
m
m
a
a
T
B
s
J
R
s
L
K
B
s
J
1
R
s
L
1
K
s
G





=


















=
Simplification of Transfer Function
1/4/2023
DC
motor
T.F
16
     
    E
m
m
a
a
T
m
m
a
a
T
a
m
K
B
s
J
R
s
L
K
1
B
s
J
R
s
L
K
)
s
(
E
s


















=

Substitute G(s) and H(s) into the feedback formula
G(s)
G(s)
H(s)
Simplify by multiplying numerator and
denominator by factors (Las+Ra)(Jms+Bm)
 
    E
T
m
m
a
a
T
a
m
K
K
B
s
J
R
s
L
K
)
s
(
E
s







=

Expand factors and collect like terms of s
 
)
B
R
K
K
(
s
)
L
B
J
R
(
s
J
L
K
)
s
(
E
s
m
a
E
T
a
m
m
a
2
m
a
T
a
m











=

Final Formula
Roots of denominator effected by values of parameters. Can be Imaginary.
DC Motor Position Transfer Function
1/4/2023 DC motor T.F 17
Motor shaft position is the integral of the motor velocity with respect to
time. To find shaft position, integrate velocity
)
t
(
dt
)
t
(
dt
dt
)
t
(
d
)
t
(
dt
)
t
(
d

=
w
=

w
=



To find the motor shaft position with respect to armature voltage, reduce the
following block diagram
1/(Las+Ra)
Ea(s)
Ia(s)
+ - KT
Eb(s)
1/(Jms+Bm
)
T(s)
m(s)
Ke
1/s
m(s)
DC Motor Position Transfer Function
1/4/2023 DC motor T.F 18
   
   
    s
B
R
K
K
s
J
R
B
L
s
J
L
K
s
E
s
B
R
K
K
s
J
R
B
L
s
J
L
s
K
s
E
s
B
R
K
K
s
J
R
B
L
s
J
L
K
s
s
E
s
m
a
E
T
m
a
m
a
m
m
T
a
m
m
a
E
T
m
a
m
a
m
m
T
a
m
m
a
E
T
m
a
m
a
m
m
T
a
m












=












=
























=
2
3
2
2
)
(
)
(
)
(
)
(
)
(
1
)
(
)
(



T.F.
Position found by multiplying speed by 1/s (integration in time)
)
(
1
)
( s
s
s m
m 







=

Reduced Order Model
1/4/2023 DC motor T.F 19
Electrical time constant is much smaller than mechanical time constant.
Usually neglected. Reduced transfer function becomes…
Define motor time constants
e
a
a
m
m
m
R
L
and
B
J

=

=
Where: m = mechanical time constant
e = electrical time constant
m
a
E
T
m
a
s
m
a
E
T
T
s
s
s
a
m
B
R
K
K
J
R
and
B
R
K
K
K
K
Where
s
1
K
)
s
(
E
)
s
(




=




=



=

Motor with Load
1/4/2023 DC motor T.F 20
Consider a motor with load connected through a speed reducer.
Load inertia = JL
Load viscous friction = BL
Motor coupled to speed reducer, motor shaft coupled to smaller gear with
N1 teeth. Load connected to larger gear with N2 teeth.
2
1
m
1
2
L
2
1
m
2
1
L
N
N
m
-
N
T
N
N
T
N
N
rad/sec
N
N








=

w







=
w
Gear reduction decreases speed but increases torque
Pmech=constant. Similar to transformer action
Motor with Load
1/4/2023 DC motor T.F 21
Speed changer affects on load friction and rotational inertia
Without speed changer (direct coupling)
rad
/
s
-
m
-
N
J
J
J
s/rad
-
m
-
N
B
B
B
2
L
m
T
L
m
T

=

=
Where: BT = total viscous friction
JT = total rotational inertia
BL = load viscous friction
Bm = motor viscous friction
Jm = motor rotational inertia
JL = load rotational inertia
With speed changer
rad
/
s
-
m
-
N
J
N
N
J
J
s/rad
-
m
-
N
B
N
N
B
B
2
L
2
2
1
m
T
L
2
2
1
m
T








=








=
Motor with Load Block Diagram
1/4/2023 DC motor T.F 22
1/(Las+Ra)
Ia(s)
+ - KT
Eb(s)
1/(JTs+BT
)
T(s)
m(s)
Ke
N1/N2
L(s)
Ea(s)
Inertia and
friction of load
included
 
)
B
R
K
K
(
s
)
L
B
J
R
(
s
J
L
N
N
K
)
s
(
E
s
m
a
E
T
a
m
m
a
2
m
a
2
1
T
a
m


















=

Transfer function with speed changer
Motor Position with Load Block Diagram
1/4/2023 DC motor T.F 23
1/(Las+Ra)
Ia(s)
+ -
KT
Eb(s)
1/(JTs+BT
)
T(s)
m(s)
Ke
N1/N2
θL(s)
Ea(s)
1/s
L(s)
 
s
B
R
K
K
s
L
B
J
R
s
J
L
N
N
K
s
E
s
m
a
E
T
a
m
m
a
m
a
T
a
L



















=
)
(
)
(
)
( 2
3
2
1

Motor position transfer function with speed changer. Note: multiplication by s
Dc Motor Transfer Function Example
1/4/2023 DC motor T.F 24
Example 2: A permanent magnet dc motor has the following specifications.
Maximum speed = 500 rad/sec
Maximum armature current = 2.0 A
Voltage constant (Ke) = 0.06 V-s/rad
Torque constant (KT) = 0.06 N-m/A
Friction torque = 0.012 N-m
Armature resistance = 1.2 ohms
Armature inductance = 0.020 H
Armature inertia = 6.2x10-4 N-m-s2/rad
Armature viscous friction = 1x10-4 N-m-s/rad
a) Determine the voltage/velocity and voltage/position transfer functions
for this motor
b) Determine the voltage/velocity and voltage/position transfer functions
for the motor neglecting the electrical time constant.
Example (2) Solution (1)
1/4/2023 DC motor T.F 25
Define all motor parameters
a) Full transfer function model
Example (2) Solution (2)
1/4/2023 DC motor T.F 26
Compute denominator coefficients from parameter values
Can normalize constant by dividing numerator and denominator by 0.00372
Example (2) Solution (3)
1/4/2023 DC motor T.F 27
To covert this to a position transfer function, multiple it by 1/s
b) Compute the transfer functions ignoring the electrical time constant
Example (2) Solution (4)
1/4/2023 DC motor T.F 28
Compute parameter values
1/4/2023 DC motor T.F 29
1/4/2023 DC motor T.F 30
1/4/2023 DC motor T.F 31
1/4/2023 DC motor T.F 32
1/4/2023 DC motor T.F 33
1/4/2023 DC motor T.F 34
1/4/2023 DC motor T.F 35
Third order
1/4/2023 DC motor T.F 36
1/4/2023 DC motor T.F 37
1/4/2023 DC motor T.F 38
Thanks for your attention
Q&A
1/4/2023 DC motor T.F 39
HW
1/4/2023 DC motor T.F 40

More Related Content

Similar to تحكم في الآلات الكهربائية 1.pptx

dc motor control and DC drives Control -
dc motor control and DC drives Control -dc motor control and DC drives Control -
dc motor control and DC drives Control -yarrammastanamma
 
Lecture 7 modelling-of__real_world_systems
Lecture 7 modelling-of__real_world_systemsLecture 7 modelling-of__real_world_systems
Lecture 7 modelling-of__real_world_systemsSaifullah Memon
 
EE6604 unit2
EE6604 unit2EE6604 unit2
EE6604 unit2Sri Kumar
 
Lec 05(actuator sizing).pdf
Lec 05(actuator sizing).pdfLec 05(actuator sizing).pdf
Lec 05(actuator sizing).pdfMohamed Atef
 
Torque slip characteristics of im skerbala
Torque   slip characteristics of im skerbalaTorque   slip characteristics of im skerbala
Torque slip characteristics of im skerbalaAli Altahir
 
]Uptu electromechanical energy conversion
]Uptu electromechanical energy conversion]Uptu electromechanical energy conversion
]Uptu electromechanical energy conversionGopinath Naidu
 
Drives lec 21_22_Chopper Controlled DC Drives
Drives lec 21_22_Chopper Controlled DC DrivesDrives lec 21_22_Chopper Controlled DC Drives
Drives lec 21_22_Chopper Controlled DC DrivesMohammad Umar Rehman
 
Eh2 piezoelectric energy harvesting due to harmonic excitations
Eh2   piezoelectric energy harvesting due to harmonic excitationsEh2   piezoelectric energy harvesting due to harmonic excitations
Eh2 piezoelectric energy harvesting due to harmonic excitationsUniversity of Glasgow
 
SIMULATION OF A MATHEMATICAL MODEL OF A WIND TURBINE
SIMULATION OF A MATHEMATICAL MODEL OF A WIND TURBINE SIMULATION OF A MATHEMATICAL MODEL OF A WIND TURBINE
SIMULATION OF A MATHEMATICAL MODEL OF A WIND TURBINE Mellah Hacene
 
chapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxchapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxLiewChiaPing
 
Julio Bravo's Master Graduation Project
Julio Bravo's Master Graduation ProjectJulio Bravo's Master Graduation Project
Julio Bravo's Master Graduation ProjectJulio Bravo
 
Body travel performance improvement of space vehicle electromagnetic suspensi...
Body travel performance improvement of space vehicle electromagnetic suspensi...Body travel performance improvement of space vehicle electromagnetic suspensi...
Body travel performance improvement of space vehicle electromagnetic suspensi...Mustefa Jibril
 

Similar to تحكم في الآلات الكهربائية 1.pptx (20)

DC MOTOR.pdf
DC MOTOR.pdfDC MOTOR.pdf
DC MOTOR.pdf
 
RGPV EX 503 Unit IV
RGPV EX 503 Unit IVRGPV EX 503 Unit IV
RGPV EX 503 Unit IV
 
dc motor control and DC drives Control -
dc motor control and DC drives Control -dc motor control and DC drives Control -
dc motor control and DC drives Control -
 
DC Motors
DC MotorsDC Motors
DC Motors
 
Lecture 7 modelling-of__real_world_systems
Lecture 7 modelling-of__real_world_systemsLecture 7 modelling-of__real_world_systems
Lecture 7 modelling-of__real_world_systems
 
EE6604 unit2
EE6604 unit2EE6604 unit2
EE6604 unit2
 
Agc
AgcAgc
Agc
 
Lec 05(actuator sizing).pdf
Lec 05(actuator sizing).pdfLec 05(actuator sizing).pdf
Lec 05(actuator sizing).pdf
 
Torque slip characteristics of im skerbala
Torque   slip characteristics of im skerbalaTorque   slip characteristics of im skerbala
Torque slip characteristics of im skerbala
 
Presentation1.ppt
Presentation1.pptPresentation1.ppt
Presentation1.ppt
 
Electrical Machines-1
Electrical Machines-1Electrical Machines-1
Electrical Machines-1
 
]Uptu electromechanical energy conversion
]Uptu electromechanical energy conversion]Uptu electromechanical energy conversion
]Uptu electromechanical energy conversion
 
Drives lec 21_22_Chopper Controlled DC Drives
Drives lec 21_22_Chopper Controlled DC DrivesDrives lec 21_22_Chopper Controlled DC Drives
Drives lec 21_22_Chopper Controlled DC Drives
 
Eh2 piezoelectric energy harvesting due to harmonic excitations
Eh2   piezoelectric energy harvesting due to harmonic excitationsEh2   piezoelectric energy harvesting due to harmonic excitations
Eh2 piezoelectric energy harvesting due to harmonic excitations
 
SIMULATION OF A MATHEMATICAL MODEL OF A WIND TURBINE
SIMULATION OF A MATHEMATICAL MODEL OF A WIND TURBINE SIMULATION OF A MATHEMATICAL MODEL OF A WIND TURBINE
SIMULATION OF A MATHEMATICAL MODEL OF A WIND TURBINE
 
chapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxchapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptx
 
AC Theory
AC TheoryAC Theory
AC Theory
 
Formula Book.pdf
Formula Book.pdfFormula Book.pdf
Formula Book.pdf
 
Julio Bravo's Master Graduation Project
Julio Bravo's Master Graduation ProjectJulio Bravo's Master Graduation Project
Julio Bravo's Master Graduation Project
 
Body travel performance improvement of space vehicle electromagnetic suspensi...
Body travel performance improvement of space vehicle electromagnetic suspensi...Body travel performance improvement of space vehicle electromagnetic suspensi...
Body travel performance improvement of space vehicle electromagnetic suspensi...
 

Recently uploaded

Learn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksLearn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksMagic Marks
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdfKamal Acharya
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxSCMS School of Architecture
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Servicemeghakumariji156
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesMayuraD1
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsvanyagupta248
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersMairaAshraf6
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwaitjaanualu31
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdfKamal Acharya
 
Air Compressor reciprocating single stage
Air Compressor reciprocating single stageAir Compressor reciprocating single stage
Air Compressor reciprocating single stageAbc194748
 

Recently uploaded (20)

Learn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksLearn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic Marks
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Air Compressor reciprocating single stage
Air Compressor reciprocating single stageAir Compressor reciprocating single stage
Air Compressor reciprocating single stage
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 

تحكم في الآلات الكهربائية 1.pptx

  • 1. Dr. Zakieldeen Mohammed Eltayeb Elhassan zakideenzain@yahoo.com Karary University –college of Engineering Department of Electrical and Computer Engineering 1/4/2023 DC motor T.F 1 ‫الرحيم‬ ‫الرحمن‬ ‫هللا‬ ‫بسم‬
  • 2. 1/4/2023 DC motor T.F 2  Find the DC motor Transfer function.  Compute the time response of DC motor based on inputs types.  Signify a DC motor mechanical load based on mathematical model.  Study the influence of negative feedback to dc motor performance. The main objective of this lecture is that the student after this presentation will be able to Generate and analysis performance of DC motor
  • 3. Separately Excited DC Motors 1/4/2023 DC motor T.F 3 Consider steady-state model wm ia = armature current eb= back emf ea= armature terminal voltage wm = motor speed (rad/sec) T = motor torque Tf = static friction torque Ra = armature resistance La = armature inductance Jm = rotational inertia Bm = viscous friction Review the steady-state relationships Of machine
  • 5. Steady-State Operation of Separately Excited DC Motors 1/4/2023 DC motor T.F 5 Relationships of Separately Excited Dc Motor ia T -Tf DT Dia KT=DT/Dia Torque-Current Curve Back EMF Curve wm eb DT Dia KT=DT/Dia Speed-Torque Curve T wm DT Dwm wm=wnl – (Dwm/DT)T wnl
  • 6. Steady-State Motor Equations 1/4/2023 DC motor T.F 6 Developed Torque m - N T i K T f a T   = T = motor torque KT = torque constant Tf = motor friction torque ia = armature current KVL in Armature Circuit V e R i e b a a a   = wm= shaft speed (rad/s) eb = back emf Ke = back emf constant Back EMF V K e m e b w  = Developed Power W T P m  w = ea= armature voltage eb = back emf Ra = armature resistance P = shaft power
  • 7. Steady-State Motor Equations 1/4/2023 DC motor T.F 7 Combining the previous equations gives: e T a f a T m K K R ) T T ( e K      = w e a a a m K R i e   = w If the load torque is zero (T=0) then the above equation (1) gives the no-load speed (1) (2) e T a f a T nl K K R ) T ( e K     = w (3)
  • 8. Steady-State Motor Operation 1/4/2023 DC motor T.F 8 Example 1: An armature-controlled dc motor has the following ratings: Tf=0.012 N-m, Ra=1.2 ohms, KT=0.06 N-m/A, Ke=0.06 V-s/rad. It has a maximum speed of 500 rad/s with a maximum current of 2 A. Find: a) maximum output torque. b) maximum mechanical output power. c) maximum armature voltage. d) no-load speed at maximum armature voltage.
  • 9. Example 1 Solution 1/4/2023 DC motor T.F 9 Define given variables a) Tmax occurs at Imax so…. Answer b) Find Pmax Answer
  • 10. Example 1 Solution 1/4/2023 DC motor T.F 10 c) Find maximum back emf Answer d) Find no-load motor speed At no-load, T=0. Load torque is zero. T=0
  • 11. Transfer Function of Armature- Controlled DC Motor 1/4/2023 DC motor T.F 11 Write all variables as time functions Jm Bm La T(t) eb(t) ia(t) ea(t) + + Ra Write electrical equations and mechanical equations. Use the electromechanical relationships to couple the two equations. Consider ea(t) and eb(t) as inputs and ia(t) as output. Write KVL around armature = ) t ( ea   ) t ( i R a a dt t di L a a ) (  ) t ( eb  Mechanical Dynamics ) t ( B dt ) t ( d J ) t ( T m m m m w   w  =
  • 12. Transfer Function of Armature- Controlled Dc Motor 1/4/2023 DC motor T.F 12 Electromechanical equations ) t ( i K ) t ( T ) t ( K ) t ( e a T m E b  = w  = Find the transfer function between armature voltage and motor speed ? ) s ( E ) s ( a m =  Take Laplace transform of equations and write in I/O form   ) s ( E ) s ( E R s L 1 ) s ( I ) s ( I ) R s L ( ) s ( E ) s ( E ) s ( E ) s ( I ) R s L ( ) s ( E ) s ( E ) s ( I R ) s ( I s L ) s ( E b a a a a a b a b a a a b a a a a          =    =      =      =
  • 13. Transfer Function of Armature- Controlled Dc Motor 1/4/2023 DC motor T.F 13 ) s ( I K ) s ( T ) s ( K ) s ( E a E m E b  =   = Laplace Transform of Electromechanical Equations ) s ( B ) s ( s J ) s ( T m m m m       = Laplace Transform of Mechanical System Dynamics ) t ( B dt ) t ( d J ) t ( T m m m m w   w  = Rewrite mechanical equation as I/O equation           s T B s J 1 s s B s J s T m m m m m m          =       =
  • 14. Block Diagram of Armature- Controlled DC Motor 1/4/2023 DC motor T.F 14 Draw block diagram from the following equations   ) s ( E ) s ( E R s L 1 ) s ( I b a a a          = 1/(Las+Ra) Ea(s) Ia(s) + - KT Eb(s) ) s ( I K ) s ( T a T  = 1/(Jms+Bm ) T(s)     s T B s J 1 s m m m          =  m(s) ) s ( K ) s ( E m E b   = Ke Note: The dc motor has an inherent feedback from the CEMF. This can improve system stability by adding a electromechanical damping
  • 15. Transfer Function of Armature- Controlled DC Motor 1/4/2023 DC motor T.F 15 Use the feedback formula to reduce the block diagram         s H s G 1 s G ) s ( E s a m   =  E K ) s ( H = G(s) is the product of all the blocks in the forward path 1/(Las+Ra) KT 1/(Jms+Bm )       m m a a T m m a a T B s J R s L K B s J 1 R s L 1 K s G      =                   =
  • 16. Simplification of Transfer Function 1/4/2023 DC motor T.F 16           E m m a a T m m a a T a m K B s J R s L K 1 B s J R s L K ) s ( E s                   =  Substitute G(s) and H(s) into the feedback formula G(s) G(s) H(s) Simplify by multiplying numerator and denominator by factors (Las+Ra)(Jms+Bm)       E T m m a a T a m K K B s J R s L K ) s ( E s        =  Expand factors and collect like terms of s   ) B R K K ( s ) L B J R ( s J L K ) s ( E s m a E T a m m a 2 m a T a m            =  Final Formula Roots of denominator effected by values of parameters. Can be Imaginary.
  • 17. DC Motor Position Transfer Function 1/4/2023 DC motor T.F 17 Motor shaft position is the integral of the motor velocity with respect to time. To find shaft position, integrate velocity ) t ( dt ) t ( dt dt ) t ( d ) t ( dt ) t ( d  = w =  w =    To find the motor shaft position with respect to armature voltage, reduce the following block diagram 1/(Las+Ra) Ea(s) Ia(s) + - KT Eb(s) 1/(Jms+Bm ) T(s) m(s) Ke 1/s m(s)
  • 18. DC Motor Position Transfer Function 1/4/2023 DC motor T.F 18             s B R K K s J R B L s J L K s E s B R K K s J R B L s J L s K s E s B R K K s J R B L s J L K s s E s m a E T m a m a m m T a m m a E T m a m a m m T a m m a E T m a m a m m T a m             =             =                         = 2 3 2 2 ) ( ) ( ) ( ) ( ) ( 1 ) ( ) (    T.F. Position found by multiplying speed by 1/s (integration in time) ) ( 1 ) ( s s s m m         = 
  • 19. Reduced Order Model 1/4/2023 DC motor T.F 19 Electrical time constant is much smaller than mechanical time constant. Usually neglected. Reduced transfer function becomes… Define motor time constants e a a m m m R L and B J  =  = Where: m = mechanical time constant e = electrical time constant m a E T m a s m a E T T s s s a m B R K K J R and B R K K K K Where s 1 K ) s ( E ) s (     =     =    = 
  • 20. Motor with Load 1/4/2023 DC motor T.F 20 Consider a motor with load connected through a speed reducer. Load inertia = JL Load viscous friction = BL Motor coupled to speed reducer, motor shaft coupled to smaller gear with N1 teeth. Load connected to larger gear with N2 teeth. 2 1 m 1 2 L 2 1 m 2 1 L N N m - N T N N T N N rad/sec N N         =  w        = w Gear reduction decreases speed but increases torque Pmech=constant. Similar to transformer action
  • 21. Motor with Load 1/4/2023 DC motor T.F 21 Speed changer affects on load friction and rotational inertia Without speed changer (direct coupling) rad / s - m - N J J J s/rad - m - N B B B 2 L m T L m T  =  = Where: BT = total viscous friction JT = total rotational inertia BL = load viscous friction Bm = motor viscous friction Jm = motor rotational inertia JL = load rotational inertia With speed changer rad / s - m - N J N N J J s/rad - m - N B N N B B 2 L 2 2 1 m T L 2 2 1 m T         =         =
  • 22. Motor with Load Block Diagram 1/4/2023 DC motor T.F 22 1/(Las+Ra) Ia(s) + - KT Eb(s) 1/(JTs+BT ) T(s) m(s) Ke N1/N2 L(s) Ea(s) Inertia and friction of load included   ) B R K K ( s ) L B J R ( s J L N N K ) s ( E s m a E T a m m a 2 m a 2 1 T a m                   =  Transfer function with speed changer
  • 23. Motor Position with Load Block Diagram 1/4/2023 DC motor T.F 23 1/(Las+Ra) Ia(s) + - KT Eb(s) 1/(JTs+BT ) T(s) m(s) Ke N1/N2 θL(s) Ea(s) 1/s L(s)   s B R K K s L B J R s J L N N K s E s m a E T a m m a m a T a L                    = ) ( ) ( ) ( 2 3 2 1  Motor position transfer function with speed changer. Note: multiplication by s
  • 24. Dc Motor Transfer Function Example 1/4/2023 DC motor T.F 24 Example 2: A permanent magnet dc motor has the following specifications. Maximum speed = 500 rad/sec Maximum armature current = 2.0 A Voltage constant (Ke) = 0.06 V-s/rad Torque constant (KT) = 0.06 N-m/A Friction torque = 0.012 N-m Armature resistance = 1.2 ohms Armature inductance = 0.020 H Armature inertia = 6.2x10-4 N-m-s2/rad Armature viscous friction = 1x10-4 N-m-s/rad a) Determine the voltage/velocity and voltage/position transfer functions for this motor b) Determine the voltage/velocity and voltage/position transfer functions for the motor neglecting the electrical time constant.
  • 25. Example (2) Solution (1) 1/4/2023 DC motor T.F 25 Define all motor parameters a) Full transfer function model
  • 26. Example (2) Solution (2) 1/4/2023 DC motor T.F 26 Compute denominator coefficients from parameter values Can normalize constant by dividing numerator and denominator by 0.00372
  • 27. Example (2) Solution (3) 1/4/2023 DC motor T.F 27 To covert this to a position transfer function, multiple it by 1/s b) Compute the transfer functions ignoring the electrical time constant
  • 28. Example (2) Solution (4) 1/4/2023 DC motor T.F 28 Compute parameter values
  • 35. 1/4/2023 DC motor T.F 35 Third order
  • 39. Thanks for your attention Q&A 1/4/2023 DC motor T.F 39