Publicité

2013-09-03 Radboudumc NCMLS Technical Forum

Head Translational Metabolic Laboratory at Radboudumc à Radboudumc
30 Jun 2014
Publicité

Contenu connexe

Similaire à 2013-09-03 Radboudumc NCMLS Technical Forum(20)

Publicité

Plus de Alain van Gool(20)

Publicité

2013-09-03 Radboudumc NCMLS Technical Forum

  1. Prof Alain van Gool, PhD Head Radboud Proteomics Center UMC St Radboud Radboud Proteomics Center - exciting times ! September 3rd 2013
  2. Contents • Radboud Proteomics Center • Setting • People • Proteomics approaches • Bottom-up proteomics • Targeted proteomics • Top-down proteomics • Center for Proteomics, Glycomics and Metabolomics • Fit in Radboud Personalized Healthcare
  3. Proteomics in Nijmegen • Started 2004 • Initially combination of technologies • Department of Laboratory Medicine (Prof Fred Sweep) Laboratory of Genetic, Endocrine and Metabolic Disease (Prof Ron Wevers) • Expertise shift from 2D-gel electrophoresis to LC-MS • Various internal/external projects and collaborators • Set-up: o Core of 5 permanent staff o Associated lab co-workers from other UMC departments
  4. Prof. Alain van Gool PhD Molecular and cellular biology Background: • Pharmaceutical biomarkers • Molecular profiling • Translational and personalized medicine Jolein Gloerich PhD Biochemistry Background: • Proteomics • Fatty acid oxidation disorders Maurice van Dael BSc Food & Toxicology Background: • Proteomics • Metabolite analysis Hans Wessels BSc Biochemistry Background: • Proteomics • Microbiology • Mitochondrial biochemistry + guest co-users of hardware/software: Technicians from various Post-docs research institutes PhD students in UMC St Radboud Jenneke Keizer BSc Clinical chemistry Background: • HPLC • Mass spectrometric metabolite analysis Radboud Proteomics Centre Radboud University Medical Centre – 774 Geert Grooteplein Zuid 10 6525 GA Nijmegen, Netherlands RadboudProteomicsCentre@umcn.nl Route 774 RPC lab
  5. • Proteome profiling - Differential protein expression - Protein complex composition - Labelfree - Labeled (SILAC, SPITC/PIC) - Protein correlation profiling • Protein identification - Purified proteins - Complex mixtures • Protein characterization - Phosphorylation - Ubiquitinylation - Acetylation/Methylation - Glycosylation • Peptide/protein quantitation - Relative quantitation - Absolute quantitation Whole proteome analysis De novo protein identification Protein complex isolation and characterization Proteomics Expertise
  6. Shared platforms in Radboud Proteomics Center Proteome profilingProtein characterizationProtein identification Peptide quantitation (with Prof. Ron Wevers) Clinical proteomics (with Dr. Waander van Heerde) Glycoproteomics (with Dr. Dirk Lefeber) QTOFMS SELDI-TOFMS Protein quantitation (with Dr. Dorine Swinkels) MALDI-TOFMS • Shared expertise • Shared resources • Maximal use QqQMSIonTrapMS HybridLTQ-FTMS QTOFETDMS Q-ExactiveMS Proteome profiling (with Prof. Ulrich Brandt)
  7. Radboud Proteomics Centre The growing availability of genomic sequence information, together with improvements of protein characterization by mass spectrometry, facilitates protein research enormously. To exploit these opportunities the Radboud Proteomics Centre (RPC) was established in 2003. Our aim is to initiate, coordinate and facilitate proteomics research activities. The RPC offers fundamental technological tools and knowledge transfer for proteomics research by making them available for academic and industrial researchers, both within and outside the Radboud University Nijmegen. Since its establishment, the RPC has played a crucial role in numerous research projects within the Radboud University and in many fruitful collaborations with other (international) universities and life- sciences companies. Route 774
  8. Radboud Proteomics Center: portfolio Research • Projects • Service External • Projects • Service • Consultancy Patient care • Health care focus • Biomarkers • Consortia (NL, EU) The RPC is Radboud’s proteomics expertise center: • Provide consultancy for potential proteomics applications • Implement proper experimental design for each proteomics project • Continue to do good proteomics science through collaboration
  9. Proteomics applications • Bottom-up proteomics (shotgun) • Protein identification • Differential protein expression profiling Established (>300 projects done) • Targeted proteomics • Absolute/relative quantitation Emerging (5 projects ongoing) • Top-down proteomics • Intact protein characterization • Differential PTM analysis New
  10. Bottom-up proteomics
  11. Workflow bottom-up proteomics
  12. Bottom-up proteomics principle
  13. Applications of bottom-up proteomics • Determine differential protein expression in: • Health/disease • Time • Before/after treatment • Identification of protein-protein interaction partners: • Protein correlation profiling • (Tandem) affinity purification Information is obtained on peptide level, deduce protein effects
  14. Example of cellular proteome profiling project Results Samples Up regulated Down regulated Differential analysis -10 -5 0 5 10 ∞ ∞ 178 Differentially expressed proteins Results Gene ontology: cellular localization • In total 3,824 proteins were identified in either sample (98.7% cell specific) • A total of 2,550 proteins was quantified and used for differential analysis • 178 proteins were differentially expressed due to treatment: • 138 proteins upregulated • 40 proteins downregulated Conclusions Project with TNO Q: how does proteome cell line x look like? Q: First look at effect treatment on proteome (feasibility) → GeLC-MS approach
  15. RT: 10.00 - 95.00 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Time (min) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 RelativeAbundance NL: 1.21E7 Base Peak MS 20130125_ HW_S1plus _01 RT: 10.00 - 95.00 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Time (min) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 RelativeAbundance NL: 1.65E7 Base Peak MS 20130125_ hw_s1plus_ 02 RT: 10.00 - 95.00 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Time (min) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 RelativeAbundance NL: 9.74E6 Base Peak MS 20130125_ hw_s1plus_ 03 RT: 10.00 - 95.00 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Time (min) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 RelativeAbundance NL: 1.09E7 Base Peak MS 20130125_ hw_s1plus_ 04 RT: 10.00 - 95.00 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Time (min) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 RelativeAbundance NL: 1.67E7 Base Peak MS 20130125_ hw_s1plus_ 05 RT: 10.00 - 95.00 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Time (min) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 RelativeAbundance NL: 3.24E7 Base Peak MS 20130125_ hw_s1plus_ 06 RT: 10.00 - 95.00 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Time (min) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 RelativeAbundance NL: 1.88E7 Base Peak MS 20130125_ hw_s1plus_ 07 RT: 10.00 - 95.00 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Time (min) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 RelativeAbundance NL: 1.10E7 Base Peak MS 20130125_ hw_s1plus_ 08 RT: 10.00 - 95.00 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Time (min) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 RelativeAbundance NL: 1.81E7 Base Peak MS 20130125_ hw_s1plus_ 09 RT: 10.00 - 95.00 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Time (min) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 RelativeAbundance NL: 1.59E7 Base Peak MS 20130125_ hw_s1plus_ 10 Distinct chromatograms between fractions with excellent signal-to-noise and resolution GeLC-MS proteomics
  16. Ion map for untreated cells gel slice 6
  17. Ion map for untreated cells gel slice 6 Green square: identified MS2 spectrum Blue square: unidentified MS2 spectrum
  18. Data set statistics Parameter HF HF TGFß Total MS spectra 26626 29426 56052 MS/MS spectra 59038 66577 125615 Isotope patterns detected (real ions) 251664 284994 536658 Sequenced isotope patterns (Average for z≥1) 52918 (26.7%) 60679 (26.2%) 113597 (26.4%) MS/MS identification rate 52.7% 53.3% 54.5% Identified peptides (redundant) 34972 39117 74089 Precursor mass error 0.29 ± 0.39 ppm 0.29 ± 0.39 ppm 0.29 ± 0.39 3800 identified proteins in one sample
  19. Differential protein expression profiling: results Proteome coverage Origin of contaminants Proteome coverage
  20. A publically available data set of blue native migration patterns for more than 950 proteins from a mitochondrial HEK293 fraction using complementary acryl amide gradients Hans Wessels et al, PloS One 8, 2013 Hierarchical clustering Cluster: 28S mt-Ribosome Cluster: 39S mt-Ribosome Cluster: F1F0 ATP synthase Cluster: cytochrome b-c1 complex Cluster: NADH dehydrogenase & TCP1 Cluster: trifunctional enzyme & isocitrate dehydrogenase Cluster: cytochrome C oxidase & mt-Ribosomal subcomplex Wessels HJ Vogel RO Rodenburg R Gloerich J Van Gool A Van den Heuvel, L Smeitink JAM Nijtmans L Lightowlers R Example of complexome analysis project What subcomplexes in mitochondrial proteome? • HEK293 cells • Isolation native mitochondrial protein complexes • GeLC-MS using blue native gel electrophoresis and nLC-LTQ-FT MS • Mascot protein identification • IDEAL-Q protein quantitation • Hierarchical clustering based on co-migration
  21. mt-Ribosome complexes 200 kDa subcomplex Conclusions • Publically available BN LC-MS/MS data set of >950 proteins (equivalent of 1900 2D BN SDS-PAGE westerblots!!!) • Applications in de novo protein complex identification, prioritization of interaction candidate proteins from other analyses • New insights into mt-Ribosomal proteome interactions
  22. Compare LTQ-FT-ICR MS versus MaXis 4G QTOF MS UPS2 spiked in 500ng E.coli background » Sample 1: 250fmol – 25amol » Sample 2: 500fmol – 50amol Digest, analyse all peptides, convert to protein data → Theoretical value (Sample 1/ sample 2) for each protein: 0.5 UPS2 standard from Sigma: • 48 proteins • 5 orders of magnitude • Protein Mw for each level within range of 10-70 kDa (approximately) Benchmarking: technical performance test Ongoing
  23. Identification = Sensitivity ↑↑ Accuracy ↑↑
  24. Targeted Proteomics
  25. Method of the year 2012
  26. Workflow bottom-up proteomics Workflow targeted proteomics
  27. Targeted Proteomics: focus on peptides of interest Protein A Protein A isoform Protein B
  28. Targeted proteomics: SRM assay development Pro’s • Selective • Quantitative • Reproducible • Quite sensitive Con’s • Assay development • Low resolution MS Etc …
  29. Applications of targeted proteomics (Absolute) quantitation of targets for: • Biomarkers • Diagnostic test • Specific for specific protein variants (splice, PTM, etc) • Quantitative analysis of specific pathways • Metabolic pathways • Signalling cascades • Quality control • Large scale targeted proteomics • Comparable approach as DNA/RNA microarrays • Complete proteome SRM assays for different organisms Schubert OT, et al. Cell Host Microbe. 2013: 13(5):602-12 The Mtb proteome library: a resource of assays to quantify the complete proteome of Mycobacteriumtuberculosis Research Diagnostics
  30. How do SRM data look like? Measurement of HSA peptide (LVNEVTEFAK) Linear over high dynamic range
  31. How do SRM data look like? Measurement of a peptide in complex matrix (tissue homogenate) Which peak? Heavy labeled standard • Confirmation of peak • Used for accurate (absolute) quantitation
  32. Top-down Proteomics
  33. Workflow bottom-up proteomics Workflow targeted proteomics Workflow top-down proteomics Protein Protein ions
  34. Top-down or bottom-up? • Bottom-up proteomics (peptides) + Most mature + Widely used, sufficient tools + Can handle complex samples - PTM analysis - Protein processing • Top-down proteomics (intact proteins) + PTM analysis on protein level + Protein processing - Relatively new approach - Complexity of the sample QTOF QTOF MALDI
  35. cytochromeC_100903091148 #206 RT: 16.653 AV: 1 NL: 1.34E6 T: FTMS + p NSI u SIM ms [649.40-653.40] 651.2 651.3 651.4 651.5 651.6 651.7 651.8 651.9 m/z 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000 1100000 1200000 1300000 651.3954 651.4481 651.5009 651.3427 651.6062 651.2375 651.6592 651.2900 651.7120 651.7638 651.1844 651.8701 Top-down proteomics: intact protein MS ETD/ECD fragmentation Cytochrome C (12.4 kDa)
  36. Contents • Radboud Proteomics Center • Setting • People • Proteomics approaches • Bottom-up proteomics • Targeted proteomics • Top-down proteomics • Center for Proteomics, Glycomics and Metabolomics • Fit in Radboud Personalized Healthcare
  37. Center for Proteomics, Glycomics and Metabolomics Radboud Glycomics Facility Radboud Proteomics Center Radboud Metabolomics Group Part of Department of Laboratory Medicine Integrated focus: Research Biomarkers Diagnostics
  38. Example Glycomics: From clinical Omics to personalized treatment in NCDG: • 12 families with liver disease and dilated cardiomyopathy (5-20 years) • Initial clinical assessment didn’t yield clear cause of symptoms • Specific sugar loss of serum transferrin identified via glycoproteomics • Genetic defect in glycosylation enzyme identified via exome sequencing • Outcome: Explanation of disease • Outcome: Dietary intervention as succesful personalized therapy • Outcome: Glycoprofile being developed as diagnostic test by mass spectrometry Dietary intervention {Dirk Lefeber et al, NEJM 2013}Incomplete glycosylation Complete glycosylation
  39. Radboud Personalized Healthcare Center for Proteomics, Glycomics & Metabolomics
  40. Personalized Healthcare @ UMC St Radboud Genetics Molecular diagnostic test Patient Molecular and functional analysis Incomplete clinical diagnosis Personalized treatment Interactive technology platforms Biomarker assay Proteomics Glyco(proteo)micsMetabolomics Bioinformatics Imaging Prof. Alain van Gool, COST conference Personalized Medicine, 21 June 2012 40
  41. Radboud Proteomics Center Research • Projects • Service External • Projects • Service • Consultancy Patient care • Health care focus • Biomarkers • Consortia (NL, EU) RadboudProteomicsCentre@umcn.nl
  42. Diagnostics Innovation Urinary glycan profiling Serum glycan profiling O-glycan profiling PNGaseF chip Chemical biology Glycopeptide profiling glycolipid profiling Whole protein glycoprofiling Nucleotide- sugars Radboud Glycomics Facility Monique van Scherpenzeel, Dirk Lefeber
  43. Application areas • Mechanisms of glycosylation disorders Linking genes to glycomics profiles Understanding neuromuscular pathophysiology • Glycomics Tech Platform Services Functional foods Glycan tracers Biomarkers Radboud Glycomics Facility Monique van Scherpenzeel, Dirk Lefeber
  44. Radboud Metabolomics Group Standard targeted analyses • Organic acids • Amino acids • Purines&Pyrimidines • Monosaccharides/Polyols • Carnitine(-esters) • Sterols Innovation • Assay development for specific metabolites or metabolite classes • Untargeted metabolite profiling • Metabolite biomarker identification Leo Kluijtmans, Ron Wevers
  45. Finding metabolomics differences in individual patients Human plasma 20 controls vs 1 patient Agilent QTOF MS-data - Reverse phase liquid chromatography - Positive mode - Features •Accurate mass (165.07898) • Retention time • Intensity XCMS Alignment Peak comparison > 10000 Features Chemometric pipeline • T-test • PCA • P95 Metabolite identification Online database HMDB phenylalanine DIAGNOSIS OF INBORN ERROR OF METABOLISM
  46. Example Metabolomics: A blind study Plasma sample choice : Dr. C.D.G Huigen Analytical chemistry : E. van der Heeft Chemometrics : Dr. U.F.H. Engelke Diagnosis : Prof. dr. R.A. Wevers; Dr. L.A.J. Kluijtmans  Test 10 samples from 10 patients with 5 different Inborn Error of Metabolism’s  21 controls
  47. The blind study  MSUD (2) → leucine, isoleucine, valine, 3-methyl-2-oxovaleric acid  Aminoacylase I deficiency (2) → N-acetylglutamine, N-acetylglutamic acid, N-acetylalanine, N-acetylserine, N-acetylasparagine, N-acetylglycine  Prolinemia type II (2) → proline, 1-pyrroline-5-carboxylic acid  Hyperlysinemia (2) → pipecolic acid, lysine, homoarginine, homocitrulline  3-Hydroxy-3-methylglutaryl-CoA lyase deficiency (2) → 3-methylglutaryl- carnitine, 3-methylglutaconic acid, 3-hydroxy-2-methylbutanoic acid, 3-hydroxy-3- methylglutaric acid Diagnostic metabolites found in blood plasma  Correct diagnosis in all 10 patients  Five different IEM’s identified by differential metabolites  The approach works!!!  Validated method  diagnostic SOP
  48. Contents • Radboud Proteomics Center • Setting • People • Proteomics approaches • Bottom-up proteomics • Targeted proteomics • Top-down proteomics • Center for Proteomics, Glycomics and Metabolomics • Fit in Radboud Personalized Healthcare
Publicité