SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez nos Conditions d’utilisation et notre Politique de confidentialité.
SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez notre Politique de confidentialité et nos Conditions d’utilisation pour en savoir plus.
Publié le
Working with big volumes of data is a complicated task, but it's even harder if you have to do everything in real time and try to figure it all out yourself. Over the past decades many open-source projects helped solve problems within the data analytics lifecycle around ingestion, storage, processing and visualisation of data. This session will use practical examples to discuss architectural best practices and lessons learned when solving real-time analytics and data visualisation decision-making problems with open-source at scale with the power of Amazon Web Services. It furthermore dives into a demo, using source code from the AWS Labs to visualise live data streams at scale.
Olivier Klein, Solutions Architect, Amazon Web Services, Greater China
Il semblerait que vous ayez déjà ajouté cette diapositive à .
Identifiez-vous pour voir les commentaires