SlideShare une entreprise Scribd logo
1  sur  45
Télécharger pour lire hors ligne
Lecture (6)Lecture (6)
Estimation Problem
(Kriging),
Conditional Simulations
and
Reduction of
Uncertainties
The Estimation ProblemThe Estimation Problem
The estimation problem is to determine the value of the quantity Zo
for point (xo,yo) which has not been measured.
Z2
*(x2,y2)
Z1 Z3
*(x1,y1) *(x3,y3)
Zo???
*(xo,yo)
By continuously modifying the position (xo, yo) we shall estimate
the whole field of Z.
Estimation MethodsEstimation Methods
Usual Estimation Methods:
1. Linear interpolation (by hand).
2. Trend surface analysis.
3. Least squares fitting.
The drawbacks of the methods:
1. They cannot give the confidence interval of the
estimation.
2. They do not take into account the spatial structure
of the phenomenon.
Estimation byEstimation by KrigingKriging
Assumptions:
• B.L.U.E.= Best Linear Unbiased Estimator.
Best = minimizing the estimation
(error) variance.
Linear = linear combination of weights.
Unbiased means E{Z*o}=E{Zo}
• Stationary = no trend assumed in the data.
• Normal distribution of the data.
SimpleSimple KrigingKriging ModelModel
The estimation of Z*o is a linear combination of all available measurements of Z,
[ ]*
1
n
o
o i i
i
Z Z
=
= λ∑
Z*o is the estimator,
Zi measurements at the n-points xi (i=1,2,3,…n).
λi is optimal weights to be computed.
Unbiased ConditionUnbiased Condition
{ } { }
{ }
{ }
{ } { }
*
1
1
( ) ,
o o
n
o
i i o
i
n
o
i i o
i
E Z E Z
assume m E Z
substitution
E Z E Z
Linearity
E Z E Z
=
=
=
= ∀
⎧ ⎫
λ =⎨ ⎬
⎩ ⎭
λ =
∑
∑
x x
Unbiased Condition (cont.)Unbiased Condition (cont.)
{ } { }
{ } { }
1
1
1
1
but from our assumption,
1
n
o
i i o
i
i o
n
o
i
i
n
o
i
i
n
o
i
i
E Z E Z
E Z E Z m
m m
m m
=
=
=
=
λ =
= =
λ =
λ =
λ =
∑
∑
∑
∑ Condition of unbiasedness
The Variance of the EstimatorThe Variance of the Estimator
( )
*
o oError of estimation,(Z -Z ) should be small
2
*2
o oSK
E Z Z⎧ ⎫σ = −⎨ ⎬
⎩ ⎭
•SK=Simple Kriging variance
•σ2=Variance about estimated point
Z is “true” value
Z* is the estimate produced by kriging
•Seek to minimize to determine weights (λ ’s)
Derivation of the Error VarianceDerivation of the Error Variance
( )
{ } { }2
1
2
*2
2
1
2
2
1 1
2
2
1
2
n
o
o i o i
i
o oSK
n
o
o i i
i
n n
o o
E o o i i i i
i i
n
o
E Z E Z Z E i i
i
E Z Z
E Z Z
Z Z Z Z
Z
=
=
=
= =
= − λ +
=
⎧ ⎫σ = −⎨ ⎬
⎩ ⎭
⎧ ⎫⎛ ⎞⎪ ⎪= − λ∑⎜ ⎟⎨ ⎬
⎝ ⎠⎪ ⎪⎩ ⎭
⎧ ⎫⎛ ⎞⎪ ⎪− λ + λ∑ ∑⎜ ⎟⎨ ⎬
⎝ ⎠⎪ ⎪⎩ ⎭
⎧ ⎫⎛ ⎞⎪ ⎪λ∑∑ ⎜ ⎟⎨ ⎬
⎝ ⎠⎪ ⎪⎩ ⎭
Derivation of the Error Variance (cont.)Derivation of the Error Variance (cont.)
2
2
1 1 2 2
1 1 1 1
2
1 1 1
( ) ( )( )
( ) ( )
...
n n n n
o o o o o o o
i i i i i i n n i i
i i i i
n n n
o o o
i i j j i i
i j i
a b a b a b
a a b b a b
aa ab ba bb
Z Z Z Z Z Z Z
Z Z Z
= = = =
= = =
+ = + +
= + + +
= + + +
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
λ =λ λ +λ λ λ λ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞
λ = λ λ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑
∑ ∑ ∑
1 1
n n
o o
j i j i
j i
Z Z
= =
= λ λ∑ ∑
Derivation of the Error Variance (cont.)Derivation of the Error Variance (cont.)
{ } { }
{ } { }
{ } { } { }
2 2
1
2 2
1
2 2
1 1 1
2 2
1 1
2
2
1
2
1 1
2
2 ( , ) ( ,
n
o
SK o i o i
i
n
o
SK o i o i
i
n n n
o o o
SK o i o i j i j i
i j i
n n
o o o
SK o i o i j i i j
i j
n
o
E Z E Z Z E i i
i
n n
o o
E Z E Z Z E j i j i
j i
E Z E Z Z E Z Z
Cov Z Z Cov Z Z
Z
Z Z
=
=
= = =
= =
σ = − λ +
=
σ = − λ +
= =
σ = − λ + λ λ
σ =σ − λ + λ λ
⎧ ⎫⎛ ⎞⎪ ⎪λ∑∑ ⎜ ⎟⎨ ⎬
⎝ ⎠⎪ ⎪⎩ ⎭
⎧ ⎫
λ λ∑ ∑∑ ⎨ ⎬
⎩ ⎭
∑ ∑ ∑
∑ ∑ 1
)
n
i=
∑
Minimizing The Error VarianceMinimizing The Error Variance
( )
2
2
1 1 1
1 11
1 1
0
2 ( , ) ( , ) 0
( , )2 ( , )
0 0
( , ) ... ( , ) ... ( , )
2
SK
o
k
n n n
o o o
o i o i j i i jo
i i jk
n nn
o oo
j i i ji o i
i ji
o o
k k
o o o
o k o k n o n
Cov Z Z Cov Z Z
Cov Z ZCov Z Z
Cov Z Z Cov Z Z Cov Z Z
= = =
= ==
∂σ
=
∂λ
⎛ ⎞∂
σ − λ + λ λ =⎜ ⎟
∂λ ⎝ ⎠
⎛ ⎞⎛ ⎞
∂ λ λ∂ λ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠− + =
∂λ ∂λ
∂ λ + + λ + + λ
−
∂λ
∑ ∑ ∑
∑ ∑∑
1 1
1 1
1
1
1
( , ) ... ( , ) ... 0
2 ( , ) ( , )
o
k
n n
o o o o
i i k i i ko
i ik
o n
o
o k i io
ik
Cov Z Z Cov Z Z
Cov Z Z Cov Z Z
= =
=
∂ ⎛ ⎞
+ λ λ + + λ λ + =⎜ ⎟∂λ ⎝ ⎠
∂λ ⎛ ⎞
− + λ⎜ ⎟∂λ ⎝ ⎠
∑ ∑
∑ 1 1
1
1 1
( , )
... ( , ) ( , ) ... 0
n
o o
i io
ik
o n n
o o ok
i i k k i i ko o
i ik k
Cov Z Z
Cov Z Z Cov Z Z
=
= =
∂ ⎛ ⎞
+ λ λ +⎜ ⎟∂λ ⎝ ⎠
∂λ ∂⎛ ⎞ ⎛ ⎞
+ λ + λ λ + =⎜ ⎟ ⎜ ⎟∂λ ∂λ⎝ ⎠ ⎝ ⎠
∑
∑ ∑
We seek the weights λi that minimize the error variance.
Minimizing The Error Variance (cont.)Minimizing The Error Variance (cont.)
( )1
1
1
2 ( , ) ( , )
o
n
o
o k i io
i
k
Cov Z Z Cov Z Z
=
∂λ
− + λ
∂λ
∑ ( )
( ) ( )
1 1
1
1 1
1 1 2 2
1
( , )
... ( , ) ( , ) ... 0
2 ( , ) ( , )
2 ( , ) ( , ) ( , ) ...
( , ) ( , ) ... 0
n
o o
i io
i
k
o
n n
o o ok
i i k k i i ko o
i i
k k
o
o k i i k
o o
o k k k
n
o o
i i k k k k
i
Cov Z Z
Cov Z Z Cov Z Z
Cov Z Z Cov Z Z
Cov Z Z Cov Z Z Cov Z Z
Cov Z Z Cov Z Z
=
= =
=
∂
+ λ λ +
∂λ
∂λ ∂
+ λ + λ λ + =
∂λ ∂λ
− + λ
− + λ + λ +
+ λ + λ + =
∑
∑ ∑
∑
1 1
1
1
( , ) 0
because ( , ) ( , ),so,
2 ( , ) 2 ( , ) 0
( , ) ( , )
n n
o
i k i
i i
i k k i
n
o
o i ik k
i
n
o
i i ok k
i
Cov Z Z
Cov Z Z Cov Z Z
Cov Z Z Cov Z Z
Cov Z Z Cov Z Z
= =
=
=
+ λ =
=
− + λ =
λ =
∑ ∑
∑
∑
KrigingKriging Matrix FormMatrix Form
1 1 1 2 1 1 1
2 1
1
**
( , ) ( , ) ... ( , ) ( , )
( , ) . ... . . .
. . ... . . .
( , ) . ... ( , ) ( , )
Once this system is solved we get the estimate,
n o
n n n n o n
o o
Cov Z Z Cov Z Z Cov Z Z Cov Z Z
Cov Z Z
Cov Z Z Cov Z Z Cov Z Z
Y m Z
λ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
λ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= + =
1
2 *
0
1
var( ) (0) ( , )
n
o
i i
i
n
o
SK o o i i
i
m Z
Z Z Cov Cov Z Z
=
=
+ λ
σ = − = − λ
∑
∑
Some Useful Remarks RegardingSome Useful Remarks Regarding KrigingKriging
*
*
= (value measured) I.e. =1, =0,
( ) 0 (no Uncertainty in a measured Point)
If the error is assumed to be normally distributed,
then
1. Exact Interpolator:
2. Confidence Intervals:
k k
k k k i
k
Z Z i k
Var Z Z
λ λ ≠
− =
( )*
*
1
we can estimate 95% confidence intervals of the estimation as,
=
= 2
3. The Kriging system does not depend explicitly on the measurement values
. Only the locations of t
o o
n
o
o i i
i
i i
Var Z Z
Z Z
Z x
=
σ −
λ ± σ∑
he measurement points are needed
to compute the weights.
4. Drawing contour maps: by solving the Kriging system,
one can estimate at any point .
5. Kriging estimator is generally much smoother tha
o oZ x
n
the actual spatially variable field.
SimpleSimple KrigingKriging ExampleExample
Computer code SIMKRIG.exe
Data files: SIMKRIG.dat,
Lx, Ly 100., 50.
Dx,Dy, 1., 1.
λx , λy 20., 10.
SKFIELD.dat
No. of
Measurements mean_k sd_k
10 10 50
X_COR Y_COR Y
0 0 10
100 0 15
0 50 12
100 50 20
30 25 15
60 25 10
80 10 20
10 5 13
50 50 16
50 0 16
10 15
12 20
15 10
20
13
16
16
0 10 20 30 40 50 60 70 80 90 100
0
10
20
30
40
50
Data
Kriged Map
Error variance
0 10 20 30 40 50 60 70 80 90 100
0
10
20
30
40
50
5
30
55
80
0 10 20 30 40 50 60 70 80 90 100
0
10
20
30
40
50
-4
-3.5
-3
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
LinearLinear GeostatisticsGeostatistics
• Simple Kriging.(mean is known and const.)
• Ordinary Kriging.(mean is unknown and const.)
• Non-stationary Kriging. Use moving neighborhood or Universal
Kriging.
• Co-Kriging (Coregionalization): If more than one variable is
sampled.
• Ref.
Deutsch, C. V. and Journel, A. G. 1992, GSLIB; Geostatistics
Software Library and user’s guide: Oxford Univ. Press, New
York, 340p.
'
*
1 1
n n
o i i j j
i j
Z Z
= =
= λ + ν ϕ∑ ∑
Conditional SimulationsConditional Simulations
From a practical point of view, it is desirable that the random fields
not only
reproduce the spatial structure of the field
but also
honour the measured data and their locations.
This requires an implementation of some kind of conditioning, so that the
generated realizations are constrained to the available field measurements.
Representation of a Conditional SimulationRepresentation of a Conditional Simulation
Methods of ConditioningMethods of Conditioning
Direct Methods
"Metrical Methods"
Indirect Methods
"Kriging Method"
Methods of Conditioning
Indirect Conditioning byIndirect Conditioning by KrigingKriging
(1) A kriged map is generated from the field data with the sampled locations
which will be smoother than reality.
(2) An unconditional simulated field is generated by TBM from the data which
reproduces the spatial structure of the underlying random function.
(3) Allocation of the unconditional values (pseudo measurements) at the sites of
measurements is done on the simulated map in step 2.
(4) Another kriged map is generated from the pseudo measurements.
(5) A pseudo error is calculated by subtracting the kriged map in step 4 from the
unconditional simulation in step 2.
(6) The conditional simulation map is generated by adding the pseudo error in
step 5 to the kriged map in step 1. So,
( - )cs kd us kusZ Z Z Z= +
Zcs is the required conditional simulation, Zkd is the kriged map from the real
data, Zus is the unconditional simulation, Zkus is the kriged map with the pseudo
measurements.
Graphical Illustration of Conditioning byGraphical Illustration of Conditioning by
KrigingKriging
(1) A kriged map is generated from
the data:
(2) Unconditional simulation is
generated from the data:
(3) Allocation pseudo
measurements.
(4) Kriged map is generated from the
pseudo measurements:
(5) A pseudo error =kriged map(step
4) - the unconditional simulation
in step 2.
(6) Conditional simulation = the
pseudo error in step 5 + the
kriged map in step 1:
kdZ
usZ
kusZ
csZ
( - )cs kd us kusZ Z Z Z= +
Program to perform Conditional SimulationProgram to perform Conditional Simulation
byby KrigingKriging
0 20 40 60 80 100 120 140 160 180 200
0
20
40
60
80
100
3.5
10 15
12 20
15 10
20
13
16
16
1614
13
2010
15
20
3.5
10 15
12 20
15 10
20
13
16
16
1614
13
2010
15
20
0 20 40 60 80 100 120 140 160 180 200
0
20
40
60
80
100
0 20 40 60 80 100 120 140 160 180 200
0
20
40
60
80
100
3.5
10 15
12 20
15 10
20
13
16
16
1614
13
2010
15
20
0 20 40 60 80 100 120 140 160 180 200
0
20
40
60
80
100
Data
Kriged Map
Single Realization
of Conditional Simulation
CSTBM.DAT
20, 20, 1 corr.length x, corr.length y, MC
100, 1, 0 No. of TB lines, Dz, RLD (0 OR 1)
0.25, 100 Dk, Max. Harmonics
19999, 20 Seed, ib
Csfield.dat
200 100 Lx, ly
1 1 dx,dy
17 no. of measurements
X_coor Y_coor Y
0 0 10
100 0 15
0 50 12
100 50 20
30 25 15
60 25 10
80 10 20
10 5 13
50 50 16
50 0 16
200 100 16
0 100 14
200 0 13
200 25 20
0 25 10
100 100 15
80 40 20
Conditioning in OneConditioning in One--dimensional Markovdimensional Markov
ChainChain
i0 1 i+1i-1 N2
SkSl Sq
)1(
)(
)1(
)(
1
11
11
1
1
1
1
1
11
1
1
1
1
1
)(Pr
)Pr().|(Pr
)(Pr).|(Pr).|(Pr
)(Pr
),(Pr
),(Pr).|(Pr
)(Pr
),(Pr
),(Pr),|(Pr
)(Pr
),(Pr
),,Pr(
)(Pr
)(Pr
+−
−
+−
−
−
−−
−−
−
−
−
−
−
−−
−
−
−
−
−
=
====
===
=====
====
==
====
====
==
=====
====
==
===
====
===
iN
lq
iN
kqlk
qlk
iN
lq
lk
iN
kq
qNliki
liliqN
lilikikiqN
qNliki
qNli
kilikiqN
qNliki
qNli
kilikiliqN
qNliki
qNli
qNkili
qNliki
qNliki
p
pp
p
p
pp
SZ,SZ|SZ
SZSZSZ
SZSZSZSZSZ
SZ,SZ|SZ
SZSZ
SZSZSZSZ
SZ,SZ|SZ
SZSZ
SZSZSZSZSZ
SZ,SZ|SZ
SZSZ
SZSZSZ
SZ,SZ|SZ
SZ,SZ|SZ
Coupled Markov Chain “CMC” in 2DCoupled Markov Chain “CMC” in 2D
Dark Grey (Boundary Cells)
Light Grey (Previously Generated Cells)
White (Unknown Cells)
i-1,j i,j
i,j-1
1,1
Nx,Ny
Nx,1
1,Ny
Nx,j
, , 1, , 1
, 1, , 1 ,,
Unconditioinal Coupled Markov Chains
: Pr( | , ) . 1,...
Conditioinal Coupled Markov Chains
: Pr( | , , )x
h v
lk mk
lm k i j k i j l i j m h v
lf mf
f
i j k i j l i j m N j qlm k q
h
lk
.p p
p Z S Z S Z S k n
.p p
p Z S Z S Z S Z S
.p
− −
− −
= = = = = =
= = = = = =
∑
( )
( )
, 1,... .
x
x
h N i v
kq mk
h h N i v
lf fq mf
f
.p p
k n
. .p p p
−
−
=
∑
Coupled Markov Chain (application)Coupled Markov Chain (application)
Two-dimensional Cross-sectional Panel of the Fluvial Succession of the Medial
Area of the Tόrtola Fluvial System, Spain
Length of The Section (m) = 648.
Depth of The Section (m) = 115.
Sampling interval in X-axis (m) = 9.
Sampling interval in Y-axis (m) = 2.5
Horizontal Transition Probability Matrix
State 1 2 3 4 5 6 7 8
1 0.893 0.009 0.005 0.000 0.000 0.000 0.000 0.093
2 0.000 0.796 0.011 0.000 0.000 0.000 0.000 0.194
3 0.000 0.000 0.989 0.000 0.000 0.000 0.000 0.011
4 0.006 0.000 0.013 0.885 0.000 0.000 0.000 0.096
5 0.074 0.000 0.000 0.074 0.593 0.037 0.000 0.222
6 0.000 0.013 0.000 0.000 0.000 0.946 0.000 0.040
7 0.040 0.000 0.000 0.000 0.000 0.000 0.940 0.020
8 0.007 0.006 0.002 0.007 0.005 0.005 0.001 0.968
Vertical Transition Probability Matrix
State 1 2 3 4 5 6 7 8
1 0.591 0.000 0.000 0.000 0.014 0.000 0.042 0.353
2 0.011 0.753 0.097 0.000 0.000 0.000 0.000 0.140
3 0.032 0.000 0.623 0.000 0.000 0.238 0.000 0.107
3 0.000 0.025 0.000 0.662 0.013 0.000 0.000 0.299
5 0.111 0.000 0.000 0.074 0.519 0.000 0.000 0.296
6 0.000 0.000 0.026 0.032 0.006 0.084 0.000 0.851
7 0.120 0.000 0.000 0.100 0.000 0.000 0.360 0.420
8 0.029 0.008 0.039 0.017 0.003 0.031 0.010 0.863
1 2 3 4 5 6 7 8
Coupled Markov Chain (application cont.)Coupled Markov Chain (application cont.)
0 50 100 150 200 250 300
-80
-60
-40
-20
0
0 50 100 150 200 250 300
-80
-60
-40
-20
0
1 2 3 4 5 6 7 8
0 50 100 150 200 250 300
-80
-60
-40
-20
0
Application of C_CMC Single RealizationsApplication of C_CMC Single Realizations
1
2
3
4
5
6
7
8
0 50 100 150 200 250 300
-80
-60
-40
-20
0
0 50 100 150 200 250 300
-80
-60
-40
-20
0
0 50 100 150 200 250 300
-80
-60
-40
-20
0
0 50 100 150 200 250 300
-80
-60
-40
-20
0
0 50 100 150 200 250 300
-80
-60
-40
-20
0
0 50 100 150 200 250 300
-80
-60
-40
-20
0
Application of C_CMC Single RealizationsApplication of C_CMC Single Realizations
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
1 2 3 4
Lithology Coding
0 80 160 240
-10
-5
0
1
2
3
4
2 boreholes
9 boreholes
25 boreholes
31 boreholes
Many Realizations: Hypothetical ExampleMany Realizations: Hypothetical Example
0 20 40 60 80 100 120 140 160 180 200
-40
-20
0
0 20 40 60 80 100 120 140 160 180 200
-40
-20
0
0 20 40 60 80 100 120 140 160 180 200
-40
-20
0
0 20 40 60 80 100 120 140 160 180 200
-40
-20
0
1
2
3
4
0 20 40 60 80 100 120 140 160 180 200
-40
-20
0
Probability MapsProbability Maps
⎪
⎩
⎪
⎨
⎧ =
=
.0
1
)(
otherwise
SZif
ZI
kij
ijk
Let the realizations be numbered 1,…, MC, and let Zij
(R) be the
lithology of cell (i,j) in the Rth realization. The empirical relative
frequency of lithology Sk at cell (i,j) is:
0 20 40 60 80 100 120 140 160 180 200
-40
-20
0
1
2
3
4
0 20 40 60 80 100 120 140 160 180 200
-40
-20
0
0 20 40 60 80 100 120 140 160 180 200
-40
-20
0
0 20 40 60 80 100 120 140 160 180 200
-40
-20
0
0 20 40 60 80 100 120 140 160 180 200
-40
-20
0
0 20 40 60 80 100 120 140 160 180 200
-40
-20
0
0 20 40 60 80 100 120 140 160 180 200
-40
-20
0
0.00
0.25
0.50
0.75
1.00
0.00
0.25
0.50
0.75
1.00
0.00
0.25
0.50
0.75
1.00
0.00
0.25
0.50
0.75
1.00
( )∑=
=
=
=
MC
R
R
k
k
R
k
ij ji
ji
ZI
MCMC
SZ
1
)(
)(
,
, 1}{#
π
k
ijπPlots of
Procedure for Extracting a Final GeologicalProcedure for Extracting a Final Geological
ImageImage
⎪
⎩
⎪
⎨
⎧ =
=
.0
1
)(
otherwise
SZif
ZI
kij
ijk
( )∑=
=
=
=
MC
R
R
k
k
R
k
ij ji
ji
ZI
MCMC
SZ
1
)(
)(
,
, 1}{#
π
Let the realizations be numbered 1,…, MC, and let Zij
(R) be the
lithology of cell (i,j) in the Rth realization. The empirical relative
frequency of lithology Sk at cell (i,j) is:
}...,,max{ 21 n
ijijij
l
ij ππππ =
In the final image Z* the lithology at cell (i, j) will be the lithology
which occurs most frequently in the MC realizations. So, if Sl is such
that
Zij
*= Sl.
Program WELLLOGProgram WELLLOG
Input Data for preInput Data for pre--processingprocessing
Boreho01.dat
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
.
.
Wells
16 no. of boreholes
1, 0.0 well no. and X_Coor.
2, 21 .
3, 34 .
4, 39 .
5, 46
6, 56
7, 76
8, 96
9, 126
10, 152
11, 172
12, 194
13, 214
14, 234
15, 256
16, 276
borehol 1 borehol 2 borehol 3 borehol 4 borehol 4 borehol 6 borehol 7 borehol 8 borehol 9 borehol 10 borehol 11 borehol 12 borehol 13 borehol 14 borehol 15
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Boreho02.dat
Boreho02.dat
Boreho03.dat
Boreho04.dat
.
0 50 100 150 200 250
-10
-5
0
0
1
2
3
4
5
T
T=p
v
lq
n
q
v
lkv
lk
∑=1GEO.DAT
7 No. of states
276, 14.2 Lx, Ly
3, 0.1 Dx, Dy
Program WELLLOG Output Data for preProgram WELLLOG Output Data for pre--
processingprocessing
Vertical Sampling Interval=0.1 m
0 50 100 150 200 250
-10
-5
0
0
1
2
3
4
5
S. 1 2 3 4 5 6 7
1 .879 .103 .009 .000 .009 .000 .000
2 .026 .911 .046 .009 .003 .000 .005
3 .003 .030 .897 .044 .010 .000 .016
4 .000 .006 .094 .869 .031 .000 .000
5 .000 .000 .003 .010 .961 .000 .026
6 .009 .014 .009 .005 .000 .963 .000
7 .000 .000 .000 .000 .000 .000 1.00
Well.res
Well.grd
Program F_CMC2 Input DataProgram F_CMC2 Input Data
GEOSIM
7, 1, 30 No. of sataes,Seed , MC
276.00, 14.20 Lx, Ly
3.0, 0.10 Dx, Dy
Hor. Transitions
0.922 0.015 0.015 0.015 0.015 0.015 0.001
0.015 0.922 0.015 0.015 0.015 0.015 0.001
0.015 0.015 0.922 0.015 0.015 0.015 0.001
0.015 0.015 0.015 0.922 0.015 0.015 0.001
0.015 0.015 0.015 0.015 0.922 0.015 0.001
0.015 0.015 0.015 0.015 0.015 0.922 0.001
0.001 0.001 0.001 0.001 0.001 0.001 0.992
Vert. Transitions
0.879 0.103 0.009 0.000 0.009 0.000 0.000
0.026 0.911 0.046 0.009 0.003 0.000 0.006
0.003 0.031 0.897 0.044 0.010 0.000 0.016
0.000 0.005 0.094 0.869 0.031 0.000 0.000
0.000 0.000 0.003 0.010 0.961 0.000 0.026
0.009 0.014 0.009 0.005 0.000 0.962 0.000
0.001 0.001 0.001 0.001 0.001 0.001 0.994
WELLSIM
16 no. of boreholes
1, 0.0 well no. and X_Coor.
2, 21 .
3, 34 .
4, 39 .
5, 46
6, 56
7, 76
8, 96
9, 126
10, 152
11, 172
12, 194
13, 214
14, 234
15, 256
16, 276
WELLS
16 no. of boreholes
1, 0.0 well no. and X_Coor.
2, 21 .
3, 34 .
4, 39 .
5, 46
6, 56
7, 76
8, 96
9, 126
10, 152
11, 172
12, 194
13, 214
14, 234
15, 256
16, 276
Well.grd
Horizontal Transition Probability MatricesHorizontal Transition Probability Matrices
S. 1 2 3 4 5 6 7
1 .500 .100 .100 .100 .100 .100 .000
2 .100 .500 .100 .100 .100 .000 .100
3 .100 .100 .500 .100 .100 .000 .100
4 .100 .100 .100 .500 .100 .000 .100
5 .100 .100 .100 .100 .500 .100 .000
6 .001 .001 .001 .001 .001 .994 .001
7 .001 .001 .001 .001 .001 .001 .994
S. 1 2 3 4 5 6 7
1 .879 .103 .009 .000 .009 .000 .000
2 .026 .911 .046 .009 .003 .000 .005
3 .003 .030 .897 .044 .010 .000 .016
4 .000 .006 .094 .869 .031 .000 .000
5 .000 .000 .003 .010 .961 .000 .026
6 .009 .014 .009 .005 .000 .963 .000
7 .001 .001 .001 .001 .001 .001 .994
S. 1 2 3 4 5 6 7
1 .922 .015 .015 .015 .015 .015 .003
2 .015 .922 .015 .015 .015 .015 .003
3 .015 .015 .922 .015 .015 .015 .003
4 .015 .015 .015 .922 .015 .015 .003
5 .015 .015 .015 .015 .922 .015 .003
6 .015 .015 .015 .015 .015 .922 .003
7 .001 .001 .001 .001 .001 .001 .994
Program FCMC2 Output DataProgram FCMC2 Output Data
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
- 1 0
- 5
0 1
2
3
4
5
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
- 1 0
- 5
0
a
b
c
d
e
Effect of Number of Boreholes on SiteEffect of Number of Boreholes on Site
CharacterizationCharacterization
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
-1 0
-5
0
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
-1 0
-5
0
1
2
3
4
5
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
-1 0
-5
0
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
-1 0
-5
0
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
-1 0
-5
0
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
-1 0
-5
0
Application of CS_CMC at MADE siteApplication of CS_CMC at MADE site
0 50 100 150 200 250
-10
-5
0
0
1
2
3
4
5
Simulation of the MADE1 ExperimentSimulation of the MADE1 Experiment
0 50 100 150 200 250
-10
-5
0
0 50 100 150 200 250
-10
-5
0
0 50 100 150 200 250
-10
-5
0
0
0.1
1
10
100
0 50 100 150 200 250
-10
-5
0
1
2
3
4
5
0 50 100 150 200 250
-10
-5
0
Effect of the Number of Boreholes on theEffect of the Number of Boreholes on the
Simulated PlumeSimulated Plume
0 50 100 150 200 250
-10
-5
0
0
0.1
1
10
100
0 50 100 150 200 250
-10
-5
0
0 50 100 150 200 250
-10
-5
0
279 days
0 50 100 150 200 250
-10
-5
0
49 days
0 50 100 150 200 250
-10
-5
0
594 days
0 50 100 150 200 250
-10
-5
0
49 days
0 50 100 150 200 250
-10
-5
0
279 days
0 50 100 150 200 250
-10
-5
0
594 days
0 50 100 150 200 250
-10
-5
0
0 50 100 150 200 250
-10
-5
0
0 50 100 150 200 250
-10
-5
0
0 50 100 150 200 250
-10
-5
0
0 50 100 150 200 250
-10
-5
0
0 50 100 150 200 250
-10
-5
0
0 50 100 150 200 250
-10
-5
0
Quantification of Uncertainties using MCQuantification of Uncertainties using MC
Classifications of Uncertainties:
Geological Uncertainty:
Geological configuration.
Parameter Uncertainty:
Conductivity value of each unit.
0 50 100 150 200 250 300
-50
0
Single realization of the geological structure used in the experimentsFigure 1.
Geological and Parameter UncertaintiesGeological and Parameter Uncertainties
1 2 3 4
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-50
0
time = 1600 days
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-40
-20
0
0 50 100 150 200 250 300
-40
-20
0
Geology is Certain and Parameters are Uncertain
Geology is Uncertain and Parameters are Certain
0 0.01 0.1 1
MonteMonte--Carlo Results for GeologicalCarlo Results for Geological
UncertaintyUncertainty
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-50
0
0.00 0.01 0.10 1.00
time = 200 days
time = 1000 days
time = 2000 days
time = 3000 days
Concentration in mg/l
time = 1600 days
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-50
0
0.00 0.01 0.10 1.00
time = 200 days
time = 1000 days
time = 2000 days
time = 3000 days
Concentration in mg/l
time = 1600 days
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-50
0
0.00 0.01 0.10 1.00
time = 200 days
time = 1000 days
time = 2000 days
time = 3000 days
Concentration in mg/l
time = 1600 days
MonteMonte--Carlo Method ResultsCarlo Method Results
-50
0
-50
0
0 50 100 150 200 250 300
-50
0
-50
0
-50
0
0 50 100 150 200 250 300
-50
0
-50
0
-50
0
0 50 100 150 200 250 300
-50
0
-50
0
-50
0
0 50 100 150 200 250 300
-50
0
-50
0
-50
0
0 50 100 150 200 250 300
-50
0
Concentration in (mg/l)
-50
0
-50
0
0 50 100 150 200 250 300
-50
0
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
(a)
(b)
(c)
(a)
(b)
(c)
(c)
(c)
(c)
(c)
(b)
(b)
(b)
(b)
(a)
(a)
(a) (a)
Concentration field in set 1L: (a) Single realization,
(b) Ensemble concentration,
(c) Standard deviation on concentration.
Figure 2 Concentration field in set 1H: (a) Single realization,
(b) Ensemble concentration,
(c) Standard deviation on concentration.
Figure 5
Concentration field in set 2L: (a) Single realization,
(b) Ensemble concentration,
(c) Standard deviation on concentration.
Concentration field in set 2H: (a) Single realization,
(b) Ensemble concentration,
(c) Standard deviation on concentration.
Concentration field in set 3L: (a) Single realization,
(b) Ensemble concentration,
(c) Standard deviation on concentration.
Concentration field in set 3H: (a) Single realization,
(b) Ensemble concentration,
(c) Standard deviation on concentration.
Figure 3 Figure 6
Figure 4 Figure 7

Contenu connexe

Tendances

Numerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNumerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNikolai Priezjev
 
Mba admission in india
Mba admission in indiaMba admission in india
Mba admission in indiaEdhole.com
 
SPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSyeilendra Pramuditya
 
Parallel Coordinate Descent Algorithms
Parallel Coordinate Descent AlgorithmsParallel Coordinate Descent Algorithms
Parallel Coordinate Descent AlgorithmsShaleen Kumar Gupta
 
Lecture note4coordinatedescent
Lecture note4coordinatedescentLecture note4coordinatedescent
Lecture note4coordinatedescentXudong Sun
 
Perfect method for Frames
Perfect method for FramesPerfect method for Frames
Perfect method for Framesandreslahe
 
Numerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equationsNumerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equationsNikolai Priezjev
 
Lesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functionsLesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functionsRnold Wilson
 
FEM Introduction: Solving ODE-BVP using the Galerkin's Method
FEM Introduction: Solving ODE-BVP using the Galerkin's MethodFEM Introduction: Solving ODE-BVP using the Galerkin's Method
FEM Introduction: Solving ODE-BVP using the Galerkin's MethodSuddhasheel GHOSH, PhD
 
Convex Optimization Modelling with CVXOPT
Convex Optimization Modelling with CVXOPTConvex Optimization Modelling with CVXOPT
Convex Optimization Modelling with CVXOPTandrewmart11
 
Optimal control problem for processes
Optimal control problem for processesOptimal control problem for processes
Optimal control problem for processesIJCI JOURNAL
 
125 4.1 through 4.5
125 4.1 through 4.5125 4.1 through 4.5
125 4.1 through 4.5Jeneva Clark
 
Point Collocation Method used in the solving of Differential Equations, parti...
Point Collocation Method used in the solving of Differential Equations, parti...Point Collocation Method used in the solving of Differential Equations, parti...
Point Collocation Method used in the solving of Differential Equations, parti...Suddhasheel GHOSH, PhD
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIRai University
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSZac Darcy
 
Solve ODE - BVP through the Least Squares Method
Solve ODE - BVP through the Least Squares MethodSolve ODE - BVP through the Least Squares Method
Solve ODE - BVP through the Least Squares MethodSuddhasheel GHOSH, PhD
 

Tendances (20)

Numerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNumerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolation
 
Mba admission in india
Mba admission in indiaMba admission in india
Mba admission in india
 
SPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta Methods
 
cheb_conf_aksenov.pdf
cheb_conf_aksenov.pdfcheb_conf_aksenov.pdf
cheb_conf_aksenov.pdf
 
Parallel Coordinate Descent Algorithms
Parallel Coordinate Descent AlgorithmsParallel Coordinate Descent Algorithms
Parallel Coordinate Descent Algorithms
 
Lecture note4coordinatedescent
Lecture note4coordinatedescentLecture note4coordinatedescent
Lecture note4coordinatedescent
 
Perfect method for Frames
Perfect method for FramesPerfect method for Frames
Perfect method for Frames
 
Numerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equationsNumerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equations
 
Lesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functionsLesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functions
 
FEM Introduction: Solving ODE-BVP using the Galerkin's Method
FEM Introduction: Solving ODE-BVP using the Galerkin's MethodFEM Introduction: Solving ODE-BVP using the Galerkin's Method
FEM Introduction: Solving ODE-BVP using the Galerkin's Method
 
Convex Optimization Modelling with CVXOPT
Convex Optimization Modelling with CVXOPTConvex Optimization Modelling with CVXOPT
Convex Optimization Modelling with CVXOPT
 
Optimal control problem for processes
Optimal control problem for processesOptimal control problem for processes
Optimal control problem for processes
 
125 4.1 through 4.5
125 4.1 through 4.5125 4.1 through 4.5
125 4.1 through 4.5
 
Point Collocation Method used in the solving of Differential Equations, parti...
Point Collocation Method used in the solving of Differential Equations, parti...Point Collocation Method used in the solving of Differential Equations, parti...
Point Collocation Method used in the solving of Differential Equations, parti...
 
Krishna
KrishnaKrishna
Krishna
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
 
Solve ODE - BVP through the Least Squares Method
Solve ODE - BVP through the Least Squares MethodSolve ODE - BVP through the Least Squares Method
Solve ODE - BVP through the Least Squares Method
 
Improper integral
Improper integralImproper integral
Improper integral
 
Mech MA6351 tpde_notes
Mech MA6351 tpde_notes Mech MA6351 tpde_notes
Mech MA6351 tpde_notes
 

Similaire à Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Simulations and Reduction of Uncertainties)

Similaire à Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Simulations and Reduction of Uncertainties) (20)

Formulario calculo
Formulario calculoFormulario calculo
Formulario calculo
 
Formulario cálculo
Formulario cálculoFormulario cálculo
Formulario cálculo
 
Formulario oficial-calculo
Formulario oficial-calculoFormulario oficial-calculo
Formulario oficial-calculo
 
Formulario
FormularioFormulario
Formulario
 
Formulario calculo
Formulario calculoFormulario calculo
Formulario calculo
 
Tablas calculo
Tablas calculoTablas calculo
Tablas calculo
 
Formulario derivadas e integrales
Formulario derivadas e integralesFormulario derivadas e integrales
Formulario derivadas e integrales
 
Calculo
CalculoCalculo
Calculo
 
Calculo
CalculoCalculo
Calculo
 
Formulas de calculo
Formulas de calculoFormulas de calculo
Formulas de calculo
 
Formulario
FormularioFormulario
Formulario
 
Formulario de Calculo Diferencial-Integral
Formulario de Calculo Diferencial-IntegralFormulario de Calculo Diferencial-Integral
Formulario de Calculo Diferencial-Integral
 
Formulario de Cálculo Diferencial e Integral.pdf
Formulario de Cálculo Diferencial e Integral.pdfFormulario de Cálculo Diferencial e Integral.pdf
Formulario de Cálculo Diferencial e Integral.pdf
 
Integral calculus
  Integral calculus   Integral calculus
Integral calculus
 
Succesive differntiation
Succesive differntiationSuccesive differntiation
Succesive differntiation
 
Hypergdistribution
HypergdistributionHypergdistribution
Hypergdistribution
 
微積分定理與公式
微積分定理與公式微積分定理與公式
微積分定理與公式
 
Geurdes Monte Växjö
Geurdes Monte VäxjöGeurdes Monte Växjö
Geurdes Monte Växjö
 
Solo edo hasta 20
Solo edo hasta 20Solo edo hasta 20
Solo edo hasta 20
 
Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19
 

Plus de Amro Elfeki

Simulation of Tracer Injection from a Well in a Nearly Radial Flow
Simulation of Tracer Injection from a Well in a Nearly Radial FlowSimulation of Tracer Injection from a Well in a Nearly Radial Flow
Simulation of Tracer Injection from a Well in a Nearly Radial FlowAmro Elfeki
 
Aquifer recharge from flash floods in the arid environment: A mass balance ap...
Aquifer recharge from flash floods in the arid environment: A mass balance ap...Aquifer recharge from flash floods in the arid environment: A mass balance ap...
Aquifer recharge from flash floods in the arid environment: A mass balance ap...Amro Elfeki
 
Basics of Contaminant Transport in Aquifers (Lecture)
Basics of Contaminant Transport in Aquifers (Lecture)Basics of Contaminant Transport in Aquifers (Lecture)
Basics of Contaminant Transport in Aquifers (Lecture)Amro Elfeki
 
Well Hydraulics (Lecture 1)
Well Hydraulics (Lecture 1)Well Hydraulics (Lecture 1)
Well Hydraulics (Lecture 1)Amro Elfeki
 
Gradually Varied Flow in Open Channel
Gradually Varied Flow in Open ChannelGradually Varied Flow in Open Channel
Gradually Varied Flow in Open ChannelAmro Elfeki
 
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...Amro Elfeki
 
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...Amro Elfeki
 
Soft Computing and Simulation in Water Resources: Chapter 1 introduction
Soft Computing and Simulation in Water Resources: Chapter 1 introductionSoft Computing and Simulation in Water Resources: Chapter 1 introduction
Soft Computing and Simulation in Water Resources: Chapter 1 introductionAmro Elfeki
 
Derivation of unit hydrograph of Al-Lith basin in the south west of saudi ar...
Derivation of unit hydrograph of Al-Lith basin in the south  west of saudi ar...Derivation of unit hydrograph of Al-Lith basin in the south  west of saudi ar...
Derivation of unit hydrograph of Al-Lith basin in the south west of saudi ar...Amro Elfeki
 
Empirical equations for flood analysis in arid zones
Empirical equations for flood analysis in arid zonesEmpirical equations for flood analysis in arid zones
Empirical equations for flood analysis in arid zonesAmro Elfeki
 
Simulation of the central limit theorem
Simulation of the central limit theoremSimulation of the central limit theorem
Simulation of the central limit theoremAmro Elfeki
 
Empirical equations for estimation of transmission losses
Empirical equations for estimation  of transmission lossesEmpirical equations for estimation  of transmission losses
Empirical equations for estimation of transmission lossesAmro Elfeki
 
Representative elementary volume (rev) in porous
Representative elementary volume (rev) in porousRepresentative elementary volume (rev) in porous
Representative elementary volume (rev) in porousAmro Elfeki
 
Civil Engineering Drawings (Collection of Sheets)
Civil Engineering Drawings (Collection of Sheets)Civil Engineering Drawings (Collection of Sheets)
Civil Engineering Drawings (Collection of Sheets)Amro Elfeki
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)Amro Elfeki
 
Geohydrology ii (2)
Geohydrology ii (2)Geohydrology ii (2)
Geohydrology ii (2)Amro Elfeki
 
Geohydrology ii (1)
Geohydrology ii (1)Geohydrology ii (1)
Geohydrology ii (1)Amro Elfeki
 
Merging Heterogeneous Structures at Various Scales by Way of Tree-indexed Mar...
Merging Heterogeneous Structures at Various Scales by Way of Tree-indexed Mar...Merging Heterogeneous Structures at Various Scales by Way of Tree-indexed Mar...
Merging Heterogeneous Structures at Various Scales by Way of Tree-indexed Mar...Amro Elfeki
 
Modeling Adsorption Kinetics of Chemically Interactive Porous Sediments by a ...
Modeling Adsorption Kinetics of Chemically Interactive Porous Sediments by a ...Modeling Adsorption Kinetics of Chemically Interactive Porous Sediments by a ...
Modeling Adsorption Kinetics of Chemically Interactive Porous Sediments by a ...Amro Elfeki
 
New Approach for Groundwater Detection Monitoring at Landfills.
 New Approach for Groundwater Detection Monitoring at Landfills.  New Approach for Groundwater Detection Monitoring at Landfills.
New Approach for Groundwater Detection Monitoring at Landfills. Amro Elfeki
 

Plus de Amro Elfeki (20)

Simulation of Tracer Injection from a Well in a Nearly Radial Flow
Simulation of Tracer Injection from a Well in a Nearly Radial FlowSimulation of Tracer Injection from a Well in a Nearly Radial Flow
Simulation of Tracer Injection from a Well in a Nearly Radial Flow
 
Aquifer recharge from flash floods in the arid environment: A mass balance ap...
Aquifer recharge from flash floods in the arid environment: A mass balance ap...Aquifer recharge from flash floods in the arid environment: A mass balance ap...
Aquifer recharge from flash floods in the arid environment: A mass balance ap...
 
Basics of Contaminant Transport in Aquifers (Lecture)
Basics of Contaminant Transport in Aquifers (Lecture)Basics of Contaminant Transport in Aquifers (Lecture)
Basics of Contaminant Transport in Aquifers (Lecture)
 
Well Hydraulics (Lecture 1)
Well Hydraulics (Lecture 1)Well Hydraulics (Lecture 1)
Well Hydraulics (Lecture 1)
 
Gradually Varied Flow in Open Channel
Gradually Varied Flow in Open ChannelGradually Varied Flow in Open Channel
Gradually Varied Flow in Open Channel
 
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
 
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
 
Soft Computing and Simulation in Water Resources: Chapter 1 introduction
Soft Computing and Simulation in Water Resources: Chapter 1 introductionSoft Computing and Simulation in Water Resources: Chapter 1 introduction
Soft Computing and Simulation in Water Resources: Chapter 1 introduction
 
Derivation of unit hydrograph of Al-Lith basin in the south west of saudi ar...
Derivation of unit hydrograph of Al-Lith basin in the south  west of saudi ar...Derivation of unit hydrograph of Al-Lith basin in the south  west of saudi ar...
Derivation of unit hydrograph of Al-Lith basin in the south west of saudi ar...
 
Empirical equations for flood analysis in arid zones
Empirical equations for flood analysis in arid zonesEmpirical equations for flood analysis in arid zones
Empirical equations for flood analysis in arid zones
 
Simulation of the central limit theorem
Simulation of the central limit theoremSimulation of the central limit theorem
Simulation of the central limit theorem
 
Empirical equations for estimation of transmission losses
Empirical equations for estimation  of transmission lossesEmpirical equations for estimation  of transmission losses
Empirical equations for estimation of transmission losses
 
Representative elementary volume (rev) in porous
Representative elementary volume (rev) in porousRepresentative elementary volume (rev) in porous
Representative elementary volume (rev) in porous
 
Civil Engineering Drawings (Collection of Sheets)
Civil Engineering Drawings (Collection of Sheets)Civil Engineering Drawings (Collection of Sheets)
Civil Engineering Drawings (Collection of Sheets)
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)
 
Geohydrology ii (2)
Geohydrology ii (2)Geohydrology ii (2)
Geohydrology ii (2)
 
Geohydrology ii (1)
Geohydrology ii (1)Geohydrology ii (1)
Geohydrology ii (1)
 
Merging Heterogeneous Structures at Various Scales by Way of Tree-indexed Mar...
Merging Heterogeneous Structures at Various Scales by Way of Tree-indexed Mar...Merging Heterogeneous Structures at Various Scales by Way of Tree-indexed Mar...
Merging Heterogeneous Structures at Various Scales by Way of Tree-indexed Mar...
 
Modeling Adsorption Kinetics of Chemically Interactive Porous Sediments by a ...
Modeling Adsorption Kinetics of Chemically Interactive Porous Sediments by a ...Modeling Adsorption Kinetics of Chemically Interactive Porous Sediments by a ...
Modeling Adsorption Kinetics of Chemically Interactive Porous Sediments by a ...
 
New Approach for Groundwater Detection Monitoring at Landfills.
 New Approach for Groundwater Detection Monitoring at Landfills.  New Approach for Groundwater Detection Monitoring at Landfills.
New Approach for Groundwater Detection Monitoring at Landfills.
 

Dernier

Renewable Energy & Entrepreneurship Workshop_21Feb2024.pdf
Renewable Energy & Entrepreneurship Workshop_21Feb2024.pdfRenewable Energy & Entrepreneurship Workshop_21Feb2024.pdf
Renewable Energy & Entrepreneurship Workshop_21Feb2024.pdfodunowoeminence2019
 
Graphics Primitives and CG Display Devices
Graphics Primitives and CG Display DevicesGraphics Primitives and CG Display Devices
Graphics Primitives and CG Display DevicesDIPIKA83
 
ASME BPVC 2023 Section I para leer y entender
ASME BPVC 2023 Section I para leer y entenderASME BPVC 2023 Section I para leer y entender
ASME BPVC 2023 Section I para leer y entenderjuancarlos286641
 
EPE3163_Hydro power stations_Unit2_Lect2.pptx
EPE3163_Hydro power stations_Unit2_Lect2.pptxEPE3163_Hydro power stations_Unit2_Lect2.pptx
EPE3163_Hydro power stations_Unit2_Lect2.pptxJoseeMusabyimana
 
Landsman converter for power factor improvement
Landsman converter for power factor improvementLandsman converter for power factor improvement
Landsman converter for power factor improvementVijayMuni2
 
Power System electrical and electronics .pptx
Power System electrical and electronics .pptxPower System electrical and electronics .pptx
Power System electrical and electronics .pptxMUKULKUMAR210
 
cloud computing notes for anna university syllabus
cloud computing notes for anna university syllabuscloud computing notes for anna university syllabus
cloud computing notes for anna university syllabusViolet Violet
 
Design of Clutches and Brakes in Design of Machine Elements.pptx
Design of Clutches and Brakes in Design of Machine Elements.pptxDesign of Clutches and Brakes in Design of Machine Elements.pptx
Design of Clutches and Brakes in Design of Machine Elements.pptxYogeshKumarKJMIT
 
Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...
Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...
Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...Amil baba
 
Strategies of Urban Morphologyfor Improving Outdoor Thermal Comfort and Susta...
Strategies of Urban Morphologyfor Improving Outdoor Thermal Comfort and Susta...Strategies of Urban Morphologyfor Improving Outdoor Thermal Comfort and Susta...
Strategies of Urban Morphologyfor Improving Outdoor Thermal Comfort and Susta...amrabdallah9
 
Multicomponent Spiral Wound Membrane Separation Model.pdf
Multicomponent Spiral Wound Membrane Separation Model.pdfMulticomponent Spiral Wound Membrane Separation Model.pdf
Multicomponent Spiral Wound Membrane Separation Model.pdfGiovanaGhasary1
 
Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...
Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...
Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...Sean Meyn
 
UNIT4_ESD_wfffffggggggggggggith_ARM.pptx
UNIT4_ESD_wfffffggggggggggggith_ARM.pptxUNIT4_ESD_wfffffggggggggggggith_ARM.pptx
UNIT4_ESD_wfffffggggggggggggith_ARM.pptxrealme6igamerr
 
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptxVertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptxLMW Machine Tool Division
 
دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratory
دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratoryدليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratory
دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide LaboratoryBahzad5
 
IT3401-WEB ESSENTIALS PRESENTATIONS.pptx
IT3401-WEB ESSENTIALS PRESENTATIONS.pptxIT3401-WEB ESSENTIALS PRESENTATIONS.pptx
IT3401-WEB ESSENTIALS PRESENTATIONS.pptxSAJITHABANUS
 
Basic Principle of Electrochemical Sensor
Basic Principle of  Electrochemical SensorBasic Principle of  Electrochemical Sensor
Basic Principle of Electrochemical SensorTanvir Moin
 

Dernier (20)

Renewable Energy & Entrepreneurship Workshop_21Feb2024.pdf
Renewable Energy & Entrepreneurship Workshop_21Feb2024.pdfRenewable Energy & Entrepreneurship Workshop_21Feb2024.pdf
Renewable Energy & Entrepreneurship Workshop_21Feb2024.pdf
 
Graphics Primitives and CG Display Devices
Graphics Primitives and CG Display DevicesGraphics Primitives and CG Display Devices
Graphics Primitives and CG Display Devices
 
ASME BPVC 2023 Section I para leer y entender
ASME BPVC 2023 Section I para leer y entenderASME BPVC 2023 Section I para leer y entender
ASME BPVC 2023 Section I para leer y entender
 
EPE3163_Hydro power stations_Unit2_Lect2.pptx
EPE3163_Hydro power stations_Unit2_Lect2.pptxEPE3163_Hydro power stations_Unit2_Lect2.pptx
EPE3163_Hydro power stations_Unit2_Lect2.pptx
 
Landsman converter for power factor improvement
Landsman converter for power factor improvementLandsman converter for power factor improvement
Landsman converter for power factor improvement
 
Power System electrical and electronics .pptx
Power System electrical and electronics .pptxPower System electrical and electronics .pptx
Power System electrical and electronics .pptx
 
cloud computing notes for anna university syllabus
cloud computing notes for anna university syllabuscloud computing notes for anna university syllabus
cloud computing notes for anna university syllabus
 
Design of Clutches and Brakes in Design of Machine Elements.pptx
Design of Clutches and Brakes in Design of Machine Elements.pptxDesign of Clutches and Brakes in Design of Machine Elements.pptx
Design of Clutches and Brakes in Design of Machine Elements.pptx
 
Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...
Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...
Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...
 
Strategies of Urban Morphologyfor Improving Outdoor Thermal Comfort and Susta...
Strategies of Urban Morphologyfor Improving Outdoor Thermal Comfort and Susta...Strategies of Urban Morphologyfor Improving Outdoor Thermal Comfort and Susta...
Strategies of Urban Morphologyfor Improving Outdoor Thermal Comfort and Susta...
 
Multicomponent Spiral Wound Membrane Separation Model.pdf
Multicomponent Spiral Wound Membrane Separation Model.pdfMulticomponent Spiral Wound Membrane Separation Model.pdf
Multicomponent Spiral Wound Membrane Separation Model.pdf
 
Lecture 4 .pdf
Lecture 4                              .pdfLecture 4                              .pdf
Lecture 4 .pdf
 
Lecture 2 .pptx
Lecture 2                            .pptxLecture 2                            .pptx
Lecture 2 .pptx
 
Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...
Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...
Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...
 
UNIT4_ESD_wfffffggggggggggggith_ARM.pptx
UNIT4_ESD_wfffffggggggggggggith_ARM.pptxUNIT4_ESD_wfffffggggggggggggith_ARM.pptx
UNIT4_ESD_wfffffggggggggggggith_ARM.pptx
 
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptxVertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
 
Litature Review: Research Paper work for Engineering
Litature Review: Research Paper work for EngineeringLitature Review: Research Paper work for Engineering
Litature Review: Research Paper work for Engineering
 
دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratory
دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratoryدليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratory
دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratory
 
IT3401-WEB ESSENTIALS PRESENTATIONS.pptx
IT3401-WEB ESSENTIALS PRESENTATIONS.pptxIT3401-WEB ESSENTIALS PRESENTATIONS.pptx
IT3401-WEB ESSENTIALS PRESENTATIONS.pptx
 
Basic Principle of Electrochemical Sensor
Basic Principle of  Electrochemical SensorBasic Principle of  Electrochemical Sensor
Basic Principle of Electrochemical Sensor
 

Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Simulations and Reduction of Uncertainties)

  • 1. Lecture (6)Lecture (6) Estimation Problem (Kriging), Conditional Simulations and Reduction of Uncertainties
  • 2. The Estimation ProblemThe Estimation Problem The estimation problem is to determine the value of the quantity Zo for point (xo,yo) which has not been measured. Z2 *(x2,y2) Z1 Z3 *(x1,y1) *(x3,y3) Zo??? *(xo,yo) By continuously modifying the position (xo, yo) we shall estimate the whole field of Z.
  • 3. Estimation MethodsEstimation Methods Usual Estimation Methods: 1. Linear interpolation (by hand). 2. Trend surface analysis. 3. Least squares fitting. The drawbacks of the methods: 1. They cannot give the confidence interval of the estimation. 2. They do not take into account the spatial structure of the phenomenon.
  • 4. Estimation byEstimation by KrigingKriging Assumptions: • B.L.U.E.= Best Linear Unbiased Estimator. Best = minimizing the estimation (error) variance. Linear = linear combination of weights. Unbiased means E{Z*o}=E{Zo} • Stationary = no trend assumed in the data. • Normal distribution of the data.
  • 5. SimpleSimple KrigingKriging ModelModel The estimation of Z*o is a linear combination of all available measurements of Z, [ ]* 1 n o o i i i Z Z = = λ∑ Z*o is the estimator, Zi measurements at the n-points xi (i=1,2,3,…n). λi is optimal weights to be computed.
  • 6. Unbiased ConditionUnbiased Condition { } { } { } { } { } { } * 1 1 ( ) , o o n o i i o i n o i i o i E Z E Z assume m E Z substitution E Z E Z Linearity E Z E Z = = = = ∀ ⎧ ⎫ λ =⎨ ⎬ ⎩ ⎭ λ = ∑ ∑ x x
  • 7. Unbiased Condition (cont.)Unbiased Condition (cont.) { } { } { } { } 1 1 1 1 but from our assumption, 1 n o i i o i i o n o i i n o i i n o i i E Z E Z E Z E Z m m m m m = = = = λ = = = λ = λ = λ = ∑ ∑ ∑ ∑ Condition of unbiasedness
  • 8. The Variance of the EstimatorThe Variance of the Estimator ( ) * o oError of estimation,(Z -Z ) should be small 2 *2 o oSK E Z Z⎧ ⎫σ = −⎨ ⎬ ⎩ ⎭ •SK=Simple Kriging variance •σ2=Variance about estimated point Z is “true” value Z* is the estimate produced by kriging •Seek to minimize to determine weights (λ ’s)
  • 9. Derivation of the Error VarianceDerivation of the Error Variance ( ) { } { }2 1 2 *2 2 1 2 2 1 1 2 2 1 2 n o o i o i i o oSK n o o i i i n n o o E o o i i i i i i n o E Z E Z Z E i i i E Z Z E Z Z Z Z Z Z Z = = = = = = − λ + = ⎧ ⎫σ = −⎨ ⎬ ⎩ ⎭ ⎧ ⎫⎛ ⎞⎪ ⎪= − λ∑⎜ ⎟⎨ ⎬ ⎝ ⎠⎪ ⎪⎩ ⎭ ⎧ ⎫⎛ ⎞⎪ ⎪− λ + λ∑ ∑⎜ ⎟⎨ ⎬ ⎝ ⎠⎪ ⎪⎩ ⎭ ⎧ ⎫⎛ ⎞⎪ ⎪λ∑∑ ⎜ ⎟⎨ ⎬ ⎝ ⎠⎪ ⎪⎩ ⎭
  • 10. Derivation of the Error Variance (cont.)Derivation of the Error Variance (cont.) 2 2 1 1 2 2 1 1 1 1 2 1 1 1 ( ) ( )( ) ( ) ( ) ... n n n n o o o o o o o i i i i i i n n i i i i i i n n n o o o i i j j i i i j i a b a b a b a a b b a b aa ab ba bb Z Z Z Z Z Z Z Z Z Z = = = = = = = + = + + = + + + = + + + ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ λ =λ λ +λ λ λ λ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎛ ⎞ ⎛ ⎞ λ = λ λ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ∑ ∑ ∑ ∑ ∑ ∑ ∑ 1 1 n n o o j i j i j i Z Z = = = λ λ∑ ∑
  • 11. Derivation of the Error Variance (cont.)Derivation of the Error Variance (cont.) { } { } { } { } { } { } { } 2 2 1 2 2 1 2 2 1 1 1 2 2 1 1 2 2 1 2 1 1 2 2 ( , ) ( , n o SK o i o i i n o SK o i o i i n n n o o o SK o i o i j i j i i j i n n o o o SK o i o i j i i j i j n o E Z E Z Z E i i i n n o o E Z E Z Z E j i j i j i E Z E Z Z E Z Z Cov Z Z Cov Z Z Z Z Z = = = = = = = σ = − λ + = σ = − λ + = = σ = − λ + λ λ σ =σ − λ + λ λ ⎧ ⎫⎛ ⎞⎪ ⎪λ∑∑ ⎜ ⎟⎨ ⎬ ⎝ ⎠⎪ ⎪⎩ ⎭ ⎧ ⎫ λ λ∑ ∑∑ ⎨ ⎬ ⎩ ⎭ ∑ ∑ ∑ ∑ ∑ 1 ) n i= ∑
  • 12. Minimizing The Error VarianceMinimizing The Error Variance ( ) 2 2 1 1 1 1 11 1 1 0 2 ( , ) ( , ) 0 ( , )2 ( , ) 0 0 ( , ) ... ( , ) ... ( , ) 2 SK o k n n n o o o o i o i j i i jo i i jk n nn o oo j i i ji o i i ji o o k k o o o o k o k n o n Cov Z Z Cov Z Z Cov Z ZCov Z Z Cov Z Z Cov Z Z Cov Z Z = = = = == ∂σ = ∂λ ⎛ ⎞∂ σ − λ + λ λ =⎜ ⎟ ∂λ ⎝ ⎠ ⎛ ⎞⎛ ⎞ ∂ λ λ∂ λ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠− + = ∂λ ∂λ ∂ λ + + λ + + λ − ∂λ ∑ ∑ ∑ ∑ ∑∑ 1 1 1 1 1 1 1 ( , ) ... ( , ) ... 0 2 ( , ) ( , ) o k n n o o o o i i k i i ko i ik o n o o k i io ik Cov Z Z Cov Z Z Cov Z Z Cov Z Z = = = ∂ ⎛ ⎞ + λ λ + + λ λ + =⎜ ⎟∂λ ⎝ ⎠ ∂λ ⎛ ⎞ − + λ⎜ ⎟∂λ ⎝ ⎠ ∑ ∑ ∑ 1 1 1 1 1 ( , ) ... ( , ) ( , ) ... 0 n o o i io ik o n n o o ok i i k k i i ko o i ik k Cov Z Z Cov Z Z Cov Z Z = = = ∂ ⎛ ⎞ + λ λ +⎜ ⎟∂λ ⎝ ⎠ ∂λ ∂⎛ ⎞ ⎛ ⎞ + λ + λ λ + =⎜ ⎟ ⎜ ⎟∂λ ∂λ⎝ ⎠ ⎝ ⎠ ∑ ∑ ∑ We seek the weights λi that minimize the error variance.
  • 13. Minimizing The Error Variance (cont.)Minimizing The Error Variance (cont.) ( )1 1 1 2 ( , ) ( , ) o n o o k i io i k Cov Z Z Cov Z Z = ∂λ − + λ ∂λ ∑ ( ) ( ) ( ) 1 1 1 1 1 1 1 2 2 1 ( , ) ... ( , ) ( , ) ... 0 2 ( , ) ( , ) 2 ( , ) ( , ) ( , ) ... ( , ) ( , ) ... 0 n o o i io i k o n n o o ok i i k k i i ko o i i k k o o k i i k o o o k k k n o o i i k k k k i Cov Z Z Cov Z Z Cov Z Z Cov Z Z Cov Z Z Cov Z Z Cov Z Z Cov Z Z Cov Z Z Cov Z Z = = = = ∂ + λ λ + ∂λ ∂λ ∂ + λ + λ λ + = ∂λ ∂λ − + λ − + λ + λ + + λ + λ + = ∑ ∑ ∑ ∑ 1 1 1 1 ( , ) 0 because ( , ) ( , ),so, 2 ( , ) 2 ( , ) 0 ( , ) ( , ) n n o i k i i i i k k i n o o i ik k i n o i i ok k i Cov Z Z Cov Z Z Cov Z Z Cov Z Z Cov Z Z Cov Z Z Cov Z Z = = = = + λ = = − + λ = λ = ∑ ∑ ∑ ∑
  • 14. KrigingKriging Matrix FormMatrix Form 1 1 1 2 1 1 1 2 1 1 ** ( , ) ( , ) ... ( , ) ( , ) ( , ) . ... . . . . . ... . . . ( , ) . ... ( , ) ( , ) Once this system is solved we get the estimate, n o n n n n o n o o Cov Z Z Cov Z Z Cov Z Z Cov Z Z Cov Z Z Cov Z Z Cov Z Z Cov Z Z Y m Z λ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ λ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ = + = 1 2 * 0 1 var( ) (0) ( , ) n o i i i n o SK o o i i i m Z Z Z Cov Cov Z Z = = + λ σ = − = − λ ∑ ∑
  • 15. Some Useful Remarks RegardingSome Useful Remarks Regarding KrigingKriging * * = (value measured) I.e. =1, =0, ( ) 0 (no Uncertainty in a measured Point) If the error is assumed to be normally distributed, then 1. Exact Interpolator: 2. Confidence Intervals: k k k k k i k Z Z i k Var Z Z λ λ ≠ − = ( )* * 1 we can estimate 95% confidence intervals of the estimation as, = = 2 3. The Kriging system does not depend explicitly on the measurement values . Only the locations of t o o n o o i i i i i Var Z Z Z Z Z x = σ − λ ± σ∑ he measurement points are needed to compute the weights. 4. Drawing contour maps: by solving the Kriging system, one can estimate at any point . 5. Kriging estimator is generally much smoother tha o oZ x n the actual spatially variable field.
  • 16. SimpleSimple KrigingKriging ExampleExample Computer code SIMKRIG.exe Data files: SIMKRIG.dat, Lx, Ly 100., 50. Dx,Dy, 1., 1. λx , λy 20., 10. SKFIELD.dat No. of Measurements mean_k sd_k 10 10 50 X_COR Y_COR Y 0 0 10 100 0 15 0 50 12 100 50 20 30 25 15 60 25 10 80 10 20 10 5 13 50 50 16 50 0 16 10 15 12 20 15 10 20 13 16 16 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 Data Kriged Map Error variance 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 5 30 55 80 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
  • 17. LinearLinear GeostatisticsGeostatistics • Simple Kriging.(mean is known and const.) • Ordinary Kriging.(mean is unknown and const.) • Non-stationary Kriging. Use moving neighborhood or Universal Kriging. • Co-Kriging (Coregionalization): If more than one variable is sampled. • Ref. Deutsch, C. V. and Journel, A. G. 1992, GSLIB; Geostatistics Software Library and user’s guide: Oxford Univ. Press, New York, 340p. ' * 1 1 n n o i i j j i j Z Z = = = λ + ν ϕ∑ ∑
  • 18. Conditional SimulationsConditional Simulations From a practical point of view, it is desirable that the random fields not only reproduce the spatial structure of the field but also honour the measured data and their locations. This requires an implementation of some kind of conditioning, so that the generated realizations are constrained to the available field measurements.
  • 19. Representation of a Conditional SimulationRepresentation of a Conditional Simulation
  • 20. Methods of ConditioningMethods of Conditioning Direct Methods "Metrical Methods" Indirect Methods "Kriging Method" Methods of Conditioning
  • 21. Indirect Conditioning byIndirect Conditioning by KrigingKriging (1) A kriged map is generated from the field data with the sampled locations which will be smoother than reality. (2) An unconditional simulated field is generated by TBM from the data which reproduces the spatial structure of the underlying random function. (3) Allocation of the unconditional values (pseudo measurements) at the sites of measurements is done on the simulated map in step 2. (4) Another kriged map is generated from the pseudo measurements. (5) A pseudo error is calculated by subtracting the kriged map in step 4 from the unconditional simulation in step 2. (6) The conditional simulation map is generated by adding the pseudo error in step 5 to the kriged map in step 1. So, ( - )cs kd us kusZ Z Z Z= + Zcs is the required conditional simulation, Zkd is the kriged map from the real data, Zus is the unconditional simulation, Zkus is the kriged map with the pseudo measurements.
  • 22. Graphical Illustration of Conditioning byGraphical Illustration of Conditioning by KrigingKriging (1) A kriged map is generated from the data: (2) Unconditional simulation is generated from the data: (3) Allocation pseudo measurements. (4) Kriged map is generated from the pseudo measurements: (5) A pseudo error =kriged map(step 4) - the unconditional simulation in step 2. (6) Conditional simulation = the pseudo error in step 5 + the kriged map in step 1: kdZ usZ kusZ csZ ( - )cs kd us kusZ Z Z Z= +
  • 23. Program to perform Conditional SimulationProgram to perform Conditional Simulation byby KrigingKriging 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 3.5 10 15 12 20 15 10 20 13 16 16 1614 13 2010 15 20 3.5 10 15 12 20 15 10 20 13 16 16 1614 13 2010 15 20 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 3.5 10 15 12 20 15 10 20 13 16 16 1614 13 2010 15 20 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 Data Kriged Map Single Realization of Conditional Simulation CSTBM.DAT 20, 20, 1 corr.length x, corr.length y, MC 100, 1, 0 No. of TB lines, Dz, RLD (0 OR 1) 0.25, 100 Dk, Max. Harmonics 19999, 20 Seed, ib Csfield.dat 200 100 Lx, ly 1 1 dx,dy 17 no. of measurements X_coor Y_coor Y 0 0 10 100 0 15 0 50 12 100 50 20 30 25 15 60 25 10 80 10 20 10 5 13 50 50 16 50 0 16 200 100 16 0 100 14 200 0 13 200 25 20 0 25 10 100 100 15 80 40 20
  • 24. Conditioning in OneConditioning in One--dimensional Markovdimensional Markov ChainChain i0 1 i+1i-1 N2 SkSl Sq )1( )( )1( )( 1 11 11 1 1 1 1 1 11 1 1 1 1 1 )(Pr )Pr().|(Pr )(Pr).|(Pr).|(Pr )(Pr ),(Pr ),(Pr).|(Pr )(Pr ),(Pr ),(Pr),|(Pr )(Pr ),(Pr ),,Pr( )(Pr )(Pr +− − +− − − −− −− − − − − − −− − − − − − = ==== === ===== ==== == ==== ==== == ===== ==== == === ==== === iN lq iN kqlk qlk iN lq lk iN kq qNliki liliqN lilikikiqN qNliki qNli kilikiqN qNliki qNli kilikiliqN qNliki qNli qNkili qNliki qNliki p pp p p pp SZ,SZ|SZ SZSZSZ SZSZSZSZSZ SZ,SZ|SZ SZSZ SZSZSZSZ SZ,SZ|SZ SZSZ SZSZSZSZSZ SZ,SZ|SZ SZSZ SZSZSZ SZ,SZ|SZ SZ,SZ|SZ
  • 25. Coupled Markov Chain “CMC” in 2DCoupled Markov Chain “CMC” in 2D Dark Grey (Boundary Cells) Light Grey (Previously Generated Cells) White (Unknown Cells) i-1,j i,j i,j-1 1,1 Nx,Ny Nx,1 1,Ny Nx,j , , 1, , 1 , 1, , 1 ,, Unconditioinal Coupled Markov Chains : Pr( | , ) . 1,... Conditioinal Coupled Markov Chains : Pr( | , , )x h v lk mk lm k i j k i j l i j m h v lf mf f i j k i j l i j m N j qlm k q h lk .p p p Z S Z S Z S k n .p p p Z S Z S Z S Z S .p − − − − = = = = = = = = = = = = ∑ ( ) ( ) , 1,... . x x h N i v kq mk h h N i v lf fq mf f .p p k n . .p p p − − = ∑
  • 26. Coupled Markov Chain (application)Coupled Markov Chain (application) Two-dimensional Cross-sectional Panel of the Fluvial Succession of the Medial Area of the Tόrtola Fluvial System, Spain Length of The Section (m) = 648. Depth of The Section (m) = 115. Sampling interval in X-axis (m) = 9. Sampling interval in Y-axis (m) = 2.5 Horizontal Transition Probability Matrix State 1 2 3 4 5 6 7 8 1 0.893 0.009 0.005 0.000 0.000 0.000 0.000 0.093 2 0.000 0.796 0.011 0.000 0.000 0.000 0.000 0.194 3 0.000 0.000 0.989 0.000 0.000 0.000 0.000 0.011 4 0.006 0.000 0.013 0.885 0.000 0.000 0.000 0.096 5 0.074 0.000 0.000 0.074 0.593 0.037 0.000 0.222 6 0.000 0.013 0.000 0.000 0.000 0.946 0.000 0.040 7 0.040 0.000 0.000 0.000 0.000 0.000 0.940 0.020 8 0.007 0.006 0.002 0.007 0.005 0.005 0.001 0.968 Vertical Transition Probability Matrix State 1 2 3 4 5 6 7 8 1 0.591 0.000 0.000 0.000 0.014 0.000 0.042 0.353 2 0.011 0.753 0.097 0.000 0.000 0.000 0.000 0.140 3 0.032 0.000 0.623 0.000 0.000 0.238 0.000 0.107 3 0.000 0.025 0.000 0.662 0.013 0.000 0.000 0.299 5 0.111 0.000 0.000 0.074 0.519 0.000 0.000 0.296 6 0.000 0.000 0.026 0.032 0.006 0.084 0.000 0.851 7 0.120 0.000 0.000 0.100 0.000 0.000 0.360 0.420 8 0.029 0.008 0.039 0.017 0.003 0.031 0.010 0.863 1 2 3 4 5 6 7 8
  • 27. Coupled Markov Chain (application cont.)Coupled Markov Chain (application cont.) 0 50 100 150 200 250 300 -80 -60 -40 -20 0 0 50 100 150 200 250 300 -80 -60 -40 -20 0 1 2 3 4 5 6 7 8 0 50 100 150 200 250 300 -80 -60 -40 -20 0
  • 28. Application of C_CMC Single RealizationsApplication of C_CMC Single Realizations 1 2 3 4 5 6 7 8 0 50 100 150 200 250 300 -80 -60 -40 -20 0 0 50 100 150 200 250 300 -80 -60 -40 -20 0 0 50 100 150 200 250 300 -80 -60 -40 -20 0 0 50 100 150 200 250 300 -80 -60 -40 -20 0 0 50 100 150 200 250 300 -80 -60 -40 -20 0 0 50 100 150 200 250 300 -80 -60 -40 -20 0
  • 29. Application of C_CMC Single RealizationsApplication of C_CMC Single Realizations 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 1 2 3 4 Lithology Coding 0 80 160 240 -10 -5 0 1 2 3 4 2 boreholes 9 boreholes 25 boreholes 31 boreholes
  • 30. Many Realizations: Hypothetical ExampleMany Realizations: Hypothetical Example 0 20 40 60 80 100 120 140 160 180 200 -40 -20 0 0 20 40 60 80 100 120 140 160 180 200 -40 -20 0 0 20 40 60 80 100 120 140 160 180 200 -40 -20 0 0 20 40 60 80 100 120 140 160 180 200 -40 -20 0 1 2 3 4 0 20 40 60 80 100 120 140 160 180 200 -40 -20 0
  • 31. Probability MapsProbability Maps ⎪ ⎩ ⎪ ⎨ ⎧ = = .0 1 )( otherwise SZif ZI kij ijk Let the realizations be numbered 1,…, MC, and let Zij (R) be the lithology of cell (i,j) in the Rth realization. The empirical relative frequency of lithology Sk at cell (i,j) is: 0 20 40 60 80 100 120 140 160 180 200 -40 -20 0 1 2 3 4 0 20 40 60 80 100 120 140 160 180 200 -40 -20 0 0 20 40 60 80 100 120 140 160 180 200 -40 -20 0 0 20 40 60 80 100 120 140 160 180 200 -40 -20 0 0 20 40 60 80 100 120 140 160 180 200 -40 -20 0 0 20 40 60 80 100 120 140 160 180 200 -40 -20 0 0 20 40 60 80 100 120 140 160 180 200 -40 -20 0 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 ( )∑= = = = MC R R k k R k ij ji ji ZI MCMC SZ 1 )( )( , , 1}{# π k ijπPlots of
  • 32. Procedure for Extracting a Final GeologicalProcedure for Extracting a Final Geological ImageImage ⎪ ⎩ ⎪ ⎨ ⎧ = = .0 1 )( otherwise SZif ZI kij ijk ( )∑= = = = MC R R k k R k ij ji ji ZI MCMC SZ 1 )( )( , , 1}{# π Let the realizations be numbered 1,…, MC, and let Zij (R) be the lithology of cell (i,j) in the Rth realization. The empirical relative frequency of lithology Sk at cell (i,j) is: }...,,max{ 21 n ijijij l ij ππππ = In the final image Z* the lithology at cell (i, j) will be the lithology which occurs most frequently in the MC realizations. So, if Sl is such that Zij *= Sl.
  • 33. Program WELLLOGProgram WELLLOG Input Data for preInput Data for pre--processingprocessing Boreho01.dat 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 . . Wells 16 no. of boreholes 1, 0.0 well no. and X_Coor. 2, 21 . 3, 34 . 4, 39 . 5, 46 6, 56 7, 76 8, 96 9, 126 10, 152 11, 172 12, 194 13, 214 14, 234 15, 256 16, 276 borehol 1 borehol 2 borehol 3 borehol 4 borehol 4 borehol 6 borehol 7 borehol 8 borehol 9 borehol 10 borehol 11 borehol 12 borehol 13 borehol 14 borehol 15 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 Boreho02.dat Boreho02.dat Boreho03.dat Boreho04.dat . 0 50 100 150 200 250 -10 -5 0 0 1 2 3 4 5 T T=p v lq n q v lkv lk ∑=1GEO.DAT 7 No. of states 276, 14.2 Lx, Ly 3, 0.1 Dx, Dy
  • 34. Program WELLLOG Output Data for preProgram WELLLOG Output Data for pre-- processingprocessing Vertical Sampling Interval=0.1 m 0 50 100 150 200 250 -10 -5 0 0 1 2 3 4 5 S. 1 2 3 4 5 6 7 1 .879 .103 .009 .000 .009 .000 .000 2 .026 .911 .046 .009 .003 .000 .005 3 .003 .030 .897 .044 .010 .000 .016 4 .000 .006 .094 .869 .031 .000 .000 5 .000 .000 .003 .010 .961 .000 .026 6 .009 .014 .009 .005 .000 .963 .000 7 .000 .000 .000 .000 .000 .000 1.00 Well.res Well.grd
  • 35. Program F_CMC2 Input DataProgram F_CMC2 Input Data GEOSIM 7, 1, 30 No. of sataes,Seed , MC 276.00, 14.20 Lx, Ly 3.0, 0.10 Dx, Dy Hor. Transitions 0.922 0.015 0.015 0.015 0.015 0.015 0.001 0.015 0.922 0.015 0.015 0.015 0.015 0.001 0.015 0.015 0.922 0.015 0.015 0.015 0.001 0.015 0.015 0.015 0.922 0.015 0.015 0.001 0.015 0.015 0.015 0.015 0.922 0.015 0.001 0.015 0.015 0.015 0.015 0.015 0.922 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.992 Vert. Transitions 0.879 0.103 0.009 0.000 0.009 0.000 0.000 0.026 0.911 0.046 0.009 0.003 0.000 0.006 0.003 0.031 0.897 0.044 0.010 0.000 0.016 0.000 0.005 0.094 0.869 0.031 0.000 0.000 0.000 0.000 0.003 0.010 0.961 0.000 0.026 0.009 0.014 0.009 0.005 0.000 0.962 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.994 WELLSIM 16 no. of boreholes 1, 0.0 well no. and X_Coor. 2, 21 . 3, 34 . 4, 39 . 5, 46 6, 56 7, 76 8, 96 9, 126 10, 152 11, 172 12, 194 13, 214 14, 234 15, 256 16, 276 WELLS 16 no. of boreholes 1, 0.0 well no. and X_Coor. 2, 21 . 3, 34 . 4, 39 . 5, 46 6, 56 7, 76 8, 96 9, 126 10, 152 11, 172 12, 194 13, 214 14, 234 15, 256 16, 276 Well.grd
  • 36. Horizontal Transition Probability MatricesHorizontal Transition Probability Matrices S. 1 2 3 4 5 6 7 1 .500 .100 .100 .100 .100 .100 .000 2 .100 .500 .100 .100 .100 .000 .100 3 .100 .100 .500 .100 .100 .000 .100 4 .100 .100 .100 .500 .100 .000 .100 5 .100 .100 .100 .100 .500 .100 .000 6 .001 .001 .001 .001 .001 .994 .001 7 .001 .001 .001 .001 .001 .001 .994 S. 1 2 3 4 5 6 7 1 .879 .103 .009 .000 .009 .000 .000 2 .026 .911 .046 .009 .003 .000 .005 3 .003 .030 .897 .044 .010 .000 .016 4 .000 .006 .094 .869 .031 .000 .000 5 .000 .000 .003 .010 .961 .000 .026 6 .009 .014 .009 .005 .000 .963 .000 7 .001 .001 .001 .001 .001 .001 .994 S. 1 2 3 4 5 6 7 1 .922 .015 .015 .015 .015 .015 .003 2 .015 .922 .015 .015 .015 .015 .003 3 .015 .015 .922 .015 .015 .015 .003 4 .015 .015 .015 .922 .015 .015 .003 5 .015 .015 .015 .015 .922 .015 .003 6 .015 .015 .015 .015 .015 .922 .003 7 .001 .001 .001 .001 .001 .001 .994
  • 37. Program FCMC2 Output DataProgram FCMC2 Output Data 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 - 1 0 - 5 0 1 2 3 4 5 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 - 1 0 - 5 0 a b c d e
  • 38. Effect of Number of Boreholes on SiteEffect of Number of Boreholes on Site CharacterizationCharacterization 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 -1 0 -5 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 -1 0 -5 0 1 2 3 4 5 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 -1 0 -5 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 -1 0 -5 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 -1 0 -5 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 -1 0 -5 0
  • 39. Application of CS_CMC at MADE siteApplication of CS_CMC at MADE site 0 50 100 150 200 250 -10 -5 0 0 1 2 3 4 5
  • 40. Simulation of the MADE1 ExperimentSimulation of the MADE1 Experiment 0 50 100 150 200 250 -10 -5 0 0 50 100 150 200 250 -10 -5 0 0 50 100 150 200 250 -10 -5 0 0 0.1 1 10 100 0 50 100 150 200 250 -10 -5 0 1 2 3 4 5 0 50 100 150 200 250 -10 -5 0
  • 41. Effect of the Number of Boreholes on theEffect of the Number of Boreholes on the Simulated PlumeSimulated Plume 0 50 100 150 200 250 -10 -5 0 0 0.1 1 10 100 0 50 100 150 200 250 -10 -5 0 0 50 100 150 200 250 -10 -5 0 279 days 0 50 100 150 200 250 -10 -5 0 49 days 0 50 100 150 200 250 -10 -5 0 594 days 0 50 100 150 200 250 -10 -5 0 49 days 0 50 100 150 200 250 -10 -5 0 279 days 0 50 100 150 200 250 -10 -5 0 594 days 0 50 100 150 200 250 -10 -5 0 0 50 100 150 200 250 -10 -5 0 0 50 100 150 200 250 -10 -5 0 0 50 100 150 200 250 -10 -5 0 0 50 100 150 200 250 -10 -5 0 0 50 100 150 200 250 -10 -5 0 0 50 100 150 200 250 -10 -5 0
  • 42. Quantification of Uncertainties using MCQuantification of Uncertainties using MC Classifications of Uncertainties: Geological Uncertainty: Geological configuration. Parameter Uncertainty: Conductivity value of each unit. 0 50 100 150 200 250 300 -50 0 Single realization of the geological structure used in the experimentsFigure 1.
  • 43. Geological and Parameter UncertaintiesGeological and Parameter Uncertainties 1 2 3 4 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -50 0 time = 1600 days 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -40 -20 0 0 50 100 150 200 250 300 -40 -20 0 Geology is Certain and Parameters are Uncertain Geology is Uncertain and Parameters are Certain 0 0.01 0.1 1
  • 44. MonteMonte--Carlo Results for GeologicalCarlo Results for Geological UncertaintyUncertainty 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -50 0 0.00 0.01 0.10 1.00 time = 200 days time = 1000 days time = 2000 days time = 3000 days Concentration in mg/l time = 1600 days 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -50 0 0.00 0.01 0.10 1.00 time = 200 days time = 1000 days time = 2000 days time = 3000 days Concentration in mg/l time = 1600 days 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -50 0 0.00 0.01 0.10 1.00 time = 200 days time = 1000 days time = 2000 days time = 3000 days Concentration in mg/l time = 1600 days
  • 45. MonteMonte--Carlo Method ResultsCarlo Method Results -50 0 -50 0 0 50 100 150 200 250 300 -50 0 -50 0 -50 0 0 50 100 150 200 250 300 -50 0 -50 0 -50 0 0 50 100 150 200 250 300 -50 0 -50 0 -50 0 0 50 100 150 200 250 300 -50 0 -50 0 -50 0 0 50 100 150 200 250 300 -50 0 Concentration in (mg/l) -50 0 -50 0 0 50 100 150 200 250 300 -50 0 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 (a) (b) (c) (a) (b) (c) (c) (c) (c) (c) (b) (b) (b) (b) (a) (a) (a) (a) Concentration field in set 1L: (a) Single realization, (b) Ensemble concentration, (c) Standard deviation on concentration. Figure 2 Concentration field in set 1H: (a) Single realization, (b) Ensemble concentration, (c) Standard deviation on concentration. Figure 5 Concentration field in set 2L: (a) Single realization, (b) Ensemble concentration, (c) Standard deviation on concentration. Concentration field in set 2H: (a) Single realization, (b) Ensemble concentration, (c) Standard deviation on concentration. Concentration field in set 3L: (a) Single realization, (b) Ensemble concentration, (c) Standard deviation on concentration. Concentration field in set 3H: (a) Single realization, (b) Ensemble concentration, (c) Standard deviation on concentration. Figure 3 Figure 6 Figure 4 Figure 7