Oral 1 CAPES Maths - L'intégration en terminale

793 vues

Publié le

Quelques questions à travailler avant de passer l'oral du CAPES mathématiques, sur le thème des fonctions intégrales en terminale S.

Publié dans : Formation
0 commentaire
0 j’aime
Statistiques
Remarques
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

Aucun téléchargement
Vues
Nombre de vues
793
Sur SlideShare
0
Issues des intégrations
0
Intégrations
4
Actions
Partages
0
Téléchargements
10
Commentaires
0
J’aime
0
Intégrations 0
Aucune incorporation

Aucune remarque pour cette diapositive

Oral 1 CAPES Maths - L'intégration en terminale

  1. 1. Chapitre 32 Intégrales, primitives 32.1 Questions 32.1.1 Questions A Question 32.1 Pouvez-vous dé…nir exactement ce que vous voulez dire quand vous parlez de fonction intégrable sur un segment [ ] ? [Voir Section 32.2] Question 32.2 Qu’est-ce qu’une fonction intégrable sur un intervalle  quel- conque de R ? [programme de CPGE] [Voir Section 32.2] Question 32.3 Soit  une fonction continue d’un intervalle ouvert  de R dans R. Soit  2 . On pose  () = R    ()  quel que soit  2 . Lorsque  est monotone sur , démontrer que  est dérivable sur  comme on le ferait dans une classe de terminale. [Réponse sur la fig. 32.1 p. 247] La Question 32.3 pourrait être suivie de la Question 32.4 pour tester les connaissances du candidat sur les fonctions intégrables apprises à l’université, après tout : Question 32.4 Soit  une fonction d’un intervalle ouvert  de R dans R. Soit  2 . On pose  () = R    ()  quel que soit  2 . a) On suppose que  est localement intégrable au sens de Riemann sur . Montrer que  est continue sur . b) On suppose que  est continue sur . Montrer que  est dérivable sur . Question 32.5 Rappeler la dé…nition d’une fonction continue par morceaux. [Voir Section 32.2] Question 32.6 [18] Rappeler et démontrer la formule de changement de va- riables pour une fonction réelle d’une variable réelle. 243 Extrait du livre évolutif gratuit "ORAL 1 du CAPES Maths, pistes et commentaires" au 23 mars 2015 à télécharger sur MégaMaths. L'intégration en terminale (23/03/15) ORAL 1 du CAPES Maths
  2. 2. 244 CHAPITRE 32. INTÉGRALES, PRIMITIVES 32.2 L’intégration en terminale Parler d’intégrales demande de savoir dé…nir avec précision toute une classe de fonctions intégrables. Des questions pourront toujours être posées dans ce sens au candidat qui pourra se référer au programme o¢ciel tout en étant confronté aux carences de celui-ci qui cache la réalité des choses à des élèves qu’il traite comme absolument incapables de la moindre abstraction. La question fondamentale est sans doute la suivante : Comment répondre à un jury qui demande des réponses précises alors qu’on est incité à se référer à un programme de terminal défaillant ? Récemment, à la …n d’un exposé d’entraînement sur les aires, j’ai posé quelques questions simples sur les fonctions intégrables, ce qui semble bien naturel puis- qu’on lie l’intégrale d’une fonction continue positive à une certaine aire sous une courbe. Il n’y a pas eu de bonne réponse, ce qui montre que la confusion ou le défaut de préparation est à son comble. Pourtant, il faut savoir répondre à la question suivante : Question 32.1 – Pouvez-vous dé…nir exactement ce que vous vou- lez dire quand vous parlez de fonction intégrable sur un segment [ ] ? La première réaction est de répondre au niveau d’une terminale S de l’année 2014-15, donc en utilisant le programme 2012 [30] et en s’aidant de manuels scolaires (j’ai utilisé [3] et [4]) : 1) Lorsque  est une fonction continue positive sur un segment [ ] de R (où  · ), à valeurs réelles, l’intégrale de  sur [ ], notée : Z    ()  est, par dé…nition, l’aire sous la courbe représentative de  sur l’intervalle [ ]. C’est donc l’aire délimitée par l’axe  des abscisses, les droites d’équation  =  et  =  (dans le repère orthonormal où on représenté ), et la courbe représentative C de . 2) Si  est une fonction continue négative sur [ ], on pose : Z    ()  = ¡ Z   (¡ ()) 3) Si  est continue sur [ ] et ne s’annule qu’un nombre …ni de fois sur [ ], il existe une subdivision 0 =   1     =  telle que  conserve
  3. 3. 32.2. L’INTÉGRATION EN TERMINALE 245 un signe constant sur chacun des intervalles [ +1] (d’après le Théorème des valeurs intermédiaires), et l’on pose : Z    ()  = ¡1X =0  () Z +1   ()  où  () désigne le signe de  sur [ +1] ( () vaut 1 si  est positive, ¡1 sinon). Jusque-là tout va bien. Mais ensuite le livre de la collection Repère [4] saute le pas et donne des propriétés de l’intégrale d’une fonction continue (linéarité et Chasles) sans dé…nir ce qu’est l’intégrale d’une fonction continue sur [ ], donc en généralisant la dé…nition donnée au 3) sans suggérer qu’il existe pourtant des fonctions continues sur des segments qui s’annulent une in…nité de fois sur ce segment, comme la fonction  7! (sin ) sur [0 1] quand elle est prolongée par continuité en 0. Le livre de la collection Déclic préfère alors faire une pause pour dé…nir et étudier les primitives de fonctions continues, pour pouvoir démontrer un peu après (comme sur la fig. 32.1 p. 247) que l’application :  () = Z    ()  est une primitive de  sur [ ] dès que  est continue positive sur [ ]. En admettant qu’une fonction continue  sur un segment [ ] possède un minimum  sur ce segment, et en appliquant le résultat précédent à la fonction continue positive  7!  ()+, on arrive alors à démontrer que toute fonction continue sur [ ] possède une primitive  sur [ ]. Dans cette présentation, on pose : Z    ()  =  () ¡  () et il ne reste plus qu’à véri…er les propriétés classiques d’une intégrale (Chasles, linéarité, positivité). Voilà deux réponses apportées en terminale sur un programme bancal. Ce n’est qu’en maths sup qu’on aura la possibilité de présenter plus correctement la classe des fonctions intégrables sur un segment, avec plus de latitude dans cette présentation. Sur le programme de maths sup de 2013 [32], on lit que « le programme n’im- pose pas de construction particulière » pour dé…nir l’intégrale d’une fonction continue par morceaux sur un segment. A ce niveau, il est donc possible de dé…nir les fonctions intégrables au sens de Riemann sur [ ] en expliquant que
  4. 4. 246 CHAPITRE 32. INTÉGRALES, PRIMITIVES ce sont des fonctions  telles que la borne supérieure des intégrales des fonc- tions en escalier qui minorent  est égale à la borne inférieure des intégrales des fonctions en escalier qui majorent . Cette façon de faire relie encore plus la dé…nition d’une intégrale à la notion d’aire sous une courbe, et exhibe formidablement la relation intime qui existe entre la dé…nition d’une fonction intégrable et celle d’une partie quarrable : Dans les deux cas, c’est l’égalité d’une certaine borne supérieure et d’une certaine borne inférieure qui permet de dé…nir un nombre que l’on appellera suivant le cas l’intégrale de la fonction sur le segment, ou l’aire d’une partie quarrable (Chapitre 34). Cependant le programme o¢ciel de maths sup évite de parler de fonctions in- tégrables au sens de Riemann, et demande de s’intéresser surtout aux fonctions continues par morceaux. A ce sujet, tout candidat au CAPES doit connaître les dé…nitions suivantes et les restituer si un jury les demande à l’oral : Dé…nition 1 — Une fonction continue par morceaux sur un segment [ ] est une fonction  telle qu’il existe une subdivision 0 =   1     =  de [ ] telle que, pour tout  appar- tenant à [[0  ¡ 1]], il existe une fonction  dé…nie et continue sur [ +1], qui coïncide avec  sur ] +1[. Dé…nition 2 —- Une fonction continue par morceaux sur un intervalle quelconque  de R est une fonction dont la restriction à tout segment inclus dans  est continue par morceaux. On dé…nirait de la même façon une fonction de classe  par morceaux.
  5. 5. 32.2. L’INTÉGRATION EN TERMINALE 247 Fig. 32.1 – 0 () =  () comme en terminale
  6. 6. Bibliographie [1] Clément Boulonne, les leçons de mathématiques à l’oral du CAPES, Li- cence Creatice Commons, 2013. http ://cboumaths.wordpress.com/2013/06/08/les-lecons-de-mathematiques-a- loral-du-capes-session-2013/ [2] F. Herbaut, Souvenirs d’oraux du CAPES externe de mathématiques, (en ligne en 2008 à l’adresse : http ://fabien.herbaut.free.fr/oraux2006.html), 2006. [3] Manuel de Mathématiques de Terminale S, Enseignement obligatoire et de spécialité, collection Déclic, Hachette, 2012. [4] Manuel de Mathématiques de Terminale S, Enseignement obligatoire et de spécialité, collection Repères, Hachette, 2012. [5] D.-J. Mercier, L’épreuve d’exposé au CAPES mathématiques, 14 leçons rédigées et commentées, Vol. I, Publibook, 2007. [6] D.-J. Mercier, L’épreuve d’exposé au CAPES mathématiques, Leçons ré- digées et commentées, Vol. II, Publibook, 2006. [7] D.-J. Mercier, L’épreuve d’exposé au CAPES mathématiques, Leçons ré- digées et commentées, Vol. III, Publibook, 2007. [8] D.-J. Mercier, L’épreuve d’exposé au CAPES mathématiques, Leçons ré- digées et commentées, Vol. IV, Publibook, 2008. [9] D.-J. Mercier, Cours de géométrie, CSIPP, édition 4, 2014. [10] D.-J. Mercier, Polyèdres eulériens et solides pathologiques, LMEC (Lec- tures sur les Mathématiques, l’Enseignement et les Concours), Vol. I, pp. 151-162, 2009. [11] D.-J. Mercier, Fondamentaux de géométrie pour les concours (grandes écoles, CAPES, agrégation, ...), Publibook, 2009. [12] D.-J. Mercier, Acquisition des fondamentaux pour les concours, Vol. I : Nombres, algèbre, arithmétique et polynômes, CSIPP, 2014. 289
  7. 7. 290 BIBLIOGRAPHIE [13] D.-J. Mercier, Acquisition des fondamentaux pour les concours, Vol. II : Algèbre linéaire, CSIPP, 2014 [14] D.-J. Mercier, Acquisition des fondamentaux pour les concours, Vol. III : Espaces euclidiens et hermitiens, CSIPP, 2014. [15] D.-J. Mercier, Acquisition des fondamentaux pour les concours, Vol. IV : Géométrie a¢ne et euclidienne, CSIPP, 2014. [16] A. Delcroix, D.-J. Mercier, A. Omrane, Acquisition des fondamentaux pour les concours (grandes écoles, CAPES, agrégation, ...), Vol. V : Ana- lyse, Intégration, Géométrie, Publibook, 2011. [17] D.-J. Mercier, Acquisition des fondamentaux pour les concours, Vol. VI - Cuvée spéciale, analyse et autres joyeusetés, CSIPP, 2013. [18] D.-J. Mercier, Acquisition des fondamentaux pour les concours, Vol. VII - Topologie et autres thèmes lumineux, CSIPP, 2014. [19] D.-J. Mercier, Acquisition des fondamentaux pour les concours, Vol. VIII - Pour quelques questions de plus, à paraître. [20] D.-J. Mercier, Oral 1 du CAPES Maths - Plans et approfondissements de cinq leçons de la liste 2013, Publibook, 2013. [21] D.-J. Mercier, Brèves de mathématiques, Publibook, 2013. [22] D.-J. Mercier, J.-E. Rombaldi, Annales 2013-B, Agrégation interne de mathématiques, 2 problèmes corrigés de la session 2013 avec rappels de cours, Publibook, 2013. [23] D.-J. Mercier, J.-E. Rombaldi, Annales de l’agrégation interne de ma- thématiques 2005 à 2013, 18 problèmes corrigés avec rappels de cours, Publibook, 2013. [24] D.-J. Mercier, Dossiers mathématiques n±6, Les grands théorèmes de l’analyse, CSIPP, 2013. [25] D.-J. Mercier, Géométrie du collège pour les matheux, CSIPP, 2014. [26] G. Orvas, Des solides pathologiques, Les Cahiers de Science & Vie n±59, octobre 2000, pp. 60-63. [27] D. Perrin D., Mathématiques d’école, Cassini, 2005. [28] D. Perrin, Aires et volumes : découpage et recollement, Conférence donnée au colloque de l’IREM de Rennes le 5 juin 2010. [29] Programme du collège, Enseignement de mathématiques, B.O. spécial n±6 du 28 août 2008. [30] Programme de mathématiques de terminale S, B.O. spécial n±8 du 13 octobre 2011.
  8. 8. BIBLIOGRAPHIE 291 [31] Programme de mathématiques des brevets de technicien supérieur, Arrêté du 4 juin 2013 paru au Journal o¢ciel de la république française du 22 juin 2013, au Bulletin o¢ciel de l’enseignement supérieur et de la recherche et au Bulletin o¢ciel de l’éducation nationale du 4 juillet 2013, Ministère de l’enseignement supérieur et de la recherche, 2013. [32] Programme de mathématiques de la classe de MPSI (première année de CPGE), BOESR spécial 3 du 30 mai 2013.

×