SlideShare a Scribd company logo
1 of 22
Submitted By:
Namwar Anjum(CUJ/I/2013/IEE/006)
Soumya Ghosal(CUJ/I/2013/IEE/005)
Avishek Rauniyar(CUJ/I/2013/IEE/011)
Submitted To:
Mr. S.K. Samdarshi
(Prof. IRER)
(HOD Centre for Energy Engineering)
Centre for Energy Engineering
What is Biomass?
• Biomass is an energy source produced by natural materials like:
(Biological material derived from
living, or recently living
organisms.)
What is Pyrolysis?
( Greek-derived: pyro "fire" and lysis "separating“ )
• thermochemical decomposition of organic material at elevated
temperatures in the absence of oxygen (or any halogen).
• involves the simultaneous change of chemical composition and physical
phase, and is irreversible.
• usually the first chemical reaction that occurs in the burning of many solid
organic fuels, like wood, cloth, and paper, and also of some kinds of plastic.
• products of biomass pyrolysis include biochar, bio-oil and gases including
methane, hydrogen, carbon monoxide, and carbon dioxide
• Moisture content of feedstock: A wide range of biomass feedstock can be used in pyrolysis
processes, process is very dependent on the moisture content of the feedstock, which
should be around 10%.
• At higher moisture contents, high levels of water are produced and at lower levels there is a risk that the
process only produces dust instead of oil.
• High-moisture waste streams, such as sludge and meat processing wastes, require drying before subjecting
to pyrolysis.
Feedstock for Pyrolysis
• Particle size of feedstock: most of the pyrolysis technologies can only process small particles
to a maximum of 2 mm keeping in view the need for rapid heat transfer through the particle
and hence demand for small particle size means that the feedstock has to be size-reduced
before being used for pyrolysis.
Types of Pyrolysis
Pyrolysis
Slow Pyrolysis
• takes several hours to complete
• results in biochar as the main
product
Fast Pyrolysis
• takes seconds for complete pyrolysis.
• yields 60% bio-oil
• In addition, it gives 20% biochar and
20% syngas.
Flash Pyrolysis
• achieve up to 75% of bio-oil
yield.
• rapid de-volatilization in an
inert atmosphere,
• high heating rate of the
particles,
• High reaction temperatures
between 450 °C and 1000 °C.
• Limitations:
• poor thermal stability and
corrosiveness of the oil,
• solids in the oil
Essential features of a fast pyrolysis process:
• Very high heating and heat transfer rates, which require a finely
ground feed.
• Thermodynamically stable and easily achievable process.
• Product is obtained in less than 1 sec.
• Quenching (rapid cooling) of the pyrolysis vapours to give the bio-oil
product.
Products
• Depending on the thermal environment and the final temperature, pyrolysis will yield:
• mainly biochar at low temperatures, less than 450 0C, when the heating rate is quite slow,
• mainly gases at high temperatures, greater than 800 0C, with rapid heating rates.
• at an intermediate temperature and under relatively high heating rates, the main product is bio-oil.
Bio-oil (Pyrolysis Oil)
• dark brown liquid
• has a similar composition to biomass.
• much higher density than woody materials which reduces storage and transport costs.
Advantages:
• particularly attractive for co-firing because it can be more readily handled and burned than solid fuel
and is cheaper to transport and store
• can offer major advantages over solid biomass and gasification due to the ease of handling, storage
and combustion in an existing power station when special start-up procedures are not necessary.
• In addition, bio-oil is also a vital source for a wide range of organic compounds and speciality
chemicals.
Disadvantage:
• not suitable for direct use in standard internal combustion engines.Alternatively, the oil can be
upgraded to either a special engine fuel or through gasification processes to a syngas and then bio-
diesel.
• Due to large amounts of oxygenated components present, the oil has a polar nature and does
not mix readily with hydrocarbons.
• degradation products from the biomass constituents include organic acids (like formic and
acetic acid), giving the oil its low pH.
• Water is an integral part of the single-phase chemical solution. The (hydrophilic) bio-oils have
water contents of typically 15 - 35 wt.%.
• Typically, phase separation does occur when the water content is higher than about 30 to 45
%. Below an example of properties from typical wood-derived pyrolysis oil is given.
Property Unit Value
C
H
N
O (Balance)
wt%
wt%
wt%
wt%
46
7
< 0.01
47
Water content
Ash content
Solids content
Density
wt%
wt%
wt%
kg/m3
25
0.02
0.04
1,170
LHV
LHV
pH
Kinematic viscosity (40 °C)
MJ/kg
MJ/Ltr
-
cSt
16
19
2.9
13
Pyrolysis oil properties :
Typical industrial applications of pyrolysis oil as a fuel :
Pyrolysis oil is widely used as industrial fuel to substitute furnace oil or
industrial diesel.
Other Uses:
• Boilers
• Furnaces
• Hot Water Generators
• Hot Air Generators
• Thermic Fluid Heater
• Electric Generators (mixed with 50% diesel)
• Diesel Pumps(mixed with 50% diesel)
Importance of Biochar:
• The growing concerns about climate change have
brought biochar into limelight. Combustion and
decomposition of woody biomass and agricultural
residues results in the emission of a large amount of
carbon dioxide.Biochar can store this CO2 in the soil
leading to reduction in GHGs emission and
enhancement of soil fertility.
• can increase the available nutrients for plant growth,
water retention and reduce the amount of fertilizer by
preventing the leaching of nutrients out of the soil.
• reduces methane and nitrous oxide emissions from
soil, thus further reducing GHGs emissions.
• can be utilized in many applications as a replacement
for other biomass energy systems.
• can be used as a soil amendment to increase plant
growth yield.
Biochar
A net increase of
4 Giga-tones of atmospheric carbon/year
 No. in parentheses refer to stored
carbon pools.
 Red indicates carbon from
human emissions.
Carbon Cycle
Organisation of Development Action and Maintainance (ODAM, Tamil Nadu),
with support from the Siemenpuu Foundation in Finland, conducted a series of
biochar field trials in Southern India using common feedstocks to produce the
biochar.And used it for farming purposes.
Farmers using Biochar for farming
Mosses
(Scientific name: Bryophyta)
growing on a piece of biochar
A test shows growth of roots of Ladyfinger plant in presence of biochar
in the soil (Left) and in the absence of biochar in the soil (Right).
• made up of carbon monoxide, and hydrogen (85%) with smaller amounts of carbon
dioxide and methane.
• has a high calorific value so it can be used as a fuel to generate electricity or steam.
• may also be used as a basic chemical in the petrochemical industry.
• has less than half the energy density of natural gas.
Syngas
Industrial Practices of Biomass Pyrolysis
Cogeneration or combined heat and power (CHP)
• is the use of a heat engine or power station to simultaneously generate electricity and useful
heat and is thermodynamically efficient use of fuel.
• in separate production of electricity, some energy must be discarded as waste heat, but in
cogeneration this thermal energy is put to use.
Sugar industries in India:
• traditionally practicing cogeneration by using bagasse as a fuel,these industry can produce
electricity and steam for their own requirements.
• It can also produce significant surplus electricity for sale to the grid using same quantity of
bagasse. For example, if steam generation temperature/pressure is raised from 400oC/33 bar
to 485oC/66 bar, more than 80 KWh of additional electricity can be produced for each ton of
cane crushed. The sale of surplus power generated through optimum cogeneration would
help a sugar mill to improve its viability, apart from adding to the power generation capacity
of the country.
(Source: Ministry for New and Renewable Energy,India)
Environmental benefit
Life Cycle Analysis (LCA) is an accounting tool that is used to
track inputs and outputs of processes and keep a running tally
on specific traits.
Here, LCA is used to track two items:
• How much energy (Net Energy Value or NEV) is used to
produce and deliver biomass, perform pyrolysis, upgrade the
bio-oil and create gasoline and diesel fuel compared to the
energy content of the fuel;
• Carbon dioxide (a greenhouse gas) uptake by biomass and
outputs from processing.
In both cases, a desirable outcome from pyrolysis of biomass
would be to increase energy output and reduce CO2 emissions
compared to fossil based alternatives.
The NEV (Figure 1) is 1.09 MJ km−1 for pyrolysis-derived gasoline
and 0.92 MJ km−1 for pyrolysis-derived diesel, both higher than
the NEV for conventional fossil-based gasoline of −1.2 MJ km−1.
A positive number indicates that there is more energy in the fuel
than is used to create it – or a positive gain in total energy. Note
the negative number for fossil-based gasoline indicating a net
loss of energy. The gain in energy for biomass-based fuels is a
major reason why this technology is being considered.
Figure 1. NEV of biomass based pyrolysis fuels compared to fossil-based gasoline.
(MJ=Megajoules is a measure of energy content.)
Figure 2. Life Cycle Analysis of GHG emissions of pyrolysis based fuels compared to fossil-based gasoline.
• India produces about 450-500 million tonnes of biomass per year.Biomass provides 32% of all the primary energy
use in the country at present.
• MNRE estimates that the potential for power from biomass in India is about 18,000 MW.
• The current share of biofuels in total fuel consumption is extremely low and is confined mainly to 5% blending of
ethanol in gasoline, which the government has made mandatory in 10 states.
• Currently, biodiesel is not sold on the Indian fuel market, but the government plans to meet 20% of the country’s
diesel requirements by 2020 using biodiesel.
• MNRE has been implementing biomass power/co-generation programme since mid 90’s.
• A total of 288 biomass power and cogeneration projects aggregating to 2665 MW capacity have been installed in the
country for feeding power to the grid consisting 158 bagasse cogeneration projects in sugar mills with surplus capacity
aggregating to 1666.0 MW.
• States which have taken leadership position in implementation of bagasse cogeneration projects are Andhra Pradesh,
Tamil Nadu, Karnataka, Maharashtra and Uttar Pradesh.
• The leading States for biomass power projects are Andhra Pradesh, Chattisgarh, Maharashtra, Madhya Pradesh,
Gujarat and Tamil Nadu.
Biomass Energy in context of India
Bottlenecks faced by the Indian Biomass Industry:
One of the most critical bottlenecks for biomass plants (based on
any technology) is the supply chain bottlenecks that could result in non-
availability of feedstock. A related problem is the volatility, or more
precisely increase, in the feedstock price. Both these could render the
project unviable. There is other concerns and bottlenecks as well such as:
• Lack of adequate policy framework and effective financing mechanisms
• Lack of effective regulatory framework
• Lack of technical capacity
• Absence of effective information dissemination
• Limited successful commercial demonstration model experience
Conclusion
Biomass pyrolysis has been attracting much attention due to its high
efficiency and good environmental performance characteristics. It also
provides an opportunity for the processing of agricultural residues,
wood wastes and municipal solid waste into clean energy. In addition,
biochar sequestration could make a big difference in the fossil fuel
emissions worldwide and act as a major player in the global carbon
market with its robust, clean and simple production technology.

More Related Content

What's hot (20)

Presentation pyrolysis
Presentation pyrolysisPresentation pyrolysis
Presentation pyrolysis
 
Biodiesel production process
Biodiesel production processBiodiesel production process
Biodiesel production process
 
Biochemical conversion process of biomass
Biochemical conversion process of biomassBiochemical conversion process of biomass
Biochemical conversion process of biomass
 
Biomass Gasification presentation
Biomass Gasification presentationBiomass Gasification presentation
Biomass Gasification presentation
 
Thermochemical
ThermochemicalThermochemical
Thermochemical
 
Presentation on Bio-Fuel from Green Solid Waste
Presentation on Bio-Fuel from Green Solid WastePresentation on Bio-Fuel from Green Solid Waste
Presentation on Bio-Fuel from Green Solid Waste
 
Biomass
BiomassBiomass
Biomass
 
Bio energy
Bio energyBio energy
Bio energy
 
Anaerobic digestion
Anaerobic digestionAnaerobic digestion
Anaerobic digestion
 
Biodiesel
BiodieselBiodiesel
Biodiesel
 
Biomass energy ppt
Biomass energy pptBiomass energy ppt
Biomass energy ppt
 
Biomass combustion device
Biomass combustion deviceBiomass combustion device
Biomass combustion device
 
Thermochemical conversion of biomass
Thermochemical conversion of biomassThermochemical conversion of biomass
Thermochemical conversion of biomass
 
Waste to Energy
Waste to EnergyWaste to Energy
Waste to Energy
 
Gasifiers
GasifiersGasifiers
Gasifiers
 
Bio Energy Presentation
Bio Energy PresentationBio Energy Presentation
Bio Energy Presentation
 
Biomass energy and conversion processes
Biomass energy and conversion processesBiomass energy and conversion processes
Biomass energy and conversion processes
 
Biomass energy and biouels
Biomass energy and biouelsBiomass energy and biouels
Biomass energy and biouels
 
BIOMASS as renewable energy resource
BIOMASS as renewable energy resourceBIOMASS as renewable energy resource
BIOMASS as renewable energy resource
 
Bio gas
Bio gasBio gas
Bio gas
 

Similar to Biomass Pyrolysis

Bioenergy Technologies_Chapter 2-Biofuels.pptx
Bioenergy Technologies_Chapter 2-Biofuels.pptxBioenergy Technologies_Chapter 2-Biofuels.pptx
Bioenergy Technologies_Chapter 2-Biofuels.pptxVincent Mwando
 
THE ROLE OF MICROBES IN ALTERNATE ENERGY GENERATION.pptx
THE ROLE OF MICROBES IN ALTERNATE ENERGY GENERATION.pptxTHE ROLE OF MICROBES IN ALTERNATE ENERGY GENERATION.pptx
THE ROLE OF MICROBES IN ALTERNATE ENERGY GENERATION.pptxnehasolanki83
 
Biogas as a fuel in Ic-Engines, Biogas requirements, Design considerations, E...
Biogas as a fuel in Ic-Engines, Biogasrequirements, Design considerations,E...Biogas as a fuel in Ic-Engines, Biogasrequirements, Design considerations,E...
Biogas as a fuel in Ic-Engines, Biogas requirements, Design considerations, E...VijayAgri1
 
renewable power plants
renewable power plantsrenewable power plants
renewable power plantsBeemkumarN
 
Biomass Energy Availability, Wood to enery
Biomass Energy Availability, Wood to eneryBiomass Energy Availability, Wood to enery
Biomass Energy Availability, Wood to eneryssuser174a091
 
Renewable Energy: Biomass and biofuels Energy
Renewable Energy:  Biomass  and biofuels EnergyRenewable Energy:  Biomass  and biofuels Energy
Renewable Energy: Biomass and biofuels EnergyAkramMusa4
 
05 Biomass.ppt
05 Biomass.ppt05 Biomass.ppt
05 Biomass.pptHarinathC5
 
05 Biomass3de455ver44fa ewr4 er454 dfgr.ppt
05 Biomass3de455ver44fa ewr4 er454 dfgr.ppt05 Biomass3de455ver44fa ewr4 er454 dfgr.ppt
05 Biomass3de455ver44fa ewr4 er454 dfgr.pptPapuKumarNaik1
 
BIOMASS ENERGY.pptx
BIOMASS ENERGY.pptxBIOMASS ENERGY.pptx
BIOMASS ENERGY.pptxssusereabf98
 
RES M-IV (BIOMASS).ppt
RES M-IV (BIOMASS).pptRES M-IV (BIOMASS).ppt
RES M-IV (BIOMASS).pptHkNai
 
Biomass Energy it's uses and future aspects
Biomass Energy it's uses and future aspectsBiomass Energy it's uses and future aspects
Biomass Energy it's uses and future aspectsCriczLove2
 
Bioenergy resources in india 22
Bioenergy resources in india 22Bioenergy resources in india 22
Bioenergy resources in india 22Anam Wani
 

Similar to Biomass Pyrolysis (20)

Biofuel
BiofuelBiofuel
Biofuel
 
Biomass
BiomassBiomass
Biomass
 
Bioenergy Technologies_Chapter 2-Biofuels.pptx
Bioenergy Technologies_Chapter 2-Biofuels.pptxBioenergy Technologies_Chapter 2-Biofuels.pptx
Bioenergy Technologies_Chapter 2-Biofuels.pptx
 
THE ROLE OF MICROBES IN ALTERNATE ENERGY GENERATION.pptx
THE ROLE OF MICROBES IN ALTERNATE ENERGY GENERATION.pptxTHE ROLE OF MICROBES IN ALTERNATE ENERGY GENERATION.pptx
THE ROLE OF MICROBES IN ALTERNATE ENERGY GENERATION.pptx
 
Biogas as a fuel in Ic-Engines, Biogas requirements, Design considerations, E...
Biogas as a fuel in Ic-Engines, Biogasrequirements, Design considerations,E...Biogas as a fuel in Ic-Engines, Biogasrequirements, Design considerations,E...
Biogas as a fuel in Ic-Engines, Biogas requirements, Design considerations, E...
 
Bio
BioBio
Bio
 
renewable power plants
renewable power plantsrenewable power plants
renewable power plants
 
Biomass Energy Availability, Wood to enery
Biomass Energy Availability, Wood to eneryBiomass Energy Availability, Wood to enery
Biomass Energy Availability, Wood to enery
 
05 Biomass (1).ppt
05 Biomass (1).ppt05 Biomass (1).ppt
05 Biomass (1).ppt
 
05 Biomass.pptx
05 Biomass.pptx05 Biomass.pptx
05 Biomass.pptx
 
05 Biomass.ppt
05 Biomass.ppt05 Biomass.ppt
05 Biomass.ppt
 
Renewable Energy: Biomass and biofuels Energy
Renewable Energy:  Biomass  and biofuels EnergyRenewable Energy:  Biomass  and biofuels Energy
Renewable Energy: Biomass and biofuels Energy
 
05 Biomass.ppt
05 Biomass.ppt05 Biomass.ppt
05 Biomass.ppt
 
05 Biomass.ppt
05 Biomass.ppt05 Biomass.ppt
05 Biomass.ppt
 
05 Biomass3de455ver44fa ewr4 er454 dfgr.ppt
05 Biomass3de455ver44fa ewr4 er454 dfgr.ppt05 Biomass3de455ver44fa ewr4 er454 dfgr.ppt
05 Biomass3de455ver44fa ewr4 er454 dfgr.ppt
 
05 Biomass.ppt
05 Biomass.ppt05 Biomass.ppt
05 Biomass.ppt
 
BIOMASS ENERGY.pptx
BIOMASS ENERGY.pptxBIOMASS ENERGY.pptx
BIOMASS ENERGY.pptx
 
RES M-IV (BIOMASS).ppt
RES M-IV (BIOMASS).pptRES M-IV (BIOMASS).ppt
RES M-IV (BIOMASS).ppt
 
Biomass Energy it's uses and future aspects
Biomass Energy it's uses and future aspectsBiomass Energy it's uses and future aspects
Biomass Energy it's uses and future aspects
 
Bioenergy resources in india 22
Bioenergy resources in india 22Bioenergy resources in india 22
Bioenergy resources in india 22
 

Recently uploaded

KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...soginsider
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Standamitlee9823
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoordharasingh5698
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfRagavanV2
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueBhangaleSonal
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf203318pmpc
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...tanu pandey
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringmulugeta48
 

Recently uploaded (20)

KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 

Biomass Pyrolysis

  • 1. Submitted By: Namwar Anjum(CUJ/I/2013/IEE/006) Soumya Ghosal(CUJ/I/2013/IEE/005) Avishek Rauniyar(CUJ/I/2013/IEE/011) Submitted To: Mr. S.K. Samdarshi (Prof. IRER) (HOD Centre for Energy Engineering) Centre for Energy Engineering
  • 2. What is Biomass? • Biomass is an energy source produced by natural materials like: (Biological material derived from living, or recently living organisms.)
  • 3. What is Pyrolysis? ( Greek-derived: pyro "fire" and lysis "separating“ ) • thermochemical decomposition of organic material at elevated temperatures in the absence of oxygen (or any halogen). • involves the simultaneous change of chemical composition and physical phase, and is irreversible. • usually the first chemical reaction that occurs in the burning of many solid organic fuels, like wood, cloth, and paper, and also of some kinds of plastic. • products of biomass pyrolysis include biochar, bio-oil and gases including methane, hydrogen, carbon monoxide, and carbon dioxide
  • 4.
  • 5.
  • 6. • Moisture content of feedstock: A wide range of biomass feedstock can be used in pyrolysis processes, process is very dependent on the moisture content of the feedstock, which should be around 10%. • At higher moisture contents, high levels of water are produced and at lower levels there is a risk that the process only produces dust instead of oil. • High-moisture waste streams, such as sludge and meat processing wastes, require drying before subjecting to pyrolysis. Feedstock for Pyrolysis • Particle size of feedstock: most of the pyrolysis technologies can only process small particles to a maximum of 2 mm keeping in view the need for rapid heat transfer through the particle and hence demand for small particle size means that the feedstock has to be size-reduced before being used for pyrolysis.
  • 7. Types of Pyrolysis Pyrolysis Slow Pyrolysis • takes several hours to complete • results in biochar as the main product Fast Pyrolysis • takes seconds for complete pyrolysis. • yields 60% bio-oil • In addition, it gives 20% biochar and 20% syngas. Flash Pyrolysis • achieve up to 75% of bio-oil yield. • rapid de-volatilization in an inert atmosphere, • high heating rate of the particles, • High reaction temperatures between 450 °C and 1000 °C. • Limitations: • poor thermal stability and corrosiveness of the oil, • solids in the oil
  • 8. Essential features of a fast pyrolysis process: • Very high heating and heat transfer rates, which require a finely ground feed. • Thermodynamically stable and easily achievable process. • Product is obtained in less than 1 sec. • Quenching (rapid cooling) of the pyrolysis vapours to give the bio-oil product.
  • 9. Products • Depending on the thermal environment and the final temperature, pyrolysis will yield: • mainly biochar at low temperatures, less than 450 0C, when the heating rate is quite slow, • mainly gases at high temperatures, greater than 800 0C, with rapid heating rates. • at an intermediate temperature and under relatively high heating rates, the main product is bio-oil.
  • 10. Bio-oil (Pyrolysis Oil) • dark brown liquid • has a similar composition to biomass. • much higher density than woody materials which reduces storage and transport costs. Advantages: • particularly attractive for co-firing because it can be more readily handled and burned than solid fuel and is cheaper to transport and store • can offer major advantages over solid biomass and gasification due to the ease of handling, storage and combustion in an existing power station when special start-up procedures are not necessary. • In addition, bio-oil is also a vital source for a wide range of organic compounds and speciality chemicals. Disadvantage: • not suitable for direct use in standard internal combustion engines.Alternatively, the oil can be upgraded to either a special engine fuel or through gasification processes to a syngas and then bio- diesel.
  • 11. • Due to large amounts of oxygenated components present, the oil has a polar nature and does not mix readily with hydrocarbons. • degradation products from the biomass constituents include organic acids (like formic and acetic acid), giving the oil its low pH. • Water is an integral part of the single-phase chemical solution. The (hydrophilic) bio-oils have water contents of typically 15 - 35 wt.%. • Typically, phase separation does occur when the water content is higher than about 30 to 45 %. Below an example of properties from typical wood-derived pyrolysis oil is given. Property Unit Value C H N O (Balance) wt% wt% wt% wt% 46 7 < 0.01 47 Water content Ash content Solids content Density wt% wt% wt% kg/m3 25 0.02 0.04 1,170 LHV LHV pH Kinematic viscosity (40 °C) MJ/kg MJ/Ltr - cSt 16 19 2.9 13 Pyrolysis oil properties :
  • 12. Typical industrial applications of pyrolysis oil as a fuel : Pyrolysis oil is widely used as industrial fuel to substitute furnace oil or industrial diesel. Other Uses: • Boilers • Furnaces • Hot Water Generators • Hot Air Generators • Thermic Fluid Heater • Electric Generators (mixed with 50% diesel) • Diesel Pumps(mixed with 50% diesel)
  • 13. Importance of Biochar: • The growing concerns about climate change have brought biochar into limelight. Combustion and decomposition of woody biomass and agricultural residues results in the emission of a large amount of carbon dioxide.Biochar can store this CO2 in the soil leading to reduction in GHGs emission and enhancement of soil fertility. • can increase the available nutrients for plant growth, water retention and reduce the amount of fertilizer by preventing the leaching of nutrients out of the soil. • reduces methane and nitrous oxide emissions from soil, thus further reducing GHGs emissions. • can be utilized in many applications as a replacement for other biomass energy systems. • can be used as a soil amendment to increase plant growth yield. Biochar
  • 14. A net increase of 4 Giga-tones of atmospheric carbon/year  No. in parentheses refer to stored carbon pools.  Red indicates carbon from human emissions. Carbon Cycle
  • 15. Organisation of Development Action and Maintainance (ODAM, Tamil Nadu), with support from the Siemenpuu Foundation in Finland, conducted a series of biochar field trials in Southern India using common feedstocks to produce the biochar.And used it for farming purposes. Farmers using Biochar for farming
  • 16. Mosses (Scientific name: Bryophyta) growing on a piece of biochar A test shows growth of roots of Ladyfinger plant in presence of biochar in the soil (Left) and in the absence of biochar in the soil (Right).
  • 17. • made up of carbon monoxide, and hydrogen (85%) with smaller amounts of carbon dioxide and methane. • has a high calorific value so it can be used as a fuel to generate electricity or steam. • may also be used as a basic chemical in the petrochemical industry. • has less than half the energy density of natural gas. Syngas
  • 18. Industrial Practices of Biomass Pyrolysis Cogeneration or combined heat and power (CHP) • is the use of a heat engine or power station to simultaneously generate electricity and useful heat and is thermodynamically efficient use of fuel. • in separate production of electricity, some energy must be discarded as waste heat, but in cogeneration this thermal energy is put to use. Sugar industries in India: • traditionally practicing cogeneration by using bagasse as a fuel,these industry can produce electricity and steam for their own requirements. • It can also produce significant surplus electricity for sale to the grid using same quantity of bagasse. For example, if steam generation temperature/pressure is raised from 400oC/33 bar to 485oC/66 bar, more than 80 KWh of additional electricity can be produced for each ton of cane crushed. The sale of surplus power generated through optimum cogeneration would help a sugar mill to improve its viability, apart from adding to the power generation capacity of the country. (Source: Ministry for New and Renewable Energy,India)
  • 19. Environmental benefit Life Cycle Analysis (LCA) is an accounting tool that is used to track inputs and outputs of processes and keep a running tally on specific traits. Here, LCA is used to track two items: • How much energy (Net Energy Value or NEV) is used to produce and deliver biomass, perform pyrolysis, upgrade the bio-oil and create gasoline and diesel fuel compared to the energy content of the fuel; • Carbon dioxide (a greenhouse gas) uptake by biomass and outputs from processing. In both cases, a desirable outcome from pyrolysis of biomass would be to increase energy output and reduce CO2 emissions compared to fossil based alternatives. The NEV (Figure 1) is 1.09 MJ km−1 for pyrolysis-derived gasoline and 0.92 MJ km−1 for pyrolysis-derived diesel, both higher than the NEV for conventional fossil-based gasoline of −1.2 MJ km−1. A positive number indicates that there is more energy in the fuel than is used to create it – or a positive gain in total energy. Note the negative number for fossil-based gasoline indicating a net loss of energy. The gain in energy for biomass-based fuels is a major reason why this technology is being considered. Figure 1. NEV of biomass based pyrolysis fuels compared to fossil-based gasoline. (MJ=Megajoules is a measure of energy content.) Figure 2. Life Cycle Analysis of GHG emissions of pyrolysis based fuels compared to fossil-based gasoline.
  • 20. • India produces about 450-500 million tonnes of biomass per year.Biomass provides 32% of all the primary energy use in the country at present. • MNRE estimates that the potential for power from biomass in India is about 18,000 MW. • The current share of biofuels in total fuel consumption is extremely low and is confined mainly to 5% blending of ethanol in gasoline, which the government has made mandatory in 10 states. • Currently, biodiesel is not sold on the Indian fuel market, but the government plans to meet 20% of the country’s diesel requirements by 2020 using biodiesel. • MNRE has been implementing biomass power/co-generation programme since mid 90’s. • A total of 288 biomass power and cogeneration projects aggregating to 2665 MW capacity have been installed in the country for feeding power to the grid consisting 158 bagasse cogeneration projects in sugar mills with surplus capacity aggregating to 1666.0 MW. • States which have taken leadership position in implementation of bagasse cogeneration projects are Andhra Pradesh, Tamil Nadu, Karnataka, Maharashtra and Uttar Pradesh. • The leading States for biomass power projects are Andhra Pradesh, Chattisgarh, Maharashtra, Madhya Pradesh, Gujarat and Tamil Nadu. Biomass Energy in context of India
  • 21. Bottlenecks faced by the Indian Biomass Industry: One of the most critical bottlenecks for biomass plants (based on any technology) is the supply chain bottlenecks that could result in non- availability of feedstock. A related problem is the volatility, or more precisely increase, in the feedstock price. Both these could render the project unviable. There is other concerns and bottlenecks as well such as: • Lack of adequate policy framework and effective financing mechanisms • Lack of effective regulatory framework • Lack of technical capacity • Absence of effective information dissemination • Limited successful commercial demonstration model experience
  • 22. Conclusion Biomass pyrolysis has been attracting much attention due to its high efficiency and good environmental performance characteristics. It also provides an opportunity for the processing of agricultural residues, wood wastes and municipal solid waste into clean energy. In addition, biochar sequestration could make a big difference in the fossil fuel emissions worldwide and act as a major player in the global carbon market with its robust, clean and simple production technology.