SlideShare une entreprise Scribd logo
1  sur  25
EE362L, Fall 2008 DC − DC Buck/Boost Converter
Boost converter  + V out – I out V in i in L1 + v  L1   – Buck/Boost converter  C +  v  L2   – C1 + v  C1   – L2 V in i in L1 + v  L1   – +  v  L2   – C1 + v  C1   – L2 + V out – I out C
Buck/Boost converter  This circuit is more unforgiving than the boost converter, because the MOSFET and diode voltages and currents are higher ,[object Object],[object Object],V in i in L1 + v  L1   – +  v  L2   – C1 + v  C1   – L2 + V out – I out C
+ V out – I out C V in I in L1 + 0   – +  0   – KVL and KCL in the average sense 0 0 I out I in C1 L2 I out + V in   – KVL shows that V C1  = V in Interestingly, no average current passes from the source side, through C1, to the load side, and yet this is a “DC - DC” converter
Switch closed V in i in L1 + V in   – +  v  L2   – C1 + V in   – L2 assume constant + v  D   – KVL shows that v D  =  − (V in  + V out ), so the diode is open Thus, C is providing the load power when the switch is closed V in i in L1 –   V in   + C1 + V in   – L2 + V out – I out C –  (V in  + V out ) + I out i L1  and i L2  are ramping up (charging).  C1 is charging L2. C is discharging. + V in   – + V out – I out C
Switch open (assume the diode is conducting because, otherwise, the circuit cannot work) V in i in L1 –  V out   + C1 + V in   – L2 + V out – I out C C1 and C are charging.  L1 and L2 are discharging. + V out – KVL shows that V L1  =  − V out The input/output equation comes from recognizing that the average voltage across L1 is zero assume constant
Inductor L1 current rating Use max During the “on” state, L1 operates under the same conditions as the boost converter L, so the results are the same
Inductor L2 current rating 2I out 0 I avg  = I out Δ I i L2 Use max + V out – I out C V in I in L1 + 0   – +  0   – 0 0 I out I in C1 L2 I out + V in   – Average values
MOSFET and diode currents and current ratings 0 2(I in  + I out ) 0 Take worst case D for each V in i in L1 + v  L1   – + V out – I out C MOSFET Diode i L1  + i L2 Use max switch closed switch open 2(I in  + I out ) i L1  + i L2 +  v  L2   – C1 + v  C1   – L2
Output capacitor C current and current rating 2I in  + I out − I out 0 As D  -> 1, I in   >> I out  , so i C  = (i D  –  I out ) As D  -> 0, I in   << I out  , so switch closed switch open
Series capacitor C1 current and current rating Switch closed, I C1  =  − I L2 V in i in L1 –   V in   + C1 + V in   – L2 + V out – I out C –  (V in  + V out ) + I out + V in   – V in i in L1 –  V out   + C1 + V in   – L2 + V out – I out C + V out – Switch open, I C1  = I L1
Series capacitor C1 current and current rating 2I in − 2 I out 0 As D  -> 1, I in   >> I out  , so i C1 As D  -> 0, I in   << I out  , so switch closed switch open Switch closed, I C1  =  − I L2 Switch open, I C1  = I L1
Worst-case load ripple voltage The worst case is where D -> 1, where output capacitor C provides I out  for most of the period.  Then, − I out 0 i C  = (i D  –  I out )
Worst case ripple voltage on series capacitor C1 2I in − 2 I out 0 i C1 switch closed switch open Then, considering the worst case (i.e., D = 1)
Voltage ratings MOSFET and diode see  (V in  + V out ) ,[object Object],[object Object],[object Object],V in L1 C1 + V in   – L2 + V out – C –  ( V in  + V out )  + V in L1 –  V out   + C1 + V in   – L2 + V out – C
Continuous current in L1 2I in 0 I avg  = I in i L (1  −  D)T guarantees continuous conduction Then, considering the worst case (i.e., D  ->  1), use max use min
Continuous current in L2 2I out 0 I avg  = I out i L (1  −  D)T guarantees continuous conduction Then, considering the worst case (i.e., D  ->  0), use max use min
Impedance matching DC − DC Boost Converter + V in − + − I in + V in − I in Equivalent from source perspective Source
Impedance matching For any R load , as D  -> 0, then R equiv  -> ∞ (i.e., an open circuit) For any R load , as D  -> 1, then R equiv  -> 0 (i.e., a short circuit) Thus, the buck/boost converter can sweep the entire I-V curve of a solar panel
Example - connect a 100 Ω  load resistor D = 0.80 6.44 Ω  equiv. 100 Ω  equiv. D = 0.50 D = 0.88 2 Ω  equiv. With a 100 Ω  load resistor attached, raising D from 0 to 1 moves the solar panel load from the open circuit condition to the short circuit condition
Example - connect a 5 Ω  load resistor D = 0.47 6.44 Ω  equiv. 100 Ω  equiv. D = 0.18 D = 0.61 2 Ω  equiv.
BUCK/BOOST DESIGN 5.66A p-p 200V, 250V 16A, 20A Our components 9A 250V 10A, 5A 10A 90V 40V, 90V Likely worst-case buck/boost situation 10A,  5A MOSFET M. 250V, 20A L1. 100 µ H, 9A C. 1500 µ F, 250V, 5.66A p-p Diode D. 200V, 16A L2. 100 µ H, 9A C1. 33 µ F, 50V, 14A p-p
5A 1500µF 50kHz 0.067V MOSFET M. 250V, 20A L1. 100 µ H, 9A C. 1500 µ F, 250V, 5.66A p-p Diode D. 200V, 16A L2. 100 µ H, 9A C1. 33 µ F, 50V, 14A p-p BUCK/BOOST DESIGN
40V 2A 50kHz 200µH 90V 2A 50kHz 450µH MOSFET M. 250V, 20A L1. 100 µ H, 9A C. 1500 µ F, 250V, 5.66A p-p Diode D. 200V, 16A L2. 100 µ H, 9A C1. 33 µ F, 50V, 14A p-p BUCK/BOOST DESIGN
MOSFET M. 250V, 20A L1. 100 µ H, 9A C. 1500 µ F, 250V, 5.66A p-p Diode D. 200V, 16A L2. 100 µ H, 9A C1. 33 µ F, 50V, 14A p-p BUCK/BOOST DESIGN Conclusion - 50kHz may be too low for buck/boost converter 10A  5A 40V Likely worst-case buck/boost situation 5A 5A 33µF 50kHz 3.0V Our components 9A 14A p-p 50V

Contenu connexe

Tendances

Design & Implementation of Controller Based Buck-Boost Converter for Small Wi...
Design & Implementation of Controller Based Buck-Boost Converter for Small Wi...Design & Implementation of Controller Based Buck-Boost Converter for Small Wi...
Design & Implementation of Controller Based Buck-Boost Converter for Small Wi...iosrjce
 
Buck boost converter
Buck boost converterBuck boost converter
Buck boost converterSaumya Pandey
 
Dc to Dc Converter (chopper)
Dc to Dc Converter (chopper)Dc to Dc Converter (chopper)
Dc to Dc Converter (chopper)dharmesh nakum
 
Vinit buck bost ppt
Vinit buck bost pptVinit buck bost ppt
Vinit buck bost pptVinit Rajput
 
Design of DC-DC Converter for SMPS with Multiple isolated outputs.
Design of DC-DC Converter for SMPS with Multiple isolated outputs.Design of DC-DC Converter for SMPS with Multiple isolated outputs.
Design of DC-DC Converter for SMPS with Multiple isolated outputs.Prajwal M B Raj
 
Simulation based minor project on Buck converter( DC to Dc step down Converter)
Simulation based minor project on Buck converter( DC to Dc step down Converter)Simulation based minor project on Buck converter( DC to Dc step down Converter)
Simulation based minor project on Buck converter( DC to Dc step down Converter)Ashutosh Singh
 
The isolated buck boost dc to dc converter with high efficiency for higher in...
The isolated buck boost dc to dc converter with high efficiency for higher in...The isolated buck boost dc to dc converter with high efficiency for higher in...
The isolated buck boost dc to dc converter with high efficiency for higher in...IOSR Journals
 
Boost Converter and analysis its characteristics
Boost Converter and analysis its characteristicsBoost Converter and analysis its characteristics
Boost Converter and analysis its characteristicsADARSH KUMAR
 
Inverters
InvertersInverters
Inverterspopet
 
Ch18 "Case Study 3: DC-DC Power Converter"
Ch18 "Case Study 3: DC-DC Power Converter"Ch18 "Case Study 3: DC-DC Power Converter"
Ch18 "Case Study 3: DC-DC Power Converter"Aya Mahmoud
 
charging of battery from solar supply using buck boost converter
charging of battery from solar supply using buck boost convertercharging of battery from solar supply using buck boost converter
charging of battery from solar supply using buck boost converterShubham shekhar
 
Dual and cyclo converter
Dual and cyclo converterDual and cyclo converter
Dual and cyclo converterRutika Abhang
 

Tendances (20)

Design & Implementation of Controller Based Buck-Boost Converter for Small Wi...
Design & Implementation of Controller Based Buck-Boost Converter for Small Wi...Design & Implementation of Controller Based Buck-Boost Converter for Small Wi...
Design & Implementation of Controller Based Buck-Boost Converter for Small Wi...
 
Dc–Dc converters
Dc–Dc convertersDc–Dc converters
Dc–Dc converters
 
Buck boost converter
Buck boost converterBuck boost converter
Buck boost converter
 
Dc to Dc Converter (chopper)
Dc to Dc Converter (chopper)Dc to Dc Converter (chopper)
Dc to Dc Converter (chopper)
 
cuk converter
cuk convertercuk converter
cuk converter
 
Vinit buck bost ppt
Vinit buck bost pptVinit buck bost ppt
Vinit buck bost ppt
 
BUCK CONVERTER
BUCK CONVERTERBUCK CONVERTER
BUCK CONVERTER
 
Boost converter
Boost converterBoost converter
Boost converter
 
Design of DC-DC Converter for SMPS with Multiple isolated outputs.
Design of DC-DC Converter for SMPS with Multiple isolated outputs.Design of DC-DC Converter for SMPS with Multiple isolated outputs.
Design of DC-DC Converter for SMPS with Multiple isolated outputs.
 
Simulation based minor project on Buck converter( DC to Dc step down Converter)
Simulation based minor project on Buck converter( DC to Dc step down Converter)Simulation based minor project on Buck converter( DC to Dc step down Converter)
Simulation based minor project on Buck converter( DC to Dc step down Converter)
 
The isolated buck boost dc to dc converter with high efficiency for higher in...
The isolated buck boost dc to dc converter with high efficiency for higher in...The isolated buck boost dc to dc converter with high efficiency for higher in...
The isolated buck boost dc to dc converter with high efficiency for higher in...
 
Sepic
SepicSepic
Sepic
 
Boost Converter and analysis its characteristics
Boost Converter and analysis its characteristicsBoost Converter and analysis its characteristics
Boost Converter and analysis its characteristics
 
Inverters
InvertersInverters
Inverters
 
Ch18 "Case Study 3: DC-DC Power Converter"
Ch18 "Case Study 3: DC-DC Power Converter"Ch18 "Case Study 3: DC-DC Power Converter"
Ch18 "Case Study 3: DC-DC Power Converter"
 
Buck converter design
Buck converter designBuck converter design
Buck converter design
 
Boost converter
Boost converterBoost converter
Boost converter
 
Dc dc converter
Dc dc converterDc dc converter
Dc dc converter
 
charging of battery from solar supply using buck boost converter
charging of battery from solar supply using buck boost convertercharging of battery from solar supply using buck boost converter
charging of battery from solar supply using buck boost converter
 
Dual and cyclo converter
Dual and cyclo converterDual and cyclo converter
Dual and cyclo converter
 

En vedette

Buck boost converter
Buck boost converterBuck boost converter
Buck boost converterSathiya kumar
 
EE452_ClosedLoop Boost Converter
EE452_ClosedLoop Boost ConverterEE452_ClosedLoop Boost Converter
EE452_ClosedLoop Boost Converterki hei chan
 
Bidirectional DC-DC isolated converter
Bidirectional DC-DC isolated converterBidirectional DC-DC isolated converter
Bidirectional DC-DC isolated converterVasudeva Guptha
 
Analysis Buck Converter DC-DC Circuit
Analysis Buck Converter DC-DC CircuitAnalysis Buck Converter DC-DC Circuit
Analysis Buck Converter DC-DC CircuitUniv of Jember
 
Solar photovoltaic systems
Solar photovoltaic systemsSolar photovoltaic systems
Solar photovoltaic systemsanish_hercules
 
Hybrid electrical vehicle
Hybrid electrical vehicleHybrid electrical vehicle
Hybrid electrical vehicleArunraj05
 
Report buck boost k10972
Report buck boost k10972Report buck boost k10972
Report buck boost k10972Vinit Rajput
 
A laboratory model of a dual active bridge dc-dc converter for a smart user n...
A laboratory model of a dual active bridge dc-dc converter for a smart user n...A laboratory model of a dual active bridge dc-dc converter for a smart user n...
A laboratory model of a dual active bridge dc-dc converter for a smart user n...Alessandro Burgio
 
Power converter report
Power converter reportPower converter report
Power converter reportZunAib Ali
 
Harmonic Mitigation Method for the DC-AC Converter in a Single Phase System
Harmonic Mitigation Method for the DC-AC Converter in a Single Phase SystemHarmonic Mitigation Method for the DC-AC Converter in a Single Phase System
Harmonic Mitigation Method for the DC-AC Converter in a Single Phase SystemIJTET Journal
 
Transformerless three level diode clamped inverter for single phase grid conn...
Transformerless three level diode clamped inverter for single phase grid conn...Transformerless three level diode clamped inverter for single phase grid conn...
Transformerless three level diode clamped inverter for single phase grid conn...IAEME Publication
 
Power factor correction in bridgeless luo converter-fed bldc motor drive
Power factor correction in bridgeless luo converter-fed bldc motor drivePower factor correction in bridgeless luo converter-fed bldc motor drive
Power factor correction in bridgeless luo converter-fed bldc motor driveI3E Technologies
 
Forharsha basha
Forharsha bashaForharsha basha
Forharsha bashaUday Reddy
 

En vedette (16)

Buck Boost Converter
Buck Boost ConverterBuck Boost Converter
Buck Boost Converter
 
Buck boost converter
Buck boost converterBuck boost converter
Buck boost converter
 
Boost converter
Boost converterBoost converter
Boost converter
 
EE452_ClosedLoop Boost Converter
EE452_ClosedLoop Boost ConverterEE452_ClosedLoop Boost Converter
EE452_ClosedLoop Boost Converter
 
Bidirectional DC-DC isolated converter
Bidirectional DC-DC isolated converterBidirectional DC-DC isolated converter
Bidirectional DC-DC isolated converter
 
Analysis Buck Converter DC-DC Circuit
Analysis Buck Converter DC-DC CircuitAnalysis Buck Converter DC-DC Circuit
Analysis Buck Converter DC-DC Circuit
 
Chopper
ChopperChopper
Chopper
 
Solar photovoltaic systems
Solar photovoltaic systemsSolar photovoltaic systems
Solar photovoltaic systems
 
Hybrid electrical vehicle
Hybrid electrical vehicleHybrid electrical vehicle
Hybrid electrical vehicle
 
Report buck boost k10972
Report buck boost k10972Report buck boost k10972
Report buck boost k10972
 
A laboratory model of a dual active bridge dc-dc converter for a smart user n...
A laboratory model of a dual active bridge dc-dc converter for a smart user n...A laboratory model of a dual active bridge dc-dc converter for a smart user n...
A laboratory model of a dual active bridge dc-dc converter for a smart user n...
 
Power converter report
Power converter reportPower converter report
Power converter report
 
Harmonic Mitigation Method for the DC-AC Converter in a Single Phase System
Harmonic Mitigation Method for the DC-AC Converter in a Single Phase SystemHarmonic Mitigation Method for the DC-AC Converter in a Single Phase System
Harmonic Mitigation Method for the DC-AC Converter in a Single Phase System
 
Transformerless three level diode clamped inverter for single phase grid conn...
Transformerless three level diode clamped inverter for single phase grid conn...Transformerless three level diode clamped inverter for single phase grid conn...
Transformerless three level diode clamped inverter for single phase grid conn...
 
Power factor correction in bridgeless luo converter-fed bldc motor drive
Power factor correction in bridgeless luo converter-fed bldc motor drivePower factor correction in bridgeless luo converter-fed bldc motor drive
Power factor correction in bridgeless luo converter-fed bldc motor drive
 
Forharsha basha
Forharsha bashaForharsha basha
Forharsha basha
 

Similaire à 8 ee362_l_dc_dc_buckboost_ppt (1)

_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.pptShivamChaturvedi67
 
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).ppt_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).pptMdSazibMollik
 
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.pptEngrMaheshMaheshwari1
 
le roludes the tiofuture research directions
le roludes the tiofuture research directionsle roludes the tiofuture research directions
le roludes the tiofuture research directionsARNABPAL81
 
6 ee462_l_dc_dc_buck_ppt
 6 ee462_l_dc_dc_buck_ppt 6 ee462_l_dc_dc_buck_ppt
6 ee462_l_dc_dc_buck_pptgibs leo
 
Buck_Converter.ppt
Buck_Converter.pptBuck_Converter.ppt
Buck_Converter.pptYadYaseen
 
DC_DC_Buck_PPT.ppt
DC_DC_Buck_PPT.pptDC_DC_Buck_PPT.ppt
DC_DC_Buck_PPT.pptShivamMane14
 
Chapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfChapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfLiewChiaPing
 
LICA SEm ppt.ppt
LICA SEm ppt.pptLICA SEm ppt.ppt
LICA SEm ppt.pptluckyj6
 
09_op-amps123123123123123123123123123.ppt
09_op-amps123123123123123123123123123.ppt09_op-amps123123123123123123123123123.ppt
09_op-amps123123123123123123123123123.pptBxlugaXLAirbus
 

Similaire à 8 ee362_l_dc_dc_buckboost_ppt (1) (20)

_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
 
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).ppt_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT (1).ppt
 
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
_8_EE462L_Fall2011_DC_DC_BuckBoost_PPT.ppt
 
Sepic converter
Sepic  converterSepic  converter
Sepic converter
 
Unit 3
Unit 3Unit 3
Unit 3
 
le roludes the tiofuture research directions
le roludes the tiofuture research directionsle roludes the tiofuture research directions
le roludes the tiofuture research directions
 
6 ee462_l_dc_dc_buck_ppt
 6 ee462_l_dc_dc_buck_ppt 6 ee462_l_dc_dc_buck_ppt
6 ee462_l_dc_dc_buck_ppt
 
Buck_Converter.ppt
Buck_Converter.pptBuck_Converter.ppt
Buck_Converter.ppt
 
DC_DC_Buck_PPT.ppt
DC_DC_Buck_PPT.pptDC_DC_Buck_PPT.ppt
DC_DC_Buck_PPT.ppt
 
Ppt 2
Ppt 2Ppt 2
Ppt 2
 
Lab - 03
Lab - 03Lab - 03
Lab - 03
 
03
0303
03
 
Sig con
Sig conSig con
Sig con
 
Chapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfChapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdf
 
09_op-amps.ppt
09_op-amps.ppt09_op-amps.ppt
09_op-amps.ppt
 
LICA SEm ppt.ppt
LICA SEm ppt.pptLICA SEm ppt.ppt
LICA SEm ppt.ppt
 
Op-amps.ppt
Op-amps.pptOp-amps.ppt
Op-amps.ppt
 
09_op-amps.ppt
09_op-amps.ppt09_op-amps.ppt
09_op-amps.ppt
 
09_op-amps123123123123123123123123123.ppt
09_op-amps123123123123123123123123123.ppt09_op-amps123123123123123123123123123.ppt
09_op-amps123123123123123123123123123.ppt
 
09_op-amps.ppt
09_op-amps.ppt09_op-amps.ppt
09_op-amps.ppt
 

8 ee362_l_dc_dc_buckboost_ppt (1)

  • 1. EE362L, Fall 2008 DC − DC Buck/Boost Converter
  • 2. Boost converter + V out – I out V in i in L1 + v L1 – Buck/Boost converter C + v L2 – C1 + v C1 – L2 V in i in L1 + v L1 – + v L2 – C1 + v C1 – L2 + V out – I out C
  • 3.
  • 4. + V out – I out C V in I in L1 + 0 – + 0 – KVL and KCL in the average sense 0 0 I out I in C1 L2 I out + V in – KVL shows that V C1 = V in Interestingly, no average current passes from the source side, through C1, to the load side, and yet this is a “DC - DC” converter
  • 5. Switch closed V in i in L1 + V in – + v L2 – C1 + V in – L2 assume constant + v D – KVL shows that v D = − (V in + V out ), so the diode is open Thus, C is providing the load power when the switch is closed V in i in L1 – V in + C1 + V in – L2 + V out – I out C – (V in + V out ) + I out i L1 and i L2 are ramping up (charging). C1 is charging L2. C is discharging. + V in – + V out – I out C
  • 6. Switch open (assume the diode is conducting because, otherwise, the circuit cannot work) V in i in L1 – V out + C1 + V in – L2 + V out – I out C C1 and C are charging. L1 and L2 are discharging. + V out – KVL shows that V L1 = − V out The input/output equation comes from recognizing that the average voltage across L1 is zero assume constant
  • 7. Inductor L1 current rating Use max During the “on” state, L1 operates under the same conditions as the boost converter L, so the results are the same
  • 8. Inductor L2 current rating 2I out 0 I avg = I out Δ I i L2 Use max + V out – I out C V in I in L1 + 0 – + 0 – 0 0 I out I in C1 L2 I out + V in – Average values
  • 9. MOSFET and diode currents and current ratings 0 2(I in + I out ) 0 Take worst case D for each V in i in L1 + v L1 – + V out – I out C MOSFET Diode i L1 + i L2 Use max switch closed switch open 2(I in + I out ) i L1 + i L2 + v L2 – C1 + v C1 – L2
  • 10. Output capacitor C current and current rating 2I in + I out − I out 0 As D -> 1, I in >> I out , so i C = (i D – I out ) As D -> 0, I in << I out , so switch closed switch open
  • 11. Series capacitor C1 current and current rating Switch closed, I C1 = − I L2 V in i in L1 – V in + C1 + V in – L2 + V out – I out C – (V in + V out ) + I out + V in – V in i in L1 – V out + C1 + V in – L2 + V out – I out C + V out – Switch open, I C1 = I L1
  • 12. Series capacitor C1 current and current rating 2I in − 2 I out 0 As D -> 1, I in >> I out , so i C1 As D -> 0, I in << I out , so switch closed switch open Switch closed, I C1 = − I L2 Switch open, I C1 = I L1
  • 13. Worst-case load ripple voltage The worst case is where D -> 1, where output capacitor C provides I out for most of the period. Then, − I out 0 i C = (i D – I out )
  • 14. Worst case ripple voltage on series capacitor C1 2I in − 2 I out 0 i C1 switch closed switch open Then, considering the worst case (i.e., D = 1)
  • 15.
  • 16. Continuous current in L1 2I in 0 I avg = I in i L (1 − D)T guarantees continuous conduction Then, considering the worst case (i.e., D -> 1), use max use min
  • 17. Continuous current in L2 2I out 0 I avg = I out i L (1 − D)T guarantees continuous conduction Then, considering the worst case (i.e., D -> 0), use max use min
  • 18. Impedance matching DC − DC Boost Converter + V in − + − I in + V in − I in Equivalent from source perspective Source
  • 19. Impedance matching For any R load , as D -> 0, then R equiv -> ∞ (i.e., an open circuit) For any R load , as D -> 1, then R equiv -> 0 (i.e., a short circuit) Thus, the buck/boost converter can sweep the entire I-V curve of a solar panel
  • 20. Example - connect a 100 Ω load resistor D = 0.80 6.44 Ω equiv. 100 Ω equiv. D = 0.50 D = 0.88 2 Ω equiv. With a 100 Ω load resistor attached, raising D from 0 to 1 moves the solar panel load from the open circuit condition to the short circuit condition
  • 21. Example - connect a 5 Ω load resistor D = 0.47 6.44 Ω equiv. 100 Ω equiv. D = 0.18 D = 0.61 2 Ω equiv.
  • 22. BUCK/BOOST DESIGN 5.66A p-p 200V, 250V 16A, 20A Our components 9A 250V 10A, 5A 10A 90V 40V, 90V Likely worst-case buck/boost situation 10A, 5A MOSFET M. 250V, 20A L1. 100 µ H, 9A C. 1500 µ F, 250V, 5.66A p-p Diode D. 200V, 16A L2. 100 µ H, 9A C1. 33 µ F, 50V, 14A p-p
  • 23. 5A 1500µF 50kHz 0.067V MOSFET M. 250V, 20A L1. 100 µ H, 9A C. 1500 µ F, 250V, 5.66A p-p Diode D. 200V, 16A L2. 100 µ H, 9A C1. 33 µ F, 50V, 14A p-p BUCK/BOOST DESIGN
  • 24. 40V 2A 50kHz 200µH 90V 2A 50kHz 450µH MOSFET M. 250V, 20A L1. 100 µ H, 9A C. 1500 µ F, 250V, 5.66A p-p Diode D. 200V, 16A L2. 100 µ H, 9A C1. 33 µ F, 50V, 14A p-p BUCK/BOOST DESIGN
  • 25. MOSFET M. 250V, 20A L1. 100 µ H, 9A C. 1500 µ F, 250V, 5.66A p-p Diode D. 200V, 16A L2. 100 µ H, 9A C1. 33 µ F, 50V, 14A p-p BUCK/BOOST DESIGN Conclusion - 50kHz may be too low for buck/boost converter 10A 5A 40V Likely worst-case buck/boost situation 5A 5A 33µF 50kHz 3.0V Our components 9A 14A p-p 50V