SlideShare une entreprise Scribd logo
1  sur  21
Télécharger pour lire hors ligne
Southwest Baltic Case
Topic Paper on Energy
(Version 18 January 2016)
This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official
opinion of the European Commission and Member States involved.
2 of 21
Preface
This Topic paper has been developed during the first two phases of the South West Case in the
Baltic Scope project. In total four topic papers have been developed in the Case, one for each of
the topic dealing with Energy, Shipping, Environment and Fishing. The Case study has also
produced a technical paper about Shipping and safety distances to structures like offshore
windfarms. The papers have been developed generically over a period from Marsh 2015 to march
2016.
The main purpose of the topic papers was to initiate the discussions about which topics might be
interesting, and why so, in a transboundary maritime spatial planning context in the region.
Another aim was to create a joint knowledge’s base for the planners to discuss common
transboundary issues to be handled in the process of developing coherent maritime spatial
planning in the region. Therefore; the papers shall be assessed in its context of the Case studies
and the purpose of the Baltic Scope project and not as a full technical report stating the exact and
current situation in South West Baltic.
The responsibility of developing the topic papers was a shared between the project partners with
one country responsible for one topic each, Germany was topic lead for Energy, Denmark for
Shipping, Poland for environment and Sweden for Fishing. In the process of developing the
papers the Topic leader have had contacts with relevant authorities in the other countries to
secure a comprehensive understanding and view. Earlier versions have been discussed and
adjusted accordingly in the process to what is now the final version.
The topic papers have also been used to as knowledge base in stakeholder discussions and the
final versions have been influenced by stakeholders input.
As the project moved on in to discussing planning solutions it was jointly decided that the topic
papers has served its purpose and that it would not gain more to the project to do more work on
the papers. Therefore it was decided to not spend time on layout, cross reading and updating of
facts to make it in to a full Topic report. Therefore, once more, the papers should be understood
as working documents and not technical reports as such.
Case study Coordinator for the South West Case in Baltic Scope.
Tomas Andersson
3 of 21
Content
Conclusion and recommendation............................................................................................... 4
Background.................................................................................................................................... 5
Analysis of the topic/sector ......................................................................................................... 6
Requirements for the sector.................................................................................................... 6
Current use................................................................................................................................ 6
Regulations to be considered ............................................................................................... 13
Future needs and use............................................................................................................ 16
Trans-boundary implications................................................................................................. 17
Relevant geographical areas ................................................................................................ 18
Planning evidence .................................................................................................................. 19
Motive/discussion for including this topic/sector in the project ............................................ 20
This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official
opinion of the European Commission and Member States involved.
4 of 21
Conclusion and recommendation
Limited space, with natural features and resources often shared by up to four countries, common
or competing interests, but also opportunities to use and develop marine space in the most
efficient and sustainable way should be a strong issue for dealing with the topic of offshore
energy and the development of coherent spatial designations for offshore energy, rules and
regulations across borders with regard to competing or non-compatible activities.
Energy production in those shared areas still is mainly a national issue and planned from a
national perspective, while offshore energy also has a strong transnational linear spatial
component when it comes to energy transport, e.g. grid connections. Also pipelines, that connect
one country with another across marine areas, often pass through sea areas of third countries.
There is an ambition in place to enhance the European integration of electricity grids. Thus in the
future the single cable connections might develop into a Baltic offshore energy grid to feed energy
produced in one country or sea area into a wider Baltic energy network.
Thus this topic would encompass mainly two aspects of offshore energy: coordination of
planning for energy production in areas being used by several countries and joint
planning for energy transport corridors.
This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official
opinion of the European Commission and Member States involved.
5 of 21
Background
Energy and marine space – this encompasses different issues, spatial requirements and
opportunities. Traditionally marine energy resources have mainly been fossil fuels, such as oil
and gas. In the Baltic Sea these have never played a role as strong as in the North Sea, where
gas and oil provide for large shares of national income e.g. in the UK, Norway, Denmark or the
Netherlands. Other spatially relevant energy issues have been raised with energy transport, e.g.
the Nord Stream pipeline, other pipeline projects and high voltage-interconnectors between
countries, islands and main land etc.
Strong impetus has been given to marine energy within the last 10 to 15 years with a new focus
on renewables in the Baltic Sea region, notably offshore wind energy. Offshore electricity
production may become an important factor to achieve the climate protection objectives
established by both the EU and the national governments. Denmark and Sweden have been
forerunners in offshore wind energy development in the SWB planning area, with Germany now
running up, having set national (EEZ) and regional (territorial sea) MSPs and a consecutive
Spatial Offshore Grid Plan (for the EEZ) into force. In Poland there are not any turbines installed
so far, but more than 70 applications have been submitted - without a maritime spatial plan in
place yet.
Offshore wind has developed into an important industrial sector in Denmark and Germany, and
plays a major role with regard to national and European targets for CO2 reduction and share of
renewables of whole electricity production/consumption, e.g. in Germany supporting the National
Change in Energy Policy, with significant economic stimulus in Northern Germany / coastal areas
of both North and Baltic Sea.
Since many of the projects are situated close to national marine borders, due to certain
favourable natural conditions (e.g. submarine banks of Kriegers Flak or Middle Bank), it seems
quite reasonable to look at the space affected jointly.
Along with subsea cables for transport of offshore wind power pipelines could also be taken into
consideration when looking for corridors for different kinds of linear infrastructure. For example, in
the Bay of Greifswald in Mecklenburg-Vorpommern the Nord Stream pipeline and future cable
connections from offshore wind farms in the EEZ and territorial sea will use the same “corridor”
designated for linear infrastructure.
This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official
opinion of the European Commission and Member States involved.
6 of 21
Analysis of the topic/sector
Requirements for the sector
Favourable areas for offshore wind farms do have an acceptable distance from the coast, good
wind conditions as well as suitable geological and subsoil conditions. A limiting factor can be the
water depth raising the investment and operation costs. Also technical challenges related to
unfavourable seabed or subsoil conditions will contribute to the decision to plan a project in a
particular area. Furthermore, proper port facilities are an important logistical condition for the
development of offshore wind farms.
Distance to main shipping routes should be sufficient to secure safety and efficiency of marine
traffic, and location should be chosen with a minimum negative impact on protected areas or
other valuable natural features like bird migration corridors. Subsea cables are necessary to
transfer the energy produced offshore to land. The type of cable chosen will depend on the
distance to coast and the transmitted power capacity. Cable corridors should also be routed with
a minimum negative impact on other activities and the environment.
Planning of offshore wind farms and subsea cables or grids needs to be coordinated. Rules and
regulations should be set up to ensure these objectives when implementing energy projects. In
addition to those more generally named requirements in the MSP for the EEZ Germany has
developed further technical rules in the (sectoral) Offshore Grid Plan for the EEZ.
Current use
Primarily driven by climate protection objectives offshore wind farms have become a familiar sight
in the Western Baltic Sea, in Denmark, Sweden and Germany during the last decade. Several
wind farms are in operation, others are under construction, licensed or being projected.
The EU 2030 Framework for Climate and Energy has confirmed the promotion of the
development of renewable energy. For 2030 the Framework set a new target at 27% share of
renewable energy in the total consumption of EU electricity, including offshore wind energy.
In Denmark the long-term target set in the Energy Agreement 2012 is to cover the entire energy
supply by renewable energy by 2050. According to the Danish Energy Agreement results for
2020 include more than 35% of final energy consumption supplied from renewable energy
sources, and approximately 50% of electricity consumption supplied by wind power.
This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official
opinion of the European Commission and Member States involved.
7 of 21
At first, small offshore wind farms had been realised close to the Danish coast, followed by some
larger projects in the North (Horns Rev 1) and the Baltic Sea (e.g. Nysted 1 and 2, Rødsand).
Several more extensive projects in further distance from the coast have been tendered, with
Anholt having been finalised in 2013, others still pending to be implemented in the future and a
number of smaller coastal projects on the timeline. In Demark currently a total offshore capacity
(North and Baltic Sea) of 1271 MW has been installed (see figure 1). At the moment a tender
process is in progress for 600 MW at Kriegers Flak, which is expected to be commissioned by
2022. Southwest of Bornholm a smaller wind farm (50 MW) is in the planning process. According
to current plans, with additional 400 MW capacity consented at Horns Rev 3 in the North Sea and
further 400 MW capacity in near shore areas, the total Danish offshore wind energy capacity will
achieve app. 2700 MW by 2022.
Figure 1: Location of commissioned and planned Danish offshore wind farms.
This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official
opinion of the European Commission and Member States involved.
8 of 21
Sweden also features some existing smaller coastal wind farms in the project area, mainly in the
Kattegat and Öresund region. Others have been licensed, and several large areas, including one
on Middle Bank, have been marked as National Interest Areas for offshore energy.
Swedish energy policy aims at a share of 50% renewable energy by 2020 and 40% reduction in
emissions of climate gases (compared with 1990) for the non-trades sector. The government has
also decided on a planning framework for wind power of 30 TWh by 2020, of which 10 TWh is to
be produced at sea and 20 TWh onshore. The planning framework is not a production objective;
instead, it means that there should be the scope to make the production of 10 TWh of offshore
wind power possible. At present, the production from offshore wind farms only represents a small
proportion of the Swedish electricity production and in 2013 amounted to approximately 0.4% of
the total energy production. Recently, five sea-based wind farms with 81 turbines in total are in
operation. Six additional offshore or nearshore wind farms hold all permits, but are not
constructed yet.
However, there are several permits for the installation of offshore wind farms that have not been
used due to inadequate market conditions. These permits correspond to a total annual electricity
production of around 8.8 TWh, which should be set against the planning framework of 10 TWh by
2020. In addition, there are ongoing permit applications corresponding to several TWh of installed
power.
The Swedish Energy Agency has reported national interests in offshore wind farms based on
criteria such as average annual wind, depth and size of area. These national interests largely
correspond to existing and planned wind power projects. A larger pilot plant for wave power is
under construction on the west coast. The plant is being built in stages and is expected to be
completed by 2020.
This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official
opinion of the European Commission and Member States involved.
9 of 21
Figure 2: Map of Swedish offshore wind farm sites and National Interest Areas
(map by BSH based on GIS data provided by SwAM).
This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official
opinion of the European Commission and Member States involved.
10 of 21
In Germany in 2002 the Federal government adopted a Strategy Paper on Offshore Wind Energy
including a development objective of 25 GW offshore wind energy by 2030. This objective has
been confirmed by the Energy Strategy Paper of 2010. In 2014 offshore wind development
targets for 2030 have been reduced from 25 GW to 15 GW to better reflect progress to date and
to reduce costs to consumers. The previous target of 10 GW by 2020 has also been scaled back
to 6.5 GW. The majority of German offshore wind farms will be realized in the German North Sea
EEZ. By the end of 2015 approx. 700 turbines with a capacity of 3,000 MW have been installed,
90% in the German North Sea and 10% in the Baltic Sea.
So far, in Germany two offshore wind farms have been implemented in the Baltic Sea. One small
project, Baltic 1, with 21 turbines and an installed capacity of 48 MW (7 km²) has been realized in
the territorial sea in 2011. The second one, EnBW Baltic 2 with 80 turbines and a capacity of 288
MW (27 km²), with respective cable connections has been set into operation in September 2015
in the Kriegers Flak area. There are two additional licensed projects in Western Adlergrund
(which like Kriegers Flak is an MSP priority area for offshore wind energy). But also outside these
priority areas several more project applications, mainly in the area west of Adlergrund, have been
submitted. In the territorial sea of Mecklenburg-Vorpommern (M-V) another project, Arcadis Ost
1, on the border to the German EEZ has been licensed. In the 2nd draft version of the revised
Spatial Development Plan for the territorial sea of M-V two large areas in the Western part of the
territorial sea have been designated as priority areas for offshore wind energy along with a small
reservation area.
With the Combined Grid Solution project in the Kriegers Flak area, a project of common interest
(PCI) partly financed by the EU, the first connection of three wind farms in two countries (DE and
DK) with links to both main land grid connection points will be implemented, providing also for
connection of a Swedish wind farm should the approved project be resumed.
This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official
opinion of the European Commission and Member States involved.
11 of 21
Figure 3: Offshore Windfarms in German waters by status (source: BSH).
In Poland there are not any offshore wind farms operating or under construction yet. The main
strategic document with regards to the development of the energy sector in Poland is the Strategy
of Power Safety and Environment. The strategy indicates among others that the share of
renewable energy sources will increase - mainly by wind power plants (by 2030 installed capacity
will amount to approx. 8,900 MW). The National Action Plan in the field of renewable energy is so
far the only government document including estimates for the development of this sector.
According to this, the total expected installed capacity of offshore wind projects in 2020 may
reach 500 MW.
Until November 2014, 75 applications were submitted in order to obtain the location permit. 37
permits were issued, 23 of them remained in force. Development areas with projects holding
permits reserving space for further research and subsequent construction in the Polish EEZ are
situated northeast of the Odra Bank (227 km²), northeast of Slupsk Bank (1,081 km²) and on the
This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official
opinion of the European Commission and Member States involved.
12 of 21
Southern Middle Bank (568 km²). The Polish Association of Wind Energy (2013) predicts up to 6
GW installed capacity in a fast growing scenario.
Figure 4: Current location decisions for offshore wind farms in the Polish EEZ (green lines show
the projects with environmental procedure in place), 2015.
Until now only Germany has designated areas for offshore wind energy in their respective spatial
plans for the territorial sea and the EEZ. But applications may also and have been made for areas
outside of these areas - save for the Natura2000 areas. Denmark has no MSP implemented yet,
but has done sectoral planning and respective political decisions, with new sites now being /
having been on tender and further detailed planning within these areas by the successful
tenderer. Sweden has identified National Interest Areas for Offshore Wind Energy in their
preparation for MSP, to be further assessed and planned in detail at a later stage. Poland has
given out location permits for offshore wind energy plants based on mainly sectoral planning, with
only some restricting and limiting criteria considered –with corridors for cable connections to the
terrestrial grid and an initial marine grid.
This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official
opinion of the European Commission and Member States involved.
13 of 21
Regulations to be considered
The key international legal agreement for the marine area is the UN Convention on the Law of
the Sea (UNCLOS) that aims at ensuring safety and efficiency of maritime traffic. But UNCLOS
only provides general rules, no detailed regulations. So far there is no specific international
legal framework containing explicit provisions or regulations for renewable offshore
installations.
On the other hand several international instruments can impact the deployment of offshore
wind energy and influence the location of offshore wind installations or the licensing
procedures.
 With respect to UNCLOS the coastal state is allowed to deploy offshore renewable
energy projects anywhere within its EEZ. The coastal state cannot control the
laying of cables by other states passing through its EEZ. UNCLOS also contains
a general obligation for states to protect and preserve the marine environment.
 IMO: Sea-lanes and traffic separation schemes are considered as excluded zones
in the sea. In 1989 IMO adopted standards for the removal of offshore installations
in the EEZ.
 Convention on Biological Diversity (CBD), Birds and Habitats Directive: the
designation of marine protected areas under CBD, Special Areas of Conservations
according to Habitats Directive or Special Protected Areas under the Birds
Directive can influence the location of energy infrastructure. Both directives do not
explicitly exclude energy installations within protected areas. However both
directives require an assessment of plans or projects that may significantly impact
Natura2000 sites.
 European and national energy policies with regard to increase of share of
renewables and share of “clean energy” of entire electricity consumption
 EU MSP Directive
 EU SEA and EIA Directive
 Existing national MSPs and sectoral plans for spatial development of “green
energy”, sectoral plans (DE) for offshore grid connections (Spatial Offshore Grid
Plan)
 DE: Marine Facilities Ordinance , Maritime Spatial Plans (EEZ and TS), Spatial
Offshore Grid Plan (EEZ), Environmental Impact Assessment Act (EIA Act) and
other technical regulations, standards and requirements
 DK: Renewable Energy Act; establishment of offshore wind turbines can follow two
different procedures: a government tender procedure run by the Danish Energy
Agency; or an open-door procedure.
This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official
opinion of the European Commission and Member States involved.
14 of 21
 SE: Exclusive Economic Zone Act, Continental Shelf Act, Planning and Building
Act, Environmental Code and associated ordinances, Heritage Conservation Act,
fishing legislation; Construction of wind farms in the EEZ requires permission
according to the Exclusive Economic Zone Act. When the application is examined,
certain parts of the Environmental Code are also applied. Permission can also be
required according to the Continental Shelf Act for seabed investigations of wind
farm sites and cable routes.
 PL: Act on Polish maritime areas and maritime administration, Act on access to
environmental information and environmental impact assessment, Building Act,
Energy Law Act; Polish Maritime Administration is issuing body for permits for
offshore wind farms, subsea cables and pipelines (location decisions).
Development of the OWF is mainly regulated by the Act on maritime areas. Due
to the Act offshore wind farms can only be erected in the Polish EEZ.
Main actors in this sector
 Public / licencing authorities (sectoral, spatial planning)
 Wind farm developers;
 transmission system operators (TSOs);
 pipeline developers and operators
 oil and gas industry
 business associations
 NGOs;
Spatial needs
According to DG Mare (2015) one offshore wind turbine needs more or less 1 km² of space to
another one depending on its size and wing span (6 MW/km²; cf. DG Mare, 2015: Energy
sectors and the implementation of the MSP Directive: Information for stakeholders and
planners). The German Spatial Offshore Grid Plan for the Baltic Sea EEZ also includes a
calculation method for determining the expected offshore wind capacity for single wind farm
clusters. This so called “area approach” is based on average capacity values of all applications
for offshore wind farm projects in the German Baltic Sea EEZ. The grid plan takes 2 turbines
(7 MW) per km² as a basis (the average value of all approved North Sea projects amounts to
1.9 turbines per km²). This illustrates the relatively large area consumption of offshore wind
farms (BSH, 2014).
Offshore wind farms can only be realized in areas outside of main shipping routes. These
areas need to be accepted by shipping administration for marine safety and efficiency issues.
The distance to main shipping routes should be sufficient to secure safety and efficiency of
This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official
opinion of the European Commission and Member States involved.
15 of 21
marine traffic as well. A limiting factor can be the water depth raising the investment and
operation costs. The acceptable depth is up to 40–45 m, preferably less. As described above
also seabed and ground conditions will contribute to the decision to plan a project in a particular
area due to potential technical challenges.
In comparison to wind turbines the cables laid beneath the seabed only affect the area above
the seabed during construction or repair work. Grid connections need to be planned on
acceptable routes with regard to shipping routes, sand and gravel extraction areas and other
competing/non-compatible activities or environmental issues.
Conflicting Issues/Synergetic Issues
Offshore energy production and transport, with its large-scale permanent and fixed
infrastructure newly introduced into the marine environment, with additional ship traffic, non-
compatible activities, a wide range of emissions and disturbances, faces many potential and
factual (spatial) conflicts with existing activities and conservation objectives. Along the EEZ
borders in the SWB case area these are mainly:
 shipping  probability of ship collisions may increase
 fishery  important fishing areas may be reduced  potential socio-economic
losses
 tourism/ recreation  disturbance of the natural landscape
 sand and gravel extraction
 defence/ military uses
 existing subsea cables, incl. data cables, pipelines etc.
 nature protection and conservation areas (see below)
Environmental impacts from current use
Although offshore wind energy is an important renewable energy source, there are some
concerns about the environmental impacts of offshore wind farms.
One of the most severe effects relates to the impact of pile-driving noise during construction
of wind turbines on marine mammals and most notably harbour porpoises. The sound levels
from pile-driving, when the single foundation piles are hammered to the seabed, are well above
the tolerance limits identified by scientists for these animals and can cause temporary hearing
impairment or even severe injury. At greater distances – up to 20 km or more for pile driving
without noise mitigation – the sound pulses trigger stress and behavioural response resulting
in short or longer term avoidance of the area. That is why in the German EEZ pile-driving is
only allowed by implementing noise mitigation measures.
This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official
opinion of the European Commission and Member States involved.
16 of 21
The Baltic Sea provides a resting, feeding and wintering habitat for numerous seabirds.
Responses to offshore wind farms vary from species to species. While some gull species
appear to be attracted to wind farms, other seabird species occur less frequently in wind farm
areas after construction than before. Disturbance-sensitive divers in particular largely avoid
the area of offshore wind farms. The risk of displacement from the area causes loss of quality
habitat and changes in migration routes due to barrier effects. Apart from displacement effects
offshore wind turbines can increase the risk of death from direct collisions for birds and bats.
Construction activities at the wind farm site and the installation of subsea cables can have
direct effects on the seabed and sediments. Disturbance of the seafloor may also increase
turbidity, which can affect the abundance and diversity of benthic organisms. Construction and
presence of foundations can also lead to changes of current dynamics and sediment
conditions. A further potential negative impact relates to pollution through potential fuel spills,
chemical residues from scour protection or anti-corrosive protection.
Appropriate siting of wind turbines and power cable routes along with effective mitigation
strategies can help to reduce negative environmental impacts.
There are also potentially some environmental benefits of offshore wind farms. The turbines
may act as “artificial reefs” and increase biological productivity in the vicinity. The presence
of hard structures can provide habitat for particular species. Fishing is likely to be prohibited
around the turbines for safety, which may locally increase fish abundance. These processes
can consequently result in attracting predators.
Future needs and use
As offshore wind energy represents a quite new development in the marine area a number of
future projects are planned close or along the border:
 Kriegers Flak (DE, DK, SE): in addition to the already operating German wind farm
plans in the Danish and Swedish EEZ to construct wind farms; application submitted
for Combined Grid Solution that is supposed to interconnect German and Danish
wind farms.
 Adlergrund (DE, DK, SE): three licensed wind farms in German EEZ and territorial
sea starting construction in 2016/2017 as well as several applications in German
EEZ; no current plans to utilize the Danish Adlergrund area for offshore wind energy
development.
 Middle Bank (SE, PL): future plans to build offshore wind farms on both sides
This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official
opinion of the European Commission and Member States involved.
17 of 21
 North of Odra Bank (PL, DE, DK): applications for offshore wind farms
 Pipeline projects: plans for Baltic Pipe to connect PL to DK, plans for additional Nord
Stream pipeline
Development trends and risks depend on general sector development, technical progress as well
as changing political framework. With increasing maritime traffic, and trend towards larger
vessels, shipping routes may need wider safety buffers to offshore installations. With more and
more fixed infrastructure it becomes more and more difficult to identify acceptable routes for
additional linear infrastructure such as pipelines and cables. On the basis of technical progress
turbines become bigger and higher and their wingspan larger. That results in larger wind farm
areas because the necessary area between the single turbines increases and may lead to major
impact on migrating birds. Technology is also being developed for placement at greater depths
than is possible today. Also development of alternative foundations, e.g. floating wind turbines or
gravity foundations, continues.
Potential future conflicts may arise from
 growing and cumulative environmental impact
 growing impact on shipping due to increasing risk of collisions and spatial restrictions
o need for detours
 growing impact on fisheries, leisure traffic due to spatial restrictions
 conflicts with sand and gravel extraction due to spatial restrictions
Potential opportunities can be seen in developing a common offshore grid.
Trans-boundary implications
Trans-boundary implications and potential conflicting areas of the energy sectors current and
future uses include
 Shared natural features and resources such as sandbanks with similar planning
objectives in neighbouring states
 Cross-border grid connections
 Windfarms close to national borders with impact on neighbouring marine protected
areas
This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official
opinion of the European Commission and Member States involved.
18 of 21
 Windfarms impacting international shipping routes
Relevant geographical areas
In order to identify geographical areas to focus on within the project the project partners collected
comprehensive data and illustrated by map and table which (sectoral) interests exist in the single
areas. Seven focus areas have been selected that are of special interest for the project and will be
further examined. Several of the relevant focus areas include energy issues.
On the one hand areas like Middle Bank (PL/SE) have been selected that show quite common
interests/ synergies on both sites of the border. On the Middle Bank offshore wind energy
development is a common interest both in Poland and Sweden. Also the analysis of the Kriegers
Flak (SE/DK/DE) area shows quite common interests among the neighbouring countries.
On the other hand areas with conflicting interests have been selected, such as Adlergrund
(DE/DK/PL) or Odra Bank (PL/DK). In the German Adlergrund area there are some licences for
wind farms and grid connections, whereas in the bordering Danish area former plans for wind
energy development have not been pursued. Both in the German EEZ as well as the Danish EEZ
there are located large nature conservation areas that may be affected by the offshore wind
development. In the Odra Bank large parts of the area are of great importance for nature
conservation. Thus in the German EEZ two applications for offshore wind farms have been denied,
whereas on the Polish side still some applications for offshore wind farms exist.
This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official
opinion of the European Commission and Member States involved.
19 of 21
Figure 5: Identified Focus Areas with regard to the energy topic.
Planning evidence
During the first period of the project comprehensive data and information have been collected. The
information obtained comprises maps or GIS data and information from authorities on offshore wind
energy, power cables, pipelines, oil and gas rigs, potential oil fields etc. Especially data from
licensing procedures for infrastructure projects form an important knowledge base.
Additionally existing MSPs and sectoral plans as well as respective plans under development
(drafts) represent important planning evidence.
Some information is still lacking. In particular more detailed information on the situation in focus
areas is missing. For example, project outlines, planning regulations, shipping density and
sensibility and environmental aspects need to be identified in more detail. Best way to compile the
missing information is to contact authorities, data centres or gather relevant information from
This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official
opinion of the European Commission and Member States involved.
20 of 21
publicly accessible sources (industry), current windfarm and cable projects, pipeline developers or
oil and gas industry.
Motive/discussion for including this
topic/sector in the project
In particular the Western part of the project area is very fragmented in terms of countries
involved, distribution of islands and straits. Sometimes there are only narrow strips of EEZ,
sometimes territorial sea is bordering territorial sea directly. Countries share certain natural
features that seem to be suitable for offshore development, such as shallow areas, or encompass
the same resources (e.g. oil and gas, sand and gravel extraction). Energy links compete with
other cross-border and transnational activities such as shipping or fisheries. In the Eastern part of
the project area – mainly along the Swedish-Polish border, interest areas are more extensive,
with less direct competition of other activities, but sometimes with adverse planning targets on
either side.
The planning area as a whole and again in particular the Western part sees a lot of major and
very highly frequented shipping routes – both transit traffic along the main Pan-Baltic routes and
secured by IMO traffic separation schemes, and cross-connections, often maintained by regular
ferry lines both for passengers and cargo. Available space for spatially competing or incompatible
activities such as fixed wind energy installations is rare – and needs to be identified, outlined and
used very carefully.
Since energy production and transport inevitably needs linear infrastructure to connect to the
coast, or from one country to another, ideally “matching” spatial designations, rules and
regulations need to be set, that do not impede on other important activities such as shipping in an
unacceptable way. Spatial designations or regulations might even provide for - with respective
essential economic and regulatory issues in place - future developments such as a transnational /
Pan-Baltic offshore grid.
Thus it seems most advisable to address cross-border energy planning issues bi- or multilaterally,
and seek to reconcile interests and find satisfactory solutions.
The discussion on focus areas that should be addressed within the project has already been
conducted. Several focus areas include energy issues, e.g. Kriegers Flak, Adlergrund or Middle
This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official
opinion of the European Commission and Member States involved.
21 of 21
Bank (see map above). The next step is to decide which topics should be discussed in more
detail in those areas.
Thematic working groups should be based on national input (information and data gathering) but
preferably be conducted with representatives from all countries affected. Stakeholders to be
invited and/or consulted should be relevant within their field of work with regard to the focus area
and directly involved in these areas, and not so much representatives from Pan-Baltic or
European networks (grid operators, offshore wind farm and pipeline developers, shipping
representatives, etc.).
This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official
opinion of the European Commission and Member States involved.

Contenu connexe

Tendances

Baltic SCOPE kick-off - Tackling MSP integration challenges in the BSR*
Baltic SCOPE kick-off - Tackling MSP integration challenges in the BSR*Baltic SCOPE kick-off - Tackling MSP integration challenges in the BSR*
Baltic SCOPE kick-off - Tackling MSP integration challenges in the BSR*Pan Baltic Scope / Baltic SCOPE
 
Baltic SCOPE kick-off - Cross-border planning in Adriatic Ionian MSP*
Baltic SCOPE kick-off - Cross-border planning in Adriatic Ionian MSP*Baltic SCOPE kick-off - Cross-border planning in Adriatic Ionian MSP*
Baltic SCOPE kick-off - Cross-border planning in Adriatic Ionian MSP*Pan Baltic Scope / Baltic SCOPE
 
Implementation of Maritime Spatial Planning in Denmark – state of the art*
Implementation of Maritime Spatial Planning in Denmark – state of the art*Implementation of Maritime Spatial Planning in Denmark – state of the art*
Implementation of Maritime Spatial Planning in Denmark – state of the art*Pan Baltic Scope / Baltic SCOPE
 
Baltic SCOPE kick-off - Cross-Border cooperation in the North sea*
Baltic SCOPE kick-off - Cross-Border cooperation in the North sea*Baltic SCOPE kick-off - Cross-Border cooperation in the North sea*
Baltic SCOPE kick-off - Cross-Border cooperation in the North sea*Pan Baltic Scope / Baltic SCOPE
 
Findings and recommendations from Central Baltic case at the 2nd Baltic Marit...
Findings and recommendations from Central Baltic case at the 2nd Baltic Marit...Findings and recommendations from Central Baltic case at the 2nd Baltic Marit...
Findings and recommendations from Central Baltic case at the 2nd Baltic Marit...Pan Baltic Scope / Baltic SCOPE
 
Progress of the Baltic SCOPE Ecosystem Approach topic June 2016 *
Progress of the Baltic SCOPE Ecosystem Approach topic June 2016 *Progress of the Baltic SCOPE Ecosystem Approach topic June 2016 *
Progress of the Baltic SCOPE Ecosystem Approach topic June 2016 *Pan Baltic Scope / Baltic SCOPE
 
Report - Baltic SCOPE Southwest Baltic case stakeholder meeting*
Report - Baltic SCOPE Southwest Baltic case stakeholder meeting*Report - Baltic SCOPE Southwest Baltic case stakeholder meeting*
Report - Baltic SCOPE Southwest Baltic case stakeholder meeting*Pan Baltic Scope / Baltic SCOPE
 
Progress of the Baltic SCOPE cases June 2016 - Southwest Baltic *
Progress of the Baltic SCOPE cases June 2016 - Southwest Baltic *Progress of the Baltic SCOPE cases June 2016 - Southwest Baltic *
Progress of the Baltic SCOPE cases June 2016 - Southwest Baltic *Pan Baltic Scope / Baltic SCOPE
 
International Cooperation in the Arctic. 2013 Report
International Cooperation in the Arctic. 2013 ReportInternational Cooperation in the Arctic. 2013 Report
International Cooperation in the Arctic. 2013 ReportRussian Council
 
The Arctic. Proposals for the International Cooperation Roadmap
The Arctic. Proposals for the International Cooperation RoadmapThe Arctic. Proposals for the International Cooperation Roadmap
The Arctic. Proposals for the International Cooperation RoadmapRussian Council
 
Development of a Maritime Spatial Plan: The Latvian Recipe
Development of a Maritime Spatial Plan: The Latvian RecipeDevelopment of a Maritime Spatial Plan: The Latvian Recipe
Development of a Maritime Spatial Plan: The Latvian RecipePan Baltic Scope / Baltic SCOPE
 
2010 02 The Marine Management Organisation and the Role of Partnerships – Ste...
2010 02 The Marine Management Organisation and the Role of Partnerships – Ste...2010 02 The Marine Management Organisation and the Role of Partnerships – Ste...
2010 02 The Marine Management Organisation and the Role of Partnerships – Ste...SevernEstuary
 

Tendances (20)

Maritime Spatial Plan in Latvia *
Maritime Spatial Plan in Latvia *Maritime Spatial Plan in Latvia *
Maritime Spatial Plan in Latvia *
 
Baltic SCOPE kick-off - Tackling MSP integration challenges in the BSR*
Baltic SCOPE kick-off - Tackling MSP integration challenges in the BSR*Baltic SCOPE kick-off - Tackling MSP integration challenges in the BSR*
Baltic SCOPE kick-off - Tackling MSP integration challenges in the BSR*
 
Baltic SCOPE kick-off - Cross-border planning in Adriatic Ionian MSP*
Baltic SCOPE kick-off - Cross-border planning in Adriatic Ionian MSP*Baltic SCOPE kick-off - Cross-border planning in Adriatic Ionian MSP*
Baltic SCOPE kick-off - Cross-border planning in Adriatic Ionian MSP*
 
Introduction of the Central Baltic case *
Introduction of the Central Baltic case *Introduction of the Central Baltic case *
Introduction of the Central Baltic case *
 
Baltic SCOPE Topic Paper - Environment*
Baltic SCOPE Topic Paper - Environment*Baltic SCOPE Topic Paper - Environment*
Baltic SCOPE Topic Paper - Environment*
 
Implementation of Maritime Spatial Planning in Denmark – state of the art*
Implementation of Maritime Spatial Planning in Denmark – state of the art*Implementation of Maritime Spatial Planning in Denmark – state of the art*
Implementation of Maritime Spatial Planning in Denmark – state of the art*
 
Baltic SCOPE kick-off - Cross-Border cooperation in the North sea*
Baltic SCOPE kick-off - Cross-Border cooperation in the North sea*Baltic SCOPE kick-off - Cross-Border cooperation in the North sea*
Baltic SCOPE kick-off - Cross-Border cooperation in the North sea*
 
Southwest Baltic Case *
Southwest Baltic Case *Southwest Baltic Case *
Southwest Baltic Case *
 
Findings and recommendations from Central Baltic case at the 2nd Baltic Marit...
Findings and recommendations from Central Baltic case at the 2nd Baltic Marit...Findings and recommendations from Central Baltic case at the 2nd Baltic Marit...
Findings and recommendations from Central Baltic case at the 2nd Baltic Marit...
 
Progress of the Baltic SCOPE Ecosystem Approach topic June 2016 *
Progress of the Baltic SCOPE Ecosystem Approach topic June 2016 *Progress of the Baltic SCOPE Ecosystem Approach topic June 2016 *
Progress of the Baltic SCOPE Ecosystem Approach topic June 2016 *
 
Baltic SCOPE stakeholder workshop on ENVIRONMENT *
Baltic SCOPE stakeholder workshop on ENVIRONMENT *Baltic SCOPE stakeholder workshop on ENVIRONMENT *
Baltic SCOPE stakeholder workshop on ENVIRONMENT *
 
Maritime Spatial Planning in Poland*
Maritime Spatial Planning in Poland*Maritime Spatial Planning in Poland*
Maritime Spatial Planning in Poland*
 
Report - Baltic SCOPE Southwest Baltic case stakeholder meeting*
Report - Baltic SCOPE Southwest Baltic case stakeholder meeting*Report - Baltic SCOPE Southwest Baltic case stakeholder meeting*
Report - Baltic SCOPE Southwest Baltic case stakeholder meeting*
 
Progress of the Baltic SCOPE cases June 2016 - Southwest Baltic *
Progress of the Baltic SCOPE cases June 2016 - Southwest Baltic *Progress of the Baltic SCOPE cases June 2016 - Southwest Baltic *
Progress of the Baltic SCOPE cases June 2016 - Southwest Baltic *
 
Baltic SCOPE stakeholder workshop on SHIPPING *
Baltic SCOPE stakeholder workshop on SHIPPING *Baltic SCOPE stakeholder workshop on SHIPPING *
Baltic SCOPE stakeholder workshop on SHIPPING *
 
International Cooperation in the Arctic. 2013 Report
International Cooperation in the Arctic. 2013 ReportInternational Cooperation in the Arctic. 2013 Report
International Cooperation in the Arctic. 2013 Report
 
The Arctic. Proposals for the International Cooperation Roadmap
The Arctic. Proposals for the International Cooperation RoadmapThe Arctic. Proposals for the International Cooperation Roadmap
The Arctic. Proposals for the International Cooperation Roadmap
 
Development of a Maritime Spatial Plan: The Latvian Recipe
Development of a Maritime Spatial Plan: The Latvian RecipeDevelopment of a Maritime Spatial Plan: The Latvian Recipe
Development of a Maritime Spatial Plan: The Latvian Recipe
 
Transboundary Maritime Spatial Planning*
Transboundary Maritime Spatial Planning*Transboundary Maritime Spatial Planning*
Transboundary Maritime Spatial Planning*
 
2010 02 The Marine Management Organisation and the Role of Partnerships – Ste...
2010 02 The Marine Management Organisation and the Role of Partnerships – Ste...2010 02 The Marine Management Organisation and the Role of Partnerships – Ste...
2010 02 The Marine Management Organisation and the Role of Partnerships – Ste...
 

Similaire à Topic paper (Southwest Baltic Case) - Energy *

Sharing the Baltic Sea: How Six Countries Improved Their Maritime Spatial Pla...
Sharing the Baltic Sea: How Six Countries Improved Their Maritime Spatial Pla...Sharing the Baltic Sea: How Six Countries Improved Their Maritime Spatial Pla...
Sharing the Baltic Sea: How Six Countries Improved Their Maritime Spatial Pla...Pan Baltic Scope / Baltic SCOPE
 
Trans Adriatic Pipeline (TAP) Brochure
Trans Adriatic Pipeline (TAP) BrochureTrans Adriatic Pipeline (TAP) Brochure
Trans Adriatic Pipeline (TAP) BrochureTSBReview
 
"Converting Offshore Wind into Electricity" (complete book 2011)
"Converting Offshore Wind into Electricity" (complete book 2011)"Converting Offshore Wind into Electricity" (complete book 2011)
"Converting Offshore Wind into Electricity" (complete book 2011)Chris Westra
 
Presentatie Energy Valley, Koos Look
Presentatie Energy Valley, Koos LookPresentatie Energy Valley, Koos Look
Presentatie Energy Valley, Koos LookBoris de Jong
 
Shipping Across The Arctic Ocean Position Paper
Shipping Across The Arctic Ocean Position PaperShipping Across The Arctic Ocean Position Paper
Shipping Across The Arctic Ocean Position PaperGeorge Teriakidis
 
BASTOR2 - Unlocking the potential for CCS in the Baltic Sea
BASTOR2 - Unlocking the potential for CCS in the Baltic SeaBASTOR2 - Unlocking the potential for CCS in the Baltic Sea
BASTOR2 - Unlocking the potential for CCS in the Baltic SeaGlobal CCS Institute
 
EMR H2 Booster study, the current state of the H2 economy - 16 March 2023
EMR H2 Booster study, the current state of the H2 economy - 16 March 2023EMR H2 Booster study, the current state of the H2 economy - 16 March 2023
EMR H2 Booster study, the current state of the H2 economy - 16 March 2023Cluster TWEED
 
Global LNG bunkering infrastructure as of January 2014
Global LNG bunkering infrastructure as of January 2014Global LNG bunkering infrastructure as of January 2014
Global LNG bunkering infrastructure as of January 2014Lars Petter Blikom
 
TPOcean-Strategic_Research_Agenda_Nov2016
TPOcean-Strategic_Research_Agenda_Nov2016TPOcean-Strategic_Research_Agenda_Nov2016
TPOcean-Strategic_Research_Agenda_Nov2016Nicolas Wallet
 
Poyry - How can small-scale LNG help grow the European gas market? - Point of...
Poyry - How can small-scale LNG help grow the European gas market? - Point of...Poyry - How can small-scale LNG help grow the European gas market? - Point of...
Poyry - How can small-scale LNG help grow the European gas market? - Point of...Pöyry
 
HySupply_WorkingPaper_Meta-Analysis_1.1.pdf
HySupply_WorkingPaper_Meta-Analysis_1.1.pdfHySupply_WorkingPaper_Meta-Analysis_1.1.pdf
HySupply_WorkingPaper_Meta-Analysis_1.1.pdfBDI
 
Arctic transform brochure
Arctic transform brochureArctic transform brochure
Arctic transform brochureDr Lendy Spires
 
Offshore Wind Power Experiences Potential And Key Issues For Deployment
Offshore Wind Power Experiences Potential And Key Issues For DeploymentOffshore Wind Power Experiences Potential And Key Issues For Deployment
Offshore Wind Power Experiences Potential And Key Issues For DeploymentGlenn Klith Andersen
 
Konkraftrapport_eng_fullversjon
Konkraftrapport_eng_fullversjonKonkraftrapport_eng_fullversjon
Konkraftrapport_eng_fullversjonGeorg Oftedal
 
Club espanol
Club espanolClub espanol
Club espanolAhmad Eid
 

Similaire à Topic paper (Southwest Baltic Case) - Energy * (20)

Sharing the Baltic Sea: How Six Countries Improved Their Maritime Spatial Pla...
Sharing the Baltic Sea: How Six Countries Improved Their Maritime Spatial Pla...Sharing the Baltic Sea: How Six Countries Improved Their Maritime Spatial Pla...
Sharing the Baltic Sea: How Six Countries Improved Their Maritime Spatial Pla...
 
orecca_roadmap
orecca_roadmaporecca_roadmap
orecca_roadmap
 
Trans Adriatic Pipeline (TAP) Brochure
Trans Adriatic Pipeline (TAP) BrochureTrans Adriatic Pipeline (TAP) Brochure
Trans Adriatic Pipeline (TAP) Brochure
 
The Swedish experience
The Swedish experience The Swedish experience
The Swedish experience
 
"Converting Offshore Wind into Electricity" (complete book 2011)
"Converting Offshore Wind into Electricity" (complete book 2011)"Converting Offshore Wind into Electricity" (complete book 2011)
"Converting Offshore Wind into Electricity" (complete book 2011)
 
Presentatie Energy Valley, Koos Look
Presentatie Energy Valley, Koos LookPresentatie Energy Valley, Koos Look
Presentatie Energy Valley, Koos Look
 
Shipping Across The Arctic Ocean Position Paper
Shipping Across The Arctic Ocean Position PaperShipping Across The Arctic Ocean Position Paper
Shipping Across The Arctic Ocean Position Paper
 
Shipping In The North Pole
Shipping In The North PoleShipping In The North Pole
Shipping In The North Pole
 
BASTOR2 - Unlocking the potential for CCS in the Baltic Sea
BASTOR2 - Unlocking the potential for CCS in the Baltic SeaBASTOR2 - Unlocking the potential for CCS in the Baltic Sea
BASTOR2 - Unlocking the potential for CCS in the Baltic Sea
 
EMR H2 Booster study, the current state of the H2 economy - 16 March 2023
EMR H2 Booster study, the current state of the H2 economy - 16 March 2023EMR H2 Booster study, the current state of the H2 economy - 16 March 2023
EMR H2 Booster study, the current state of the H2 economy - 16 March 2023
 
MED-DESIRE newsletter 01 eng
MED-DESIRE newsletter 01 engMED-DESIRE newsletter 01 eng
MED-DESIRE newsletter 01 eng
 
Global LNG bunkering infrastructure as of January 2014
Global LNG bunkering infrastructure as of January 2014Global LNG bunkering infrastructure as of January 2014
Global LNG bunkering infrastructure as of January 2014
 
TPOcean-Strategic_Research_Agenda_Nov2016
TPOcean-Strategic_Research_Agenda_Nov2016TPOcean-Strategic_Research_Agenda_Nov2016
TPOcean-Strategic_Research_Agenda_Nov2016
 
Poyry - How can small-scale LNG help grow the European gas market? - Point of...
Poyry - How can small-scale LNG help grow the European gas market? - Point of...Poyry - How can small-scale LNG help grow the European gas market? - Point of...
Poyry - How can small-scale LNG help grow the European gas market? - Point of...
 
HySupply_WorkingPaper_Meta-Analysis_1.1.pdf
HySupply_WorkingPaper_Meta-Analysis_1.1.pdfHySupply_WorkingPaper_Meta-Analysis_1.1.pdf
HySupply_WorkingPaper_Meta-Analysis_1.1.pdf
 
Arctic transform brochure
Arctic transform brochureArctic transform brochure
Arctic transform brochure
 
Offshore Wind Power Experiences Potential And Key Issues For Deployment
Offshore Wind Power Experiences Potential And Key Issues For DeploymentOffshore Wind Power Experiences Potential And Key Issues For Deployment
Offshore Wind Power Experiences Potential And Key Issues For Deployment
 
Konkraftrapport_eng_fullversjon
Konkraftrapport_eng_fullversjonKonkraftrapport_eng_fullversjon
Konkraftrapport_eng_fullversjon
 
Club espanol
Club espanolClub espanol
Club espanol
 
Baltic SCOPE workshop discussion on SHIPPING*
Baltic SCOPE workshop discussion on SHIPPING*Baltic SCOPE workshop discussion on SHIPPING*
Baltic SCOPE workshop discussion on SHIPPING*
 

Plus de Pan Baltic Scope / Baltic SCOPE

Evaluation and Monitoring of Transboundary Aspects of Maritime Spatial Planni...
Evaluation and Monitoring of Transboundary Aspects of Maritime Spatial Planni...Evaluation and Monitoring of Transboundary Aspects of Maritime Spatial Planni...
Evaluation and Monitoring of Transboundary Aspects of Maritime Spatial Planni...Pan Baltic Scope / Baltic SCOPE
 
The Ecosystem Approach in Maritime Spatial Planning A Checklist Toolbox
The Ecosystem Approach in Maritime Spatial Planning A Checklist ToolboxThe Ecosystem Approach in Maritime Spatial Planning A Checklist Toolbox
The Ecosystem Approach in Maritime Spatial Planning A Checklist ToolboxPan Baltic Scope / Baltic SCOPE
 
Recommendations on Maritime Spatial Planning Across Borders
Recommendations on Maritime Spatial Planning Across BordersRecommendations on Maritime Spatial Planning Across Borders
Recommendations on Maritime Spatial Planning Across BordersPan Baltic Scope / Baltic SCOPE
 
We have a dream: a common Maritime Spatial Planning Data Infrastructure – Bal...
We have a dream: a common Maritime Spatial Planning Data Infrastructure – Bal...We have a dream: a common Maritime Spatial Planning Data Infrastructure – Bal...
We have a dream: a common Maritime Spatial Planning Data Infrastructure – Bal...Pan Baltic Scope / Baltic SCOPE
 
National Approach in Data Exchange – Danish Maritime Spatial Data Infrastruct...
National Approach in Data Exchange – Danish Maritime Spatial Data Infrastruct...National Approach in Data Exchange – Danish Maritime Spatial Data Infrastruct...
National Approach in Data Exchange – Danish Maritime Spatial Data Infrastruct...Pan Baltic Scope / Baltic SCOPE
 
European sea basin perspectives on maritime spatial planning data issues at t...
European sea basin perspectives on maritime spatial planning data issues at t...European sea basin perspectives on maritime spatial planning data issues at t...
European sea basin perspectives on maritime spatial planning data issues at t...Pan Baltic Scope / Baltic SCOPE
 
Joint findings on institutional integration from the Baltic Sea Maritime Spat...
Joint findings on institutional integration from the Baltic Sea Maritime Spat...Joint findings on institutional integration from the Baltic Sea Maritime Spat...
Joint findings on institutional integration from the Baltic Sea Maritime Spat...Pan Baltic Scope / Baltic SCOPE
 
Maritime Spatial Planning as part of broader marine governance at the 2nd Bal...
Maritime Spatial Planning as part of broader marine governance at the 2nd Bal...Maritime Spatial Planning as part of broader marine governance at the 2nd Bal...
Maritime Spatial Planning as part of broader marine governance at the 2nd Bal...Pan Baltic Scope / Baltic SCOPE
 
Planning for implementation – roles of Maritime Spatial Planning and sectoral...
Planning for implementation – roles of Maritime Spatial Planning and sectoral...Planning for implementation – roles of Maritime Spatial Planning and sectoral...
Planning for implementation – roles of Maritime Spatial Planning and sectoral...Pan Baltic Scope / Baltic SCOPE
 
HELCOM work on development of Baltic Marine Protected Area network at the 2nd...
HELCOM work on development of Baltic Marine Protected Area network at the 2nd...HELCOM work on development of Baltic Marine Protected Area network at the 2nd...
HELCOM work on development of Baltic Marine Protected Area network at the 2nd...Pan Baltic Scope / Baltic SCOPE
 
Key findings from the Baltic Scope project on preconditions for building cohe...
Key findings from the Baltic Scope project on preconditions for building cohe...Key findings from the Baltic Scope project on preconditions for building cohe...
Key findings from the Baltic Scope project on preconditions for building cohe...Pan Baltic Scope / Baltic SCOPE
 
The MCH-MSP INTERREG project: Project objectives, related activities and expe...
The MCH-MSP INTERREG project: Project objectives, related activities and expe...The MCH-MSP INTERREG project: Project objectives, related activities and expe...
The MCH-MSP INTERREG project: Project objectives, related activities and expe...Pan Baltic Scope / Baltic SCOPE
 
Case Study in Finland at the workshop 'The role of the maritime spatial plann...
Case Study in Finland at the workshop 'The role of the maritime spatial plann...Case Study in Finland at the workshop 'The role of the maritime spatial plann...
Case Study in Finland at the workshop 'The role of the maritime spatial plann...Pan Baltic Scope / Baltic SCOPE
 
Underwater cultural heritage – opportunities to use synergies and current pol...
Underwater cultural heritage – opportunities to use synergies and current pol...Underwater cultural heritage – opportunities to use synergies and current pol...
Underwater cultural heritage – opportunities to use synergies and current pol...Pan Baltic Scope / Baltic SCOPE
 
Update on MCH and MSP – what is going on in the European sea basins? at the 2...
Update on MCH and MSP – what is going on in the European sea basins? at the 2...Update on MCH and MSP – what is going on in the European sea basins? at the 2...
Update on MCH and MSP – what is going on in the European sea basins? at the 2...Pan Baltic Scope / Baltic SCOPE
 
Welcome and introduction of the workshop 'The role of the maritime spatial pl...
Welcome and introduction of the workshop 'The role of the maritime spatial pl...Welcome and introduction of the workshop 'The role of the maritime spatial pl...
Welcome and introduction of the workshop 'The role of the maritime spatial pl...Pan Baltic Scope / Baltic SCOPE
 
Integration in Baltic Sea MSP: What role does it really play? at the 2nd Balt...
Integration in Baltic Sea MSP: What role does it really play? at the 2nd Balt...Integration in Baltic Sea MSP: What role does it really play? at the 2nd Balt...
Integration in Baltic Sea MSP: What role does it really play? at the 2nd Balt...Pan Baltic Scope / Baltic SCOPE
 

Plus de Pan Baltic Scope / Baltic SCOPE (20)

Introduction about Pan Baltic Scope collaboration
Introduction about Pan Baltic Scope collaborationIntroduction about Pan Baltic Scope collaboration
Introduction about Pan Baltic Scope collaboration
 
Evaluation and Monitoring of Transboundary Aspects of Maritime Spatial Planni...
Evaluation and Monitoring of Transboundary Aspects of Maritime Spatial Planni...Evaluation and Monitoring of Transboundary Aspects of Maritime Spatial Planni...
Evaluation and Monitoring of Transboundary Aspects of Maritime Spatial Planni...
 
Mapping maritime activities within the Baltic Sea
Mapping maritime activities within the Baltic SeaMapping maritime activities within the Baltic Sea
Mapping maritime activities within the Baltic Sea
 
The Ecosystem Approach in Maritime Spatial Planning A Checklist Toolbox
The Ecosystem Approach in Maritime Spatial Planning A Checklist ToolboxThe Ecosystem Approach in Maritime Spatial Planning A Checklist Toolbox
The Ecosystem Approach in Maritime Spatial Planning A Checklist Toolbox
 
Lessons Learned: Experiences from Baltic SCOPE
Lessons Learned: Experiences from Baltic SCOPELessons Learned: Experiences from Baltic SCOPE
Lessons Learned: Experiences from Baltic SCOPE
 
Recommendations on Maritime Spatial Planning Across Borders
Recommendations on Maritime Spatial Planning Across BordersRecommendations on Maritime Spatial Planning Across Borders
Recommendations on Maritime Spatial Planning Across Borders
 
We have a dream: a common Maritime Spatial Planning Data Infrastructure – Bal...
We have a dream: a common Maritime Spatial Planning Data Infrastructure – Bal...We have a dream: a common Maritime Spatial Planning Data Infrastructure – Bal...
We have a dream: a common Maritime Spatial Planning Data Infrastructure – Bal...
 
National Approach in Data Exchange – Danish Maritime Spatial Data Infrastruct...
National Approach in Data Exchange – Danish Maritime Spatial Data Infrastruct...National Approach in Data Exchange – Danish Maritime Spatial Data Infrastruct...
National Approach in Data Exchange – Danish Maritime Spatial Data Infrastruct...
 
European sea basin perspectives on maritime spatial planning data issues at t...
European sea basin perspectives on maritime spatial planning data issues at t...European sea basin perspectives on maritime spatial planning data issues at t...
European sea basin perspectives on maritime spatial planning data issues at t...
 
Joint findings on institutional integration from the Baltic Sea Maritime Spat...
Joint findings on institutional integration from the Baltic Sea Maritime Spat...Joint findings on institutional integration from the Baltic Sea Maritime Spat...
Joint findings on institutional integration from the Baltic Sea Maritime Spat...
 
Maritime Spatial Planning as part of broader marine governance at the 2nd Bal...
Maritime Spatial Planning as part of broader marine governance at the 2nd Bal...Maritime Spatial Planning as part of broader marine governance at the 2nd Bal...
Maritime Spatial Planning as part of broader marine governance at the 2nd Bal...
 
Planning for implementation – roles of Maritime Spatial Planning and sectoral...
Planning for implementation – roles of Maritime Spatial Planning and sectoral...Planning for implementation – roles of Maritime Spatial Planning and sectoral...
Planning for implementation – roles of Maritime Spatial Planning and sectoral...
 
HELCOM work on development of Baltic Marine Protected Area network at the 2nd...
HELCOM work on development of Baltic Marine Protected Area network at the 2nd...HELCOM work on development of Baltic Marine Protected Area network at the 2nd...
HELCOM work on development of Baltic Marine Protected Area network at the 2nd...
 
Key findings from the Baltic Scope project on preconditions for building cohe...
Key findings from the Baltic Scope project on preconditions for building cohe...Key findings from the Baltic Scope project on preconditions for building cohe...
Key findings from the Baltic Scope project on preconditions for building cohe...
 
The MCH-MSP INTERREG project: Project objectives, related activities and expe...
The MCH-MSP INTERREG project: Project objectives, related activities and expe...The MCH-MSP INTERREG project: Project objectives, related activities and expe...
The MCH-MSP INTERREG project: Project objectives, related activities and expe...
 
Case Study in Finland at the workshop 'The role of the maritime spatial plann...
Case Study in Finland at the workshop 'The role of the maritime spatial plann...Case Study in Finland at the workshop 'The role of the maritime spatial plann...
Case Study in Finland at the workshop 'The role of the maritime spatial plann...
 
Underwater cultural heritage – opportunities to use synergies and current pol...
Underwater cultural heritage – opportunities to use synergies and current pol...Underwater cultural heritage – opportunities to use synergies and current pol...
Underwater cultural heritage – opportunities to use synergies and current pol...
 
Update on MCH and MSP – what is going on in the European sea basins? at the 2...
Update on MCH and MSP – what is going on in the European sea basins? at the 2...Update on MCH and MSP – what is going on in the European sea basins? at the 2...
Update on MCH and MSP – what is going on in the European sea basins? at the 2...
 
Welcome and introduction of the workshop 'The role of the maritime spatial pl...
Welcome and introduction of the workshop 'The role of the maritime spatial pl...Welcome and introduction of the workshop 'The role of the maritime spatial pl...
Welcome and introduction of the workshop 'The role of the maritime spatial pl...
 
Integration in Baltic Sea MSP: What role does it really play? at the 2nd Balt...
Integration in Baltic Sea MSP: What role does it really play? at the 2nd Balt...Integration in Baltic Sea MSP: What role does it really play? at the 2nd Balt...
Integration in Baltic Sea MSP: What role does it really play? at the 2nd Balt...
 

Dernier

Youth shaping sustainable and innovative solution - Reinforcing the 2030 agen...
Youth shaping sustainable and innovative solution - Reinforcing the 2030 agen...Youth shaping sustainable and innovative solution - Reinforcing the 2030 agen...
Youth shaping sustainable and innovative solution - Reinforcing the 2030 agen...Christina Parmionova
 
Item # 1a --- March 25, 2024 CCM Minutes
Item # 1a --- March 25, 2024 CCM MinutesItem # 1a --- March 25, 2024 CCM Minutes
Item # 1a --- March 25, 2024 CCM Minutesahcitycouncil
 
ISEIDP in Chikkaballapura, Karnataka, India
ISEIDP in Chikkaballapura, Karnataka, IndiaISEIDP in Chikkaballapura, Karnataka, India
ISEIDP in Chikkaballapura, Karnataka, IndiaTrinity Care Foundation
 
ECOSOC YOUTH FORUM 2024 - Side Events Schedule -16 April.
ECOSOC YOUTH FORUM 2024 - Side Events Schedule -16 April.ECOSOC YOUTH FORUM 2024 - Side Events Schedule -16 April.
ECOSOC YOUTH FORUM 2024 - Side Events Schedule -16 April.Christina Parmionova
 
PPT Item # 2 -- Announcements Powerpoint
PPT Item # 2 -- Announcements PowerpointPPT Item # 2 -- Announcements Powerpoint
PPT Item # 2 -- Announcements Powerpointahcitycouncil
 
ECOSOC YOUTH FORUM 2024 Side Events Schedule-18 April.
ECOSOC YOUTH FORUM 2024 Side Events Schedule-18 April.ECOSOC YOUTH FORUM 2024 Side Events Schedule-18 April.
ECOSOC YOUTH FORUM 2024 Side Events Schedule-18 April.Christina Parmionova
 
UN DESA: Finance for Development 2024 Report
UN DESA: Finance for Development 2024 ReportUN DESA: Finance for Development 2024 Report
UN DESA: Finance for Development 2024 ReportEnergy for One World
 
2023 Barangay Officials pre assumption PPT.pptx
2023 Barangay Officials pre assumption PPT.pptx2023 Barangay Officials pre assumption PPT.pptx
2023 Barangay Officials pre assumption PPT.pptxMariaFionaDuranMerqu
 
Uk-NO1 Black magic Specialist Expert in Uk Usa Uae London Canada England Amer...
Uk-NO1 Black magic Specialist Expert in Uk Usa Uae London Canada England Amer...Uk-NO1 Black magic Specialist Expert in Uk Usa Uae London Canada England Amer...
Uk-NO1 Black magic Specialist Expert in Uk Usa Uae London Canada England Amer...Amil baba
 
European Court of Human Rights: Judgment Verein KlimaSeniorinnen Schweiz and ...
European Court of Human Rights: Judgment Verein KlimaSeniorinnen Schweiz and ...European Court of Human Rights: Judgment Verein KlimaSeniorinnen Schweiz and ...
European Court of Human Rights: Judgment Verein KlimaSeniorinnen Schweiz and ...Energy for One World
 
Canadian Immigration Tracker - Key Slides - February 2024.pdf
Canadian Immigration Tracker - Key Slides - February 2024.pdfCanadian Immigration Tracker - Key Slides - February 2024.pdf
Canadian Immigration Tracker - Key Slides - February 2024.pdfAndrew Griffith
 
Build Tomorrow’s India Today By Making Charity For Poor Students
Build Tomorrow’s India Today By Making Charity For Poor StudentsBuild Tomorrow’s India Today By Making Charity For Poor Students
Build Tomorrow’s India Today By Making Charity For Poor StudentsSERUDS INDIA
 
ECOSOC YOUTH FORUM 2024 - Side Events Schedule -17 April.
ECOSOC YOUTH FORUM 2024 - Side Events Schedule -17 April.ECOSOC YOUTH FORUM 2024 - Side Events Schedule -17 April.
ECOSOC YOUTH FORUM 2024 - Side Events Schedule -17 April.Christina Parmionova
 
Pope Francis Teaching: Dignitas Infinita- On Human Dignity
Pope Francis Teaching: Dignitas Infinita- On Human DignityPope Francis Teaching: Dignitas Infinita- On Human Dignity
Pope Francis Teaching: Dignitas Infinita- On Human DignityEnergy for One World
 
PPT Item # 6 - TBG Partners Landscape Architectural Design Services.pdf
PPT Item # 6 - TBG Partners Landscape Architectural Design Services.pdfPPT Item # 6 - TBG Partners Landscape Architectural Design Services.pdf
PPT Item # 6 - TBG Partners Landscape Architectural Design Services.pdfahcitycouncil
 
2024: The FAR, Federal Acquisition Regulations - Part 23
2024: The FAR, Federal Acquisition Regulations - Part 232024: The FAR, Federal Acquisition Regulations - Part 23
2024: The FAR, Federal Acquisition Regulations - Part 23JSchaus & Associates
 
Professional Conduct and ethics lecture.pptx
Professional Conduct and ethics lecture.pptxProfessional Conduct and ethics lecture.pptx
Professional Conduct and ethics lecture.pptxjennysansano2
 
PEO AVRIL POUR LA COMMUNE D'ORGERUS INFO
PEO AVRIL POUR LA COMMUNE D'ORGERUS INFOPEO AVRIL POUR LA COMMUNE D'ORGERUS INFO
PEO AVRIL POUR LA COMMUNE D'ORGERUS INFOMAIRIEORGERUS
 
Item # 4&5 - 415 & 423 Evans Ave. Replat
Item # 4&5 - 415 & 423 Evans Ave. ReplatItem # 4&5 - 415 & 423 Evans Ave. Replat
Item # 4&5 - 415 & 423 Evans Ave. Replatahcitycouncil
 

Dernier (20)

Youth shaping sustainable and innovative solution - Reinforcing the 2030 agen...
Youth shaping sustainable and innovative solution - Reinforcing the 2030 agen...Youth shaping sustainable and innovative solution - Reinforcing the 2030 agen...
Youth shaping sustainable and innovative solution - Reinforcing the 2030 agen...
 
Item # 1a --- March 25, 2024 CCM Minutes
Item # 1a --- March 25, 2024 CCM MinutesItem # 1a --- March 25, 2024 CCM Minutes
Item # 1a --- March 25, 2024 CCM Minutes
 
ISEIDP in Chikkaballapura, Karnataka, India
ISEIDP in Chikkaballapura, Karnataka, IndiaISEIDP in Chikkaballapura, Karnataka, India
ISEIDP in Chikkaballapura, Karnataka, India
 
ECOSOC YOUTH FORUM 2024 - Side Events Schedule -16 April.
ECOSOC YOUTH FORUM 2024 - Side Events Schedule -16 April.ECOSOC YOUTH FORUM 2024 - Side Events Schedule -16 April.
ECOSOC YOUTH FORUM 2024 - Side Events Schedule -16 April.
 
PPT Item # 2 -- Announcements Powerpoint
PPT Item # 2 -- Announcements PowerpointPPT Item # 2 -- Announcements Powerpoint
PPT Item # 2 -- Announcements Powerpoint
 
ECOSOC YOUTH FORUM 2024 Side Events Schedule-18 April.
ECOSOC YOUTH FORUM 2024 Side Events Schedule-18 April.ECOSOC YOUTH FORUM 2024 Side Events Schedule-18 April.
ECOSOC YOUTH FORUM 2024 Side Events Schedule-18 April.
 
UN DESA: Finance for Development 2024 Report
UN DESA: Finance for Development 2024 ReportUN DESA: Finance for Development 2024 Report
UN DESA: Finance for Development 2024 Report
 
2023 Barangay Officials pre assumption PPT.pptx
2023 Barangay Officials pre assumption PPT.pptx2023 Barangay Officials pre assumption PPT.pptx
2023 Barangay Officials pre assumption PPT.pptx
 
Uk-NO1 Black magic Specialist Expert in Uk Usa Uae London Canada England Amer...
Uk-NO1 Black magic Specialist Expert in Uk Usa Uae London Canada England Amer...Uk-NO1 Black magic Specialist Expert in Uk Usa Uae London Canada England Amer...
Uk-NO1 Black magic Specialist Expert in Uk Usa Uae London Canada England Amer...
 
European Court of Human Rights: Judgment Verein KlimaSeniorinnen Schweiz and ...
European Court of Human Rights: Judgment Verein KlimaSeniorinnen Schweiz and ...European Court of Human Rights: Judgment Verein KlimaSeniorinnen Schweiz and ...
European Court of Human Rights: Judgment Verein KlimaSeniorinnen Schweiz and ...
 
Canadian Immigration Tracker - Key Slides - February 2024.pdf
Canadian Immigration Tracker - Key Slides - February 2024.pdfCanadian Immigration Tracker - Key Slides - February 2024.pdf
Canadian Immigration Tracker - Key Slides - February 2024.pdf
 
Build Tomorrow’s India Today By Making Charity For Poor Students
Build Tomorrow’s India Today By Making Charity For Poor StudentsBuild Tomorrow’s India Today By Making Charity For Poor Students
Build Tomorrow’s India Today By Making Charity For Poor Students
 
ECOSOC YOUTH FORUM 2024 - Side Events Schedule -17 April.
ECOSOC YOUTH FORUM 2024 - Side Events Schedule -17 April.ECOSOC YOUTH FORUM 2024 - Side Events Schedule -17 April.
ECOSOC YOUTH FORUM 2024 - Side Events Schedule -17 April.
 
Pope Francis Teaching: Dignitas Infinita- On Human Dignity
Pope Francis Teaching: Dignitas Infinita- On Human DignityPope Francis Teaching: Dignitas Infinita- On Human Dignity
Pope Francis Teaching: Dignitas Infinita- On Human Dignity
 
PPT Item # 6 - TBG Partners Landscape Architectural Design Services.pdf
PPT Item # 6 - TBG Partners Landscape Architectural Design Services.pdfPPT Item # 6 - TBG Partners Landscape Architectural Design Services.pdf
PPT Item # 6 - TBG Partners Landscape Architectural Design Services.pdf
 
2024: The FAR, Federal Acquisition Regulations - Part 23
2024: The FAR, Federal Acquisition Regulations - Part 232024: The FAR, Federal Acquisition Regulations - Part 23
2024: The FAR, Federal Acquisition Regulations - Part 23
 
Professional Conduct and ethics lecture.pptx
Professional Conduct and ethics lecture.pptxProfessional Conduct and ethics lecture.pptx
Professional Conduct and ethics lecture.pptx
 
Housing For All - Fair Housing Choice Report
Housing For All - Fair Housing Choice ReportHousing For All - Fair Housing Choice Report
Housing For All - Fair Housing Choice Report
 
PEO AVRIL POUR LA COMMUNE D'ORGERUS INFO
PEO AVRIL POUR LA COMMUNE D'ORGERUS INFOPEO AVRIL POUR LA COMMUNE D'ORGERUS INFO
PEO AVRIL POUR LA COMMUNE D'ORGERUS INFO
 
Item # 4&5 - 415 & 423 Evans Ave. Replat
Item # 4&5 - 415 & 423 Evans Ave. ReplatItem # 4&5 - 415 & 423 Evans Ave. Replat
Item # 4&5 - 415 & 423 Evans Ave. Replat
 

Topic paper (Southwest Baltic Case) - Energy *

  • 1. Southwest Baltic Case Topic Paper on Energy (Version 18 January 2016) This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official opinion of the European Commission and Member States involved.
  • 2. 2 of 21 Preface This Topic paper has been developed during the first two phases of the South West Case in the Baltic Scope project. In total four topic papers have been developed in the Case, one for each of the topic dealing with Energy, Shipping, Environment and Fishing. The Case study has also produced a technical paper about Shipping and safety distances to structures like offshore windfarms. The papers have been developed generically over a period from Marsh 2015 to march 2016. The main purpose of the topic papers was to initiate the discussions about which topics might be interesting, and why so, in a transboundary maritime spatial planning context in the region. Another aim was to create a joint knowledge’s base for the planners to discuss common transboundary issues to be handled in the process of developing coherent maritime spatial planning in the region. Therefore; the papers shall be assessed in its context of the Case studies and the purpose of the Baltic Scope project and not as a full technical report stating the exact and current situation in South West Baltic. The responsibility of developing the topic papers was a shared between the project partners with one country responsible for one topic each, Germany was topic lead for Energy, Denmark for Shipping, Poland for environment and Sweden for Fishing. In the process of developing the papers the Topic leader have had contacts with relevant authorities in the other countries to secure a comprehensive understanding and view. Earlier versions have been discussed and adjusted accordingly in the process to what is now the final version. The topic papers have also been used to as knowledge base in stakeholder discussions and the final versions have been influenced by stakeholders input. As the project moved on in to discussing planning solutions it was jointly decided that the topic papers has served its purpose and that it would not gain more to the project to do more work on the papers. Therefore it was decided to not spend time on layout, cross reading and updating of facts to make it in to a full Topic report. Therefore, once more, the papers should be understood as working documents and not technical reports as such. Case study Coordinator for the South West Case in Baltic Scope. Tomas Andersson
  • 3. 3 of 21 Content Conclusion and recommendation............................................................................................... 4 Background.................................................................................................................................... 5 Analysis of the topic/sector ......................................................................................................... 6 Requirements for the sector.................................................................................................... 6 Current use................................................................................................................................ 6 Regulations to be considered ............................................................................................... 13 Future needs and use............................................................................................................ 16 Trans-boundary implications................................................................................................. 17 Relevant geographical areas ................................................................................................ 18 Planning evidence .................................................................................................................. 19 Motive/discussion for including this topic/sector in the project ............................................ 20 This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official opinion of the European Commission and Member States involved.
  • 4. 4 of 21 Conclusion and recommendation Limited space, with natural features and resources often shared by up to four countries, common or competing interests, but also opportunities to use and develop marine space in the most efficient and sustainable way should be a strong issue for dealing with the topic of offshore energy and the development of coherent spatial designations for offshore energy, rules and regulations across borders with regard to competing or non-compatible activities. Energy production in those shared areas still is mainly a national issue and planned from a national perspective, while offshore energy also has a strong transnational linear spatial component when it comes to energy transport, e.g. grid connections. Also pipelines, that connect one country with another across marine areas, often pass through sea areas of third countries. There is an ambition in place to enhance the European integration of electricity grids. Thus in the future the single cable connections might develop into a Baltic offshore energy grid to feed energy produced in one country or sea area into a wider Baltic energy network. Thus this topic would encompass mainly two aspects of offshore energy: coordination of planning for energy production in areas being used by several countries and joint planning for energy transport corridors. This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official opinion of the European Commission and Member States involved.
  • 5. 5 of 21 Background Energy and marine space – this encompasses different issues, spatial requirements and opportunities. Traditionally marine energy resources have mainly been fossil fuels, such as oil and gas. In the Baltic Sea these have never played a role as strong as in the North Sea, where gas and oil provide for large shares of national income e.g. in the UK, Norway, Denmark or the Netherlands. Other spatially relevant energy issues have been raised with energy transport, e.g. the Nord Stream pipeline, other pipeline projects and high voltage-interconnectors between countries, islands and main land etc. Strong impetus has been given to marine energy within the last 10 to 15 years with a new focus on renewables in the Baltic Sea region, notably offshore wind energy. Offshore electricity production may become an important factor to achieve the climate protection objectives established by both the EU and the national governments. Denmark and Sweden have been forerunners in offshore wind energy development in the SWB planning area, with Germany now running up, having set national (EEZ) and regional (territorial sea) MSPs and a consecutive Spatial Offshore Grid Plan (for the EEZ) into force. In Poland there are not any turbines installed so far, but more than 70 applications have been submitted - without a maritime spatial plan in place yet. Offshore wind has developed into an important industrial sector in Denmark and Germany, and plays a major role with regard to national and European targets for CO2 reduction and share of renewables of whole electricity production/consumption, e.g. in Germany supporting the National Change in Energy Policy, with significant economic stimulus in Northern Germany / coastal areas of both North and Baltic Sea. Since many of the projects are situated close to national marine borders, due to certain favourable natural conditions (e.g. submarine banks of Kriegers Flak or Middle Bank), it seems quite reasonable to look at the space affected jointly. Along with subsea cables for transport of offshore wind power pipelines could also be taken into consideration when looking for corridors for different kinds of linear infrastructure. For example, in the Bay of Greifswald in Mecklenburg-Vorpommern the Nord Stream pipeline and future cable connections from offshore wind farms in the EEZ and territorial sea will use the same “corridor” designated for linear infrastructure. This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official opinion of the European Commission and Member States involved.
  • 6. 6 of 21 Analysis of the topic/sector Requirements for the sector Favourable areas for offshore wind farms do have an acceptable distance from the coast, good wind conditions as well as suitable geological and subsoil conditions. A limiting factor can be the water depth raising the investment and operation costs. Also technical challenges related to unfavourable seabed or subsoil conditions will contribute to the decision to plan a project in a particular area. Furthermore, proper port facilities are an important logistical condition for the development of offshore wind farms. Distance to main shipping routes should be sufficient to secure safety and efficiency of marine traffic, and location should be chosen with a minimum negative impact on protected areas or other valuable natural features like bird migration corridors. Subsea cables are necessary to transfer the energy produced offshore to land. The type of cable chosen will depend on the distance to coast and the transmitted power capacity. Cable corridors should also be routed with a minimum negative impact on other activities and the environment. Planning of offshore wind farms and subsea cables or grids needs to be coordinated. Rules and regulations should be set up to ensure these objectives when implementing energy projects. In addition to those more generally named requirements in the MSP for the EEZ Germany has developed further technical rules in the (sectoral) Offshore Grid Plan for the EEZ. Current use Primarily driven by climate protection objectives offshore wind farms have become a familiar sight in the Western Baltic Sea, in Denmark, Sweden and Germany during the last decade. Several wind farms are in operation, others are under construction, licensed or being projected. The EU 2030 Framework for Climate and Energy has confirmed the promotion of the development of renewable energy. For 2030 the Framework set a new target at 27% share of renewable energy in the total consumption of EU electricity, including offshore wind energy. In Denmark the long-term target set in the Energy Agreement 2012 is to cover the entire energy supply by renewable energy by 2050. According to the Danish Energy Agreement results for 2020 include more than 35% of final energy consumption supplied from renewable energy sources, and approximately 50% of electricity consumption supplied by wind power. This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official opinion of the European Commission and Member States involved.
  • 7. 7 of 21 At first, small offshore wind farms had been realised close to the Danish coast, followed by some larger projects in the North (Horns Rev 1) and the Baltic Sea (e.g. Nysted 1 and 2, Rødsand). Several more extensive projects in further distance from the coast have been tendered, with Anholt having been finalised in 2013, others still pending to be implemented in the future and a number of smaller coastal projects on the timeline. In Demark currently a total offshore capacity (North and Baltic Sea) of 1271 MW has been installed (see figure 1). At the moment a tender process is in progress for 600 MW at Kriegers Flak, which is expected to be commissioned by 2022. Southwest of Bornholm a smaller wind farm (50 MW) is in the planning process. According to current plans, with additional 400 MW capacity consented at Horns Rev 3 in the North Sea and further 400 MW capacity in near shore areas, the total Danish offshore wind energy capacity will achieve app. 2700 MW by 2022. Figure 1: Location of commissioned and planned Danish offshore wind farms. This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official opinion of the European Commission and Member States involved.
  • 8. 8 of 21 Sweden also features some existing smaller coastal wind farms in the project area, mainly in the Kattegat and Öresund region. Others have been licensed, and several large areas, including one on Middle Bank, have been marked as National Interest Areas for offshore energy. Swedish energy policy aims at a share of 50% renewable energy by 2020 and 40% reduction in emissions of climate gases (compared with 1990) for the non-trades sector. The government has also decided on a planning framework for wind power of 30 TWh by 2020, of which 10 TWh is to be produced at sea and 20 TWh onshore. The planning framework is not a production objective; instead, it means that there should be the scope to make the production of 10 TWh of offshore wind power possible. At present, the production from offshore wind farms only represents a small proportion of the Swedish electricity production and in 2013 amounted to approximately 0.4% of the total energy production. Recently, five sea-based wind farms with 81 turbines in total are in operation. Six additional offshore or nearshore wind farms hold all permits, but are not constructed yet. However, there are several permits for the installation of offshore wind farms that have not been used due to inadequate market conditions. These permits correspond to a total annual electricity production of around 8.8 TWh, which should be set against the planning framework of 10 TWh by 2020. In addition, there are ongoing permit applications corresponding to several TWh of installed power. The Swedish Energy Agency has reported national interests in offshore wind farms based on criteria such as average annual wind, depth and size of area. These national interests largely correspond to existing and planned wind power projects. A larger pilot plant for wave power is under construction on the west coast. The plant is being built in stages and is expected to be completed by 2020. This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official opinion of the European Commission and Member States involved.
  • 9. 9 of 21 Figure 2: Map of Swedish offshore wind farm sites and National Interest Areas (map by BSH based on GIS data provided by SwAM). This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official opinion of the European Commission and Member States involved.
  • 10. 10 of 21 In Germany in 2002 the Federal government adopted a Strategy Paper on Offshore Wind Energy including a development objective of 25 GW offshore wind energy by 2030. This objective has been confirmed by the Energy Strategy Paper of 2010. In 2014 offshore wind development targets for 2030 have been reduced from 25 GW to 15 GW to better reflect progress to date and to reduce costs to consumers. The previous target of 10 GW by 2020 has also been scaled back to 6.5 GW. The majority of German offshore wind farms will be realized in the German North Sea EEZ. By the end of 2015 approx. 700 turbines with a capacity of 3,000 MW have been installed, 90% in the German North Sea and 10% in the Baltic Sea. So far, in Germany two offshore wind farms have been implemented in the Baltic Sea. One small project, Baltic 1, with 21 turbines and an installed capacity of 48 MW (7 km²) has been realized in the territorial sea in 2011. The second one, EnBW Baltic 2 with 80 turbines and a capacity of 288 MW (27 km²), with respective cable connections has been set into operation in September 2015 in the Kriegers Flak area. There are two additional licensed projects in Western Adlergrund (which like Kriegers Flak is an MSP priority area for offshore wind energy). But also outside these priority areas several more project applications, mainly in the area west of Adlergrund, have been submitted. In the territorial sea of Mecklenburg-Vorpommern (M-V) another project, Arcadis Ost 1, on the border to the German EEZ has been licensed. In the 2nd draft version of the revised Spatial Development Plan for the territorial sea of M-V two large areas in the Western part of the territorial sea have been designated as priority areas for offshore wind energy along with a small reservation area. With the Combined Grid Solution project in the Kriegers Flak area, a project of common interest (PCI) partly financed by the EU, the first connection of three wind farms in two countries (DE and DK) with links to both main land grid connection points will be implemented, providing also for connection of a Swedish wind farm should the approved project be resumed. This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official opinion of the European Commission and Member States involved.
  • 11. 11 of 21 Figure 3: Offshore Windfarms in German waters by status (source: BSH). In Poland there are not any offshore wind farms operating or under construction yet. The main strategic document with regards to the development of the energy sector in Poland is the Strategy of Power Safety and Environment. The strategy indicates among others that the share of renewable energy sources will increase - mainly by wind power plants (by 2030 installed capacity will amount to approx. 8,900 MW). The National Action Plan in the field of renewable energy is so far the only government document including estimates for the development of this sector. According to this, the total expected installed capacity of offshore wind projects in 2020 may reach 500 MW. Until November 2014, 75 applications were submitted in order to obtain the location permit. 37 permits were issued, 23 of them remained in force. Development areas with projects holding permits reserving space for further research and subsequent construction in the Polish EEZ are situated northeast of the Odra Bank (227 km²), northeast of Slupsk Bank (1,081 km²) and on the This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official opinion of the European Commission and Member States involved.
  • 12. 12 of 21 Southern Middle Bank (568 km²). The Polish Association of Wind Energy (2013) predicts up to 6 GW installed capacity in a fast growing scenario. Figure 4: Current location decisions for offshore wind farms in the Polish EEZ (green lines show the projects with environmental procedure in place), 2015. Until now only Germany has designated areas for offshore wind energy in their respective spatial plans for the territorial sea and the EEZ. But applications may also and have been made for areas outside of these areas - save for the Natura2000 areas. Denmark has no MSP implemented yet, but has done sectoral planning and respective political decisions, with new sites now being / having been on tender and further detailed planning within these areas by the successful tenderer. Sweden has identified National Interest Areas for Offshore Wind Energy in their preparation for MSP, to be further assessed and planned in detail at a later stage. Poland has given out location permits for offshore wind energy plants based on mainly sectoral planning, with only some restricting and limiting criteria considered –with corridors for cable connections to the terrestrial grid and an initial marine grid. This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official opinion of the European Commission and Member States involved.
  • 13. 13 of 21 Regulations to be considered The key international legal agreement for the marine area is the UN Convention on the Law of the Sea (UNCLOS) that aims at ensuring safety and efficiency of maritime traffic. But UNCLOS only provides general rules, no detailed regulations. So far there is no specific international legal framework containing explicit provisions or regulations for renewable offshore installations. On the other hand several international instruments can impact the deployment of offshore wind energy and influence the location of offshore wind installations or the licensing procedures.  With respect to UNCLOS the coastal state is allowed to deploy offshore renewable energy projects anywhere within its EEZ. The coastal state cannot control the laying of cables by other states passing through its EEZ. UNCLOS also contains a general obligation for states to protect and preserve the marine environment.  IMO: Sea-lanes and traffic separation schemes are considered as excluded zones in the sea. In 1989 IMO adopted standards for the removal of offshore installations in the EEZ.  Convention on Biological Diversity (CBD), Birds and Habitats Directive: the designation of marine protected areas under CBD, Special Areas of Conservations according to Habitats Directive or Special Protected Areas under the Birds Directive can influence the location of energy infrastructure. Both directives do not explicitly exclude energy installations within protected areas. However both directives require an assessment of plans or projects that may significantly impact Natura2000 sites.  European and national energy policies with regard to increase of share of renewables and share of “clean energy” of entire electricity consumption  EU MSP Directive  EU SEA and EIA Directive  Existing national MSPs and sectoral plans for spatial development of “green energy”, sectoral plans (DE) for offshore grid connections (Spatial Offshore Grid Plan)  DE: Marine Facilities Ordinance , Maritime Spatial Plans (EEZ and TS), Spatial Offshore Grid Plan (EEZ), Environmental Impact Assessment Act (EIA Act) and other technical regulations, standards and requirements  DK: Renewable Energy Act; establishment of offshore wind turbines can follow two different procedures: a government tender procedure run by the Danish Energy Agency; or an open-door procedure. This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official opinion of the European Commission and Member States involved.
  • 14. 14 of 21  SE: Exclusive Economic Zone Act, Continental Shelf Act, Planning and Building Act, Environmental Code and associated ordinances, Heritage Conservation Act, fishing legislation; Construction of wind farms in the EEZ requires permission according to the Exclusive Economic Zone Act. When the application is examined, certain parts of the Environmental Code are also applied. Permission can also be required according to the Continental Shelf Act for seabed investigations of wind farm sites and cable routes.  PL: Act on Polish maritime areas and maritime administration, Act on access to environmental information and environmental impact assessment, Building Act, Energy Law Act; Polish Maritime Administration is issuing body for permits for offshore wind farms, subsea cables and pipelines (location decisions). Development of the OWF is mainly regulated by the Act on maritime areas. Due to the Act offshore wind farms can only be erected in the Polish EEZ. Main actors in this sector  Public / licencing authorities (sectoral, spatial planning)  Wind farm developers;  transmission system operators (TSOs);  pipeline developers and operators  oil and gas industry  business associations  NGOs; Spatial needs According to DG Mare (2015) one offshore wind turbine needs more or less 1 km² of space to another one depending on its size and wing span (6 MW/km²; cf. DG Mare, 2015: Energy sectors and the implementation of the MSP Directive: Information for stakeholders and planners). The German Spatial Offshore Grid Plan for the Baltic Sea EEZ also includes a calculation method for determining the expected offshore wind capacity for single wind farm clusters. This so called “area approach” is based on average capacity values of all applications for offshore wind farm projects in the German Baltic Sea EEZ. The grid plan takes 2 turbines (7 MW) per km² as a basis (the average value of all approved North Sea projects amounts to 1.9 turbines per km²). This illustrates the relatively large area consumption of offshore wind farms (BSH, 2014). Offshore wind farms can only be realized in areas outside of main shipping routes. These areas need to be accepted by shipping administration for marine safety and efficiency issues. The distance to main shipping routes should be sufficient to secure safety and efficiency of This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official opinion of the European Commission and Member States involved.
  • 15. 15 of 21 marine traffic as well. A limiting factor can be the water depth raising the investment and operation costs. The acceptable depth is up to 40–45 m, preferably less. As described above also seabed and ground conditions will contribute to the decision to plan a project in a particular area due to potential technical challenges. In comparison to wind turbines the cables laid beneath the seabed only affect the area above the seabed during construction or repair work. Grid connections need to be planned on acceptable routes with regard to shipping routes, sand and gravel extraction areas and other competing/non-compatible activities or environmental issues. Conflicting Issues/Synergetic Issues Offshore energy production and transport, with its large-scale permanent and fixed infrastructure newly introduced into the marine environment, with additional ship traffic, non- compatible activities, a wide range of emissions and disturbances, faces many potential and factual (spatial) conflicts with existing activities and conservation objectives. Along the EEZ borders in the SWB case area these are mainly:  shipping  probability of ship collisions may increase  fishery  important fishing areas may be reduced  potential socio-economic losses  tourism/ recreation  disturbance of the natural landscape  sand and gravel extraction  defence/ military uses  existing subsea cables, incl. data cables, pipelines etc.  nature protection and conservation areas (see below) Environmental impacts from current use Although offshore wind energy is an important renewable energy source, there are some concerns about the environmental impacts of offshore wind farms. One of the most severe effects relates to the impact of pile-driving noise during construction of wind turbines on marine mammals and most notably harbour porpoises. The sound levels from pile-driving, when the single foundation piles are hammered to the seabed, are well above the tolerance limits identified by scientists for these animals and can cause temporary hearing impairment or even severe injury. At greater distances – up to 20 km or more for pile driving without noise mitigation – the sound pulses trigger stress and behavioural response resulting in short or longer term avoidance of the area. That is why in the German EEZ pile-driving is only allowed by implementing noise mitigation measures. This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official opinion of the European Commission and Member States involved.
  • 16. 16 of 21 The Baltic Sea provides a resting, feeding and wintering habitat for numerous seabirds. Responses to offshore wind farms vary from species to species. While some gull species appear to be attracted to wind farms, other seabird species occur less frequently in wind farm areas after construction than before. Disturbance-sensitive divers in particular largely avoid the area of offshore wind farms. The risk of displacement from the area causes loss of quality habitat and changes in migration routes due to barrier effects. Apart from displacement effects offshore wind turbines can increase the risk of death from direct collisions for birds and bats. Construction activities at the wind farm site and the installation of subsea cables can have direct effects on the seabed and sediments. Disturbance of the seafloor may also increase turbidity, which can affect the abundance and diversity of benthic organisms. Construction and presence of foundations can also lead to changes of current dynamics and sediment conditions. A further potential negative impact relates to pollution through potential fuel spills, chemical residues from scour protection or anti-corrosive protection. Appropriate siting of wind turbines and power cable routes along with effective mitigation strategies can help to reduce negative environmental impacts. There are also potentially some environmental benefits of offshore wind farms. The turbines may act as “artificial reefs” and increase biological productivity in the vicinity. The presence of hard structures can provide habitat for particular species. Fishing is likely to be prohibited around the turbines for safety, which may locally increase fish abundance. These processes can consequently result in attracting predators. Future needs and use As offshore wind energy represents a quite new development in the marine area a number of future projects are planned close or along the border:  Kriegers Flak (DE, DK, SE): in addition to the already operating German wind farm plans in the Danish and Swedish EEZ to construct wind farms; application submitted for Combined Grid Solution that is supposed to interconnect German and Danish wind farms.  Adlergrund (DE, DK, SE): three licensed wind farms in German EEZ and territorial sea starting construction in 2016/2017 as well as several applications in German EEZ; no current plans to utilize the Danish Adlergrund area for offshore wind energy development.  Middle Bank (SE, PL): future plans to build offshore wind farms on both sides This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official opinion of the European Commission and Member States involved.
  • 17. 17 of 21  North of Odra Bank (PL, DE, DK): applications for offshore wind farms  Pipeline projects: plans for Baltic Pipe to connect PL to DK, plans for additional Nord Stream pipeline Development trends and risks depend on general sector development, technical progress as well as changing political framework. With increasing maritime traffic, and trend towards larger vessels, shipping routes may need wider safety buffers to offshore installations. With more and more fixed infrastructure it becomes more and more difficult to identify acceptable routes for additional linear infrastructure such as pipelines and cables. On the basis of technical progress turbines become bigger and higher and their wingspan larger. That results in larger wind farm areas because the necessary area between the single turbines increases and may lead to major impact on migrating birds. Technology is also being developed for placement at greater depths than is possible today. Also development of alternative foundations, e.g. floating wind turbines or gravity foundations, continues. Potential future conflicts may arise from  growing and cumulative environmental impact  growing impact on shipping due to increasing risk of collisions and spatial restrictions o need for detours  growing impact on fisheries, leisure traffic due to spatial restrictions  conflicts with sand and gravel extraction due to spatial restrictions Potential opportunities can be seen in developing a common offshore grid. Trans-boundary implications Trans-boundary implications and potential conflicting areas of the energy sectors current and future uses include  Shared natural features and resources such as sandbanks with similar planning objectives in neighbouring states  Cross-border grid connections  Windfarms close to national borders with impact on neighbouring marine protected areas This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official opinion of the European Commission and Member States involved.
  • 18. 18 of 21  Windfarms impacting international shipping routes Relevant geographical areas In order to identify geographical areas to focus on within the project the project partners collected comprehensive data and illustrated by map and table which (sectoral) interests exist in the single areas. Seven focus areas have been selected that are of special interest for the project and will be further examined. Several of the relevant focus areas include energy issues. On the one hand areas like Middle Bank (PL/SE) have been selected that show quite common interests/ synergies on both sites of the border. On the Middle Bank offshore wind energy development is a common interest both in Poland and Sweden. Also the analysis of the Kriegers Flak (SE/DK/DE) area shows quite common interests among the neighbouring countries. On the other hand areas with conflicting interests have been selected, such as Adlergrund (DE/DK/PL) or Odra Bank (PL/DK). In the German Adlergrund area there are some licences for wind farms and grid connections, whereas in the bordering Danish area former plans for wind energy development have not been pursued. Both in the German EEZ as well as the Danish EEZ there are located large nature conservation areas that may be affected by the offshore wind development. In the Odra Bank large parts of the area are of great importance for nature conservation. Thus in the German EEZ two applications for offshore wind farms have been denied, whereas on the Polish side still some applications for offshore wind farms exist. This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official opinion of the European Commission and Member States involved.
  • 19. 19 of 21 Figure 5: Identified Focus Areas with regard to the energy topic. Planning evidence During the first period of the project comprehensive data and information have been collected. The information obtained comprises maps or GIS data and information from authorities on offshore wind energy, power cables, pipelines, oil and gas rigs, potential oil fields etc. Especially data from licensing procedures for infrastructure projects form an important knowledge base. Additionally existing MSPs and sectoral plans as well as respective plans under development (drafts) represent important planning evidence. Some information is still lacking. In particular more detailed information on the situation in focus areas is missing. For example, project outlines, planning regulations, shipping density and sensibility and environmental aspects need to be identified in more detail. Best way to compile the missing information is to contact authorities, data centres or gather relevant information from This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official opinion of the European Commission and Member States involved.
  • 20. 20 of 21 publicly accessible sources (industry), current windfarm and cable projects, pipeline developers or oil and gas industry. Motive/discussion for including this topic/sector in the project In particular the Western part of the project area is very fragmented in terms of countries involved, distribution of islands and straits. Sometimes there are only narrow strips of EEZ, sometimes territorial sea is bordering territorial sea directly. Countries share certain natural features that seem to be suitable for offshore development, such as shallow areas, or encompass the same resources (e.g. oil and gas, sand and gravel extraction). Energy links compete with other cross-border and transnational activities such as shipping or fisheries. In the Eastern part of the project area – mainly along the Swedish-Polish border, interest areas are more extensive, with less direct competition of other activities, but sometimes with adverse planning targets on either side. The planning area as a whole and again in particular the Western part sees a lot of major and very highly frequented shipping routes – both transit traffic along the main Pan-Baltic routes and secured by IMO traffic separation schemes, and cross-connections, often maintained by regular ferry lines both for passengers and cargo. Available space for spatially competing or incompatible activities such as fixed wind energy installations is rare – and needs to be identified, outlined and used very carefully. Since energy production and transport inevitably needs linear infrastructure to connect to the coast, or from one country to another, ideally “matching” spatial designations, rules and regulations need to be set, that do not impede on other important activities such as shipping in an unacceptable way. Spatial designations or regulations might even provide for - with respective essential economic and regulatory issues in place - future developments such as a transnational / Pan-Baltic offshore grid. Thus it seems most advisable to address cross-border energy planning issues bi- or multilaterally, and seek to reconcile interests and find satisfactory solutions. The discussion on focus areas that should be addressed within the project has already been conducted. Several focus areas include energy issues, e.g. Kriegers Flak, Adlergrund or Middle This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official opinion of the European Commission and Member States involved.
  • 21. 21 of 21 Bank (see map above). The next step is to decide which topics should be discussed in more detail in those areas. Thematic working groups should be based on national input (information and data gathering) but preferably be conducted with representatives from all countries affected. Stakeholders to be invited and/or consulted should be relevant within their field of work with regard to the focus area and directly involved in these areas, and not so much representatives from Pan-Baltic or European networks (grid operators, offshore wind farm and pipeline developers, shipping representatives, etc.). This Topic paper is the working paper based on the joint Baltic SCOPE exercise and cannot be treated as the official opinion of the European Commission and Member States involved.