SlideShare a Scribd company logo
1 of 5
Download to read offline
Heat Transfer Laboratory
E n g . H a y m e n F . F a t t a h
E x p e r i m e n t N o . 3 Page 1
EXPERIMENT NO. 3
((Free and Forced Convection))
Aim:
1. Comparing free and forced convection for different surfaces.
2. Determination of heat transfer coefficient (h), for free and forced convection in different
geometries.
3. Comparison of heat transfer surface efficiency.
1. Theory
There are three modes for heat transfer: convection, conduction, and radiation. The convection
heat transfer plays an important role in many industrial applications. The convection heat transfer
is usually subdivided into free and forced convection. In the forced convection, the fluid is blown
or pumped past the heated surface using a pump or a fan, while in the natural (or free) convection,
fluid flow is naturally achieved by buoyancy effects, i.e., density variation in the fluid.
The heat transfer rate to the fluid (Q) can be calculated using the first law of thermodynamics for
the heated fluid:
Q = m. ∆h (1)
Where:
Q: Rate of heat transfer (W).
m: Mass flow rate of air (kg/s).
∆h: Enthalpy variation of the fluid before and after the heated surface (Kj/Kg).
Then mass flow rate can be expressed by:
m = pwA (2)
Where:
P: Air density which is 1.29 (Kg/m3) from thermodynamic table.
W: the averaged velocity of air (m/s).
A: the cross-sectional area of the duct which is equal to (0.0144 m²).
The Eq.1 can be written as:
Q = mcp∆T (3)
Heat Transfer Laboratory
E n g . H a y m e n F . F a t t a h
E x p e r i m e n t N o . 3 Page 2
Where:
Cp: The specific heat capacity of the air (1.004 kJ/kg.K).
∆T: Temperature different, inlet and outlet of air by (k).
The heat sources on the test bed consist of electrical resistors; thus, the amount of power that is fed
to the heaters (P₁) by watt can be calculated.
The factor for fin efficiency, (ƞ) provides information on the losses which occur during heat
transfer. This factor indicates the portion of the input energy that is transferred to the fluid.
This can be written as:
Ƞ= Q/p1 (4)
Where:
Ƞ: Fin or pin or flat plate efficiency.
Note: The amount of (1- Ƞ) shows all losses resulted from convection and radiation to the
surroundings and not to the fluid.
2. Procedure
The bench-mounting equipment includes a vertical duct that holds the chosen heat transfer surface
and all instruments needed.
The apparatus includes three different common heat transfer surfaces with the equipment:
a) A Flat Plate.
b) A Pinned Surface – similar to a tubular heat exchanger.
c) A Finned Surface – similar to the fins on air-cooled.
Engines or electrical heat sinks each surface has its own built-in variable-power electric heater.
Students choose which surface they need to test and fit it to the duct using simple fixings.
For free convection tests, the heated air rises from the surface and up the duct. For forced
convection tests, a variable-speed fan draws air up through the duct and across the surface.
Thermocouples measure the air temperature upstream and downstream of the surface and the
temperature at the heat transfer surface. The downstream probe moves in a traverse mechanism to
measure the temperature distribution across the duct, allowing calculation of the bulk outlet
temperature.
An Additional probe allows students to measure the temperature distribution along the extended
surfaces of the pinned and finned heater transfer surfaces. A sensitive anemometer measures the air
velocity.
Two controls allow students to set different air velocities and heater power for a full range of tests.
A digital display shows the heater power, air velocity and the temperatures measured by the
thermocouples [1-4]
.
Heat Transfer Laboratory
E n g . H a y m e n F . F a t t a h
E x p e r i m e n t N o . 3 Page 3
Table 1 Measurement data
Parameters Flat plate Pinned surface Finned surface
Natural Force Natural Force Natural Force
T₁
T₂
w
p₁
ƞ
3. Heat transfer surfaces
a) Flat plate surface:
Surface material: aluminum
Area: 0.0112 M²
b) Finned surface:
Surface material: stainless steel
Area: 0.092 M² include all fins
c) Pinned surface:
Surface material: stainless steel
Area: 0.027 M² include all pins
Maximum anemometer range: 0 to3.8 m/s
Maximum power heater: 0 to 100 W
d) A typical value of heat transfer to air:
5 to 25 w/m².K in free or natural convection
10 to 200 w/m².K in forced convection
Heat transfer coefficient:
(5)
∆Tm: Logarithm mean temperature difference:
(6)
Heat Transfer Laboratory
E n g . H a y m e n F . F a t t a h
E x p e r i m e n t N o . 3 Page 4
Fig.1 Free and forced convection apparatus with screenshot of the optional VDAS®
Software [1]
.
4. Discussion questions
a) Why we get different heat transfer coefficient (h) for the same material?
b) Why we have errors?
c) Discuss the (hc-Ƞ) diagram that you draw it.
d) What do you suggest to get a better reading?
References
1. TecQuipment Ltd, Free and forced convection apparatus, Model: VDAS TD1005.
2. Мохамед Б, Кароли Я, Зеленцов А.А. (2020) Трехмерное моделирование течения газа
во впускной системе автомобиля «формулы студент» Журнал Сибирского
федерального университета, 13(5); pp. 597-610. https://doi.org/10.17516/1999-494X-
0249.
Heat Transfer Laboratory
E n g . H a y m e n F . F a t t a h
E x p e r i m e n t N o . 3 Page 5
3. Mohamad B., Karoly J., Zelentsov A.A. (2020) Hangtompító akusztikai tervezése hibrid
módszerrel, Multidiszciplináris Tudományok, 9(4), pp. 548-555.
https://doi.org/10.35925/j.multi.2019.4.58.
4. Yunus Cengel, Heat Transfer: A Practical Approach, 2nd
ed., McGraw-Hill Education –
Europe, 1997.
Barhm Abdullah Mohamad
Erbil Polytechnic University
LinkedIn: https://www.linkedin.com/in/barhm-mohamad-900b1b138/
Google Scholar: https://scholar.google.com/citations?user=KRQ96qgAAAAJ&hl=en
ResearchGate: https://www.researchgate.net/profile/Barhm_Mohamad
YouTube channel: https://www.youtube.com/channel/UC16-u0i4mxe6TmAUQH0kmNw

More Related Content

What's hot

types of heat exchangers.pdf
types of heat exchangers.pdftypes of heat exchangers.pdf
types of heat exchangers.pdfhassanzain10
 
267258402 heat-4e-chap03-lecture
267258402 heat-4e-chap03-lecture267258402 heat-4e-chap03-lecture
267258402 heat-4e-chap03-lectureFahad Gmail Gmail
 
Transient heat-conduction-Part-I
Transient heat-conduction-Part-ITransient heat-conduction-Part-I
Transient heat-conduction-Part-Itmuliya
 
Fluid Mechanics Chapter 7. Compressible flow
Fluid Mechanics Chapter 7. Compressible flowFluid Mechanics Chapter 7. Compressible flow
Fluid Mechanics Chapter 7. Compressible flowAddisu Dagne Zegeye
 
Chapter 1 introduction of heat transfer
Chapter 1 introduction of heat transferChapter 1 introduction of heat transfer
Chapter 1 introduction of heat transferPh Yiu
 
Numerical methods for 2 d heat transfer
Numerical methods for 2 d heat transferNumerical methods for 2 d heat transfer
Numerical methods for 2 d heat transferArun Sarasan
 
One dim, steady-state, heat conduction_with_heat_generation
One dim, steady-state, heat conduction_with_heat_generationOne dim, steady-state, heat conduction_with_heat_generation
One dim, steady-state, heat conduction_with_heat_generationtmuliya
 
Center of pressure
Center of pressureCenter of pressure
Center of pressurerawaabdullah
 
Shell & tube heat exchanger single fluid flow heat transfer
Shell & tube heat exchanger single fluid flow heat transferShell & tube heat exchanger single fluid flow heat transfer
Shell & tube heat exchanger single fluid flow heat transferVikram Sharma
 
Experimental Investigation on Heat Transfer By Natural Convection Over A Cyli...
Experimental Investigation on Heat Transfer By Natural Convection Over A Cyli...Experimental Investigation on Heat Transfer By Natural Convection Over A Cyli...
Experimental Investigation on Heat Transfer By Natural Convection Over A Cyli...Ijripublishers Ijri
 
Lab 1 the dryness fraction of the steam(mech)
Lab 1   the dryness fraction of the steam(mech)Lab 1   the dryness fraction of the steam(mech)
Lab 1 the dryness fraction of the steam(mech)lizwi nyandu
 
Fundamentals of Heat Exchanger Design
Fundamentals of Heat Exchanger DesignFundamentals of Heat Exchanger Design
Fundamentals of Heat Exchanger DesignAddisu Dagne Zegeye
 
Fluid Mechanics Chapter 2. Fluid Statics
Fluid Mechanics Chapter 2. Fluid StaticsFluid Mechanics Chapter 2. Fluid Statics
Fluid Mechanics Chapter 2. Fluid StaticsAddisu Dagne Zegeye
 
Plate Heat Exchanger Lab Report Group B4
Plate Heat Exchanger Lab Report Group B4Plate Heat Exchanger Lab Report Group B4
Plate Heat Exchanger Lab Report Group B4Janet Mok
 
Separating and throttling calorimeter for steam
Separating and throttling calorimeter for steamSeparating and throttling calorimeter for steam
Separating and throttling calorimeter for steamSaif al-din ali
 
Marcet boiler
Marcet boiler Marcet boiler
Marcet boiler sarkawtn
 

What's hot (20)

types of heat exchangers.pdf
types of heat exchangers.pdftypes of heat exchangers.pdf
types of heat exchangers.pdf
 
267258402 heat-4e-chap03-lecture
267258402 heat-4e-chap03-lecture267258402 heat-4e-chap03-lecture
267258402 heat-4e-chap03-lecture
 
Heat conduction equation
Heat conduction equationHeat conduction equation
Heat conduction equation
 
Transient heat-conduction-Part-I
Transient heat-conduction-Part-ITransient heat-conduction-Part-I
Transient heat-conduction-Part-I
 
Chapter 4 transient heat condution
Chapter 4 transient heat condution Chapter 4 transient heat condution
Chapter 4 transient heat condution
 
Heat transfer chapter one and two
Heat transfer chapter one and twoHeat transfer chapter one and two
Heat transfer chapter one and two
 
Fluid Mechanics Chapter 7. Compressible flow
Fluid Mechanics Chapter 7. Compressible flowFluid Mechanics Chapter 7. Compressible flow
Fluid Mechanics Chapter 7. Compressible flow
 
Chapter 1 introduction of heat transfer
Chapter 1 introduction of heat transferChapter 1 introduction of heat transfer
Chapter 1 introduction of heat transfer
 
Numerical methods for 2 d heat transfer
Numerical methods for 2 d heat transferNumerical methods for 2 d heat transfer
Numerical methods for 2 d heat transfer
 
One dim, steady-state, heat conduction_with_heat_generation
One dim, steady-state, heat conduction_with_heat_generationOne dim, steady-state, heat conduction_with_heat_generation
One dim, steady-state, heat conduction_with_heat_generation
 
Center of pressure
Center of pressureCenter of pressure
Center of pressure
 
Bl concept
Bl conceptBl concept
Bl concept
 
Shell & tube heat exchanger single fluid flow heat transfer
Shell & tube heat exchanger single fluid flow heat transferShell & tube heat exchanger single fluid flow heat transfer
Shell & tube heat exchanger single fluid flow heat transfer
 
Experimental Investigation on Heat Transfer By Natural Convection Over A Cyli...
Experimental Investigation on Heat Transfer By Natural Convection Over A Cyli...Experimental Investigation on Heat Transfer By Natural Convection Over A Cyli...
Experimental Investigation on Heat Transfer By Natural Convection Over A Cyli...
 
Lab 1 the dryness fraction of the steam(mech)
Lab 1   the dryness fraction of the steam(mech)Lab 1   the dryness fraction of the steam(mech)
Lab 1 the dryness fraction of the steam(mech)
 
Fundamentals of Heat Exchanger Design
Fundamentals of Heat Exchanger DesignFundamentals of Heat Exchanger Design
Fundamentals of Heat Exchanger Design
 
Fluid Mechanics Chapter 2. Fluid Statics
Fluid Mechanics Chapter 2. Fluid StaticsFluid Mechanics Chapter 2. Fluid Statics
Fluid Mechanics Chapter 2. Fluid Statics
 
Plate Heat Exchanger Lab Report Group B4
Plate Heat Exchanger Lab Report Group B4Plate Heat Exchanger Lab Report Group B4
Plate Heat Exchanger Lab Report Group B4
 
Separating and throttling calorimeter for steam
Separating and throttling calorimeter for steamSeparating and throttling calorimeter for steam
Separating and throttling calorimeter for steam
 
Marcet boiler
Marcet boiler Marcet boiler
Marcet boiler
 

Similar to Free and Forced Convection

Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceinventy
 
FINAL_201 Thursday A-3 Convective and Radiant Heat Transfer
FINAL_201 Thursday A-3 Convective and Radiant Heat TransferFINAL_201 Thursday A-3 Convective and Radiant Heat Transfer
FINAL_201 Thursday A-3 Convective and Radiant Heat TransferKaylene Kowalski
 
Estimate the evaporation rate of water (water loss) for the cooling tower
Estimate the evaporation rate of water (water loss) for the cooling towerEstimate the evaporation rate of water (water loss) for the cooling tower
Estimate the evaporation rate of water (water loss) for the cooling towerBarhm Mohamad
 
Thermal conductivity
Thermal conductivityThermal conductivity
Thermal conductivityBarhm Mohamad
 
IRJET- Computational Fluid Dymamic Analysis Natural Convection Flow through S...
IRJET- Computational Fluid Dymamic Analysis Natural Convection Flow through S...IRJET- Computational Fluid Dymamic Analysis Natural Convection Flow through S...
IRJET- Computational Fluid Dymamic Analysis Natural Convection Flow through S...IRJET Journal
 
Heat transfer(HT) lab manual
Heat transfer(HT) lab manualHeat transfer(HT) lab manual
Heat transfer(HT) lab manualnmahi96
 
analysis of fins subjected to forced convection.
analysis of fins subjected to forced convection.analysis of fins subjected to forced convection.
analysis of fins subjected to forced convection.ChandraprabhuVyavhar
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Performance prediction of a thermal system using Artificial Neural Networks
Performance prediction of a thermal system using Artificial Neural NetworksPerformance prediction of a thermal system using Artificial Neural Networks
Performance prediction of a thermal system using Artificial Neural NetworksIJERD Editor
 
AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER
  AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER  AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER
AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGERIAEME Publication
 
Qpedia apr07 understanding_heat_transfer_coefficient
Qpedia apr07 understanding_heat_transfer_coefficientQpedia apr07 understanding_heat_transfer_coefficient
Qpedia apr07 understanding_heat_transfer_coefficientTeguh Apriy
 
Radial Heat Transport in Packed Beds-III: Correlations of Effective Transport...
Radial Heat Transport in Packed Beds-III: Correlations of Effective Transport...Radial Heat Transport in Packed Beds-III: Correlations of Effective Transport...
Radial Heat Transport in Packed Beds-III: Correlations of Effective Transport...inventionjournals
 
project cooling tower.docx
project cooling tower.docxproject cooling tower.docx
project cooling tower.docxMahamad Jawhar
 
Cfd Simulation and Experimentalverification of Air Flow through Heated Pipe
Cfd Simulation and Experimentalverification of Air Flow through Heated PipeCfd Simulation and Experimentalverification of Air Flow through Heated Pipe
Cfd Simulation and Experimentalverification of Air Flow through Heated PipeIOSR Journals
 
HEAT TRANSFER
HEAT TRANSFER HEAT TRANSFER
HEAT TRANSFER oday hatem
 

Similar to Free and Forced Convection (20)

Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
FINAL_201 Thursday A-3 Convective and Radiant Heat Transfer
FINAL_201 Thursday A-3 Convective and Radiant Heat TransferFINAL_201 Thursday A-3 Convective and Radiant Heat Transfer
FINAL_201 Thursday A-3 Convective and Radiant Heat Transfer
 
Estimate the evaporation rate of water (water loss) for the cooling tower
Estimate the evaporation rate of water (water loss) for the cooling towerEstimate the evaporation rate of water (water loss) for the cooling tower
Estimate the evaporation rate of water (water loss) for the cooling tower
 
Thermal conductivity
Thermal conductivityThermal conductivity
Thermal conductivity
 
IRJET- Computational Fluid Dymamic Analysis Natural Convection Flow through S...
IRJET- Computational Fluid Dymamic Analysis Natural Convection Flow through S...IRJET- Computational Fluid Dymamic Analysis Natural Convection Flow through S...
IRJET- Computational Fluid Dymamic Analysis Natural Convection Flow through S...
 
Heat transfer(HT) lab manual
Heat transfer(HT) lab manualHeat transfer(HT) lab manual
Heat transfer(HT) lab manual
 
analysis of fins subjected to forced convection.
analysis of fins subjected to forced convection.analysis of fins subjected to forced convection.
analysis of fins subjected to forced convection.
 
Thermal convection
Thermal convection Thermal convection
Thermal convection
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Performance prediction of a thermal system using Artificial Neural Networks
Performance prediction of a thermal system using Artificial Neural NetworksPerformance prediction of a thermal system using Artificial Neural Networks
Performance prediction of a thermal system using Artificial Neural Networks
 
Ijetcas14 376
Ijetcas14 376Ijetcas14 376
Ijetcas14 376
 
AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER
  AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER  AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER
AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER
 
Qpedia apr07 understanding_heat_transfer_coefficient
Qpedia apr07 understanding_heat_transfer_coefficientQpedia apr07 understanding_heat_transfer_coefficient
Qpedia apr07 understanding_heat_transfer_coefficient
 
IJERA
IJERAIJERA
IJERA
 
Radial Heat Transport in Packed Beds-III: Correlations of Effective Transport...
Radial Heat Transport in Packed Beds-III: Correlations of Effective Transport...Radial Heat Transport in Packed Beds-III: Correlations of Effective Transport...
Radial Heat Transport in Packed Beds-III: Correlations of Effective Transport...
 
project cooling tower.docx
project cooling tower.docxproject cooling tower.docx
project cooling tower.docx
 
Cfd Simulation and Experimentalverification of Air Flow through Heated Pipe
Cfd Simulation and Experimentalverification of Air Flow through Heated PipeCfd Simulation and Experimentalverification of Air Flow through Heated Pipe
Cfd Simulation and Experimentalverification of Air Flow through Heated Pipe
 
HEAT TRANSFER
HEAT TRANSFER HEAT TRANSFER
HEAT TRANSFER
 
Chapter1.pdf
Chapter1.pdfChapter1.pdf
Chapter1.pdf
 
C502021133
C502021133C502021133
C502021133
 

More from Barhm Mohamad

Investigation of fracture behavior and mechanical properties of epoxy composi...
Investigation of fracture behavior and mechanical properties of epoxy composi...Investigation of fracture behavior and mechanical properties of epoxy composi...
Investigation of fracture behavior and mechanical properties of epoxy composi...Barhm Mohamad
 
Characterization of a flat plate solar water heating system using different n...
Characterization of a flat plate solar water heating system using different n...Characterization of a flat plate solar water heating system using different n...
Characterization of a flat plate solar water heating system using different n...Barhm Mohamad
 
A review of aerodynamic analysis of commercial automotive-materials and methods
A review of aerodynamic analysis of commercial automotive-materials and methodsA review of aerodynamic analysis of commercial automotive-materials and methods
A review of aerodynamic analysis of commercial automotive-materials and methodsBarhm Mohamad
 
Book of Abstracts from 9th International Scientific Conference on Advances in...
Book of Abstracts from 9th International Scientific Conference on Advances in...Book of Abstracts from 9th International Scientific Conference on Advances in...
Book of Abstracts from 9th International Scientific Conference on Advances in...Barhm Mohamad
 
A REVIEW OF AERODYNAMIC ANALYSIS OF COMMERCIAL AUTOMOTIVE-MATERIALS AND METHODS
A REVIEW OF AERODYNAMIC ANALYSIS OF COMMERCIAL AUTOMOTIVE-MATERIALS AND METHODS A REVIEW OF AERODYNAMIC ANALYSIS OF COMMERCIAL AUTOMOTIVE-MATERIALS AND METHODS
A REVIEW OF AERODYNAMIC ANALYSIS OF COMMERCIAL AUTOMOTIVE-MATERIALS AND METHODS Barhm Mohamad
 
An Experimental Artificial Neural Network Model: Investigating and Predicting...
An Experimental Artificial Neural Network Model: Investigating and Predicting...An Experimental Artificial Neural Network Model: Investigating and Predicting...
An Experimental Artificial Neural Network Model: Investigating and Predicting...Barhm Mohamad
 
Experimental study of nano-composite materials on vibration responses
Experimental study of nano-composite materials on vibration responsesExperimental study of nano-composite materials on vibration responses
Experimental study of nano-composite materials on vibration responsesBarhm Mohamad
 
Entropy generation and heat transfer rate for MHD forced convection of nanoli...
Entropy generation and heat transfer rate for MHD forced convection of nanoli...Entropy generation and heat transfer rate for MHD forced convection of nanoli...
Entropy generation and heat transfer rate for MHD forced convection of nanoli...Barhm Mohamad
 
ANALYSIS OF THE MECHANICAL CHARACTERISTICS OF DATE SEED POWDER-BASED COMPOSIT...
ANALYSIS OF THE MECHANICAL CHARACTERISTICS OF DATE SEED POWDER-BASED COMPOSIT...ANALYSIS OF THE MECHANICAL CHARACTERISTICS OF DATE SEED POWDER-BASED COMPOSIT...
ANALYSIS OF THE MECHANICAL CHARACTERISTICS OF DATE SEED POWDER-BASED COMPOSIT...Barhm Mohamad
 
Thermodynamic analysis and optimization of flat plate solar collector using T...
Thermodynamic analysis and optimization of flat plate solar collector using T...Thermodynamic analysis and optimization of flat plate solar collector using T...
Thermodynamic analysis and optimization of flat plate solar collector using T...Barhm Mohamad
 
MODELLING AND TESTING OF ADVANCED INTAKE AND EXHAUST SYSTEM COMPONENTS FOR RA...
MODELLING AND TESTING OF ADVANCED INTAKE AND EXHAUST SYSTEM COMPONENTS FOR RA...MODELLING AND TESTING OF ADVANCED INTAKE AND EXHAUST SYSTEM COMPONENTS FOR RA...
MODELLING AND TESTING OF ADVANCED INTAKE AND EXHAUST SYSTEM COMPONENTS FOR RA...Barhm Mohamad
 
REMAPPING AND SIMULATION OF EFI SYSTEM FOR SI ENGINE USING PIGGYBACK ECU
REMAPPING AND SIMULATION OF EFI SYSTEM FOR SI ENGINE USING PIGGYBACK ECUREMAPPING AND SIMULATION OF EFI SYSTEM FOR SI ENGINE USING PIGGYBACK ECU
REMAPPING AND SIMULATION OF EFI SYSTEM FOR SI ENGINE USING PIGGYBACK ECUBarhm Mohamad
 
Evaluation of Shell and Tube Heat Exchanger Performance by Using ZnO/Water Na...
Evaluation of Shell and Tube Heat Exchanger Performance by Using ZnO/Water Na...Evaluation of Shell and Tube Heat Exchanger Performance by Using ZnO/Water Na...
Evaluation of Shell and Tube Heat Exchanger Performance by Using ZnO/Water Na...Barhm Mohamad
 
Enhancement of Double-Pipe Heat Exchanger Effectiveness by Using Porous Media...
Enhancement of Double-Pipe Heat Exchanger Effectiveness by Using Porous Media...Enhancement of Double-Pipe Heat Exchanger Effectiveness by Using Porous Media...
Enhancement of Double-Pipe Heat Exchanger Effectiveness by Using Porous Media...Barhm Mohamad
 
Gas absorption in packed tower with Raschig rings packings
Gas absorption in packed tower with Raschig rings packingsGas absorption in packed tower with Raschig rings packings
Gas absorption in packed tower with Raschig rings packingsBarhm Mohamad
 
The effect of varying water flow rate on the performance of mechanical draugh...
The effect of varying water flow rate on the performance of mechanical draugh...The effect of varying water flow rate on the performance of mechanical draugh...
The effect of varying water flow rate on the performance of mechanical draugh...Barhm Mohamad
 
The effect of varying water flow rate on the performance of mechanical draugh...
The effect of varying water flow rate on the performance of mechanical draugh...The effect of varying water flow rate on the performance of mechanical draugh...
The effect of varying water flow rate on the performance of mechanical draugh...Barhm Mohamad
 
The effect of varying flow rate-counter flow shell and tube heat exchanger
The effect of varying flow rate-counter flow shell and tube heat exchangerThe effect of varying flow rate-counter flow shell and tube heat exchanger
The effect of varying flow rate-counter flow shell and tube heat exchangerBarhm Mohamad
 
The effect of varying flow rate-parallel flow shell and tube heat exchanger
The effect of varying flow rate-parallel flow shell and tube heat exchangerThe effect of varying flow rate-parallel flow shell and tube heat exchanger
The effect of varying flow rate-parallel flow shell and tube heat exchangerBarhm Mohamad
 

More from Barhm Mohamad (20)

Investigation of fracture behavior and mechanical properties of epoxy composi...
Investigation of fracture behavior and mechanical properties of epoxy composi...Investigation of fracture behavior and mechanical properties of epoxy composi...
Investigation of fracture behavior and mechanical properties of epoxy composi...
 
Characterization of a flat plate solar water heating system using different n...
Characterization of a flat plate solar water heating system using different n...Characterization of a flat plate solar water heating system using different n...
Characterization of a flat plate solar water heating system using different n...
 
A review of aerodynamic analysis of commercial automotive-materials and methods
A review of aerodynamic analysis of commercial automotive-materials and methodsA review of aerodynamic analysis of commercial automotive-materials and methods
A review of aerodynamic analysis of commercial automotive-materials and methods
 
Book of Abstracts from 9th International Scientific Conference on Advances in...
Book of Abstracts from 9th International Scientific Conference on Advances in...Book of Abstracts from 9th International Scientific Conference on Advances in...
Book of Abstracts from 9th International Scientific Conference on Advances in...
 
A REVIEW OF AERODYNAMIC ANALYSIS OF COMMERCIAL AUTOMOTIVE-MATERIALS AND METHODS
A REVIEW OF AERODYNAMIC ANALYSIS OF COMMERCIAL AUTOMOTIVE-MATERIALS AND METHODS A REVIEW OF AERODYNAMIC ANALYSIS OF COMMERCIAL AUTOMOTIVE-MATERIALS AND METHODS
A REVIEW OF AERODYNAMIC ANALYSIS OF COMMERCIAL AUTOMOTIVE-MATERIALS AND METHODS
 
An Experimental Artificial Neural Network Model: Investigating and Predicting...
An Experimental Artificial Neural Network Model: Investigating and Predicting...An Experimental Artificial Neural Network Model: Investigating and Predicting...
An Experimental Artificial Neural Network Model: Investigating and Predicting...
 
Experimental study of nano-composite materials on vibration responses
Experimental study of nano-composite materials on vibration responsesExperimental study of nano-composite materials on vibration responses
Experimental study of nano-composite materials on vibration responses
 
Entropy generation and heat transfer rate for MHD forced convection of nanoli...
Entropy generation and heat transfer rate for MHD forced convection of nanoli...Entropy generation and heat transfer rate for MHD forced convection of nanoli...
Entropy generation and heat transfer rate for MHD forced convection of nanoli...
 
ANALYSIS OF THE MECHANICAL CHARACTERISTICS OF DATE SEED POWDER-BASED COMPOSIT...
ANALYSIS OF THE MECHANICAL CHARACTERISTICS OF DATE SEED POWDER-BASED COMPOSIT...ANALYSIS OF THE MECHANICAL CHARACTERISTICS OF DATE SEED POWDER-BASED COMPOSIT...
ANALYSIS OF THE MECHANICAL CHARACTERISTICS OF DATE SEED POWDER-BASED COMPOSIT...
 
Thermodynamic analysis and optimization of flat plate solar collector using T...
Thermodynamic analysis and optimization of flat plate solar collector using T...Thermodynamic analysis and optimization of flat plate solar collector using T...
Thermodynamic analysis and optimization of flat plate solar collector using T...
 
MODELLING AND TESTING OF ADVANCED INTAKE AND EXHAUST SYSTEM COMPONENTS FOR RA...
MODELLING AND TESTING OF ADVANCED INTAKE AND EXHAUST SYSTEM COMPONENTS FOR RA...MODELLING AND TESTING OF ADVANCED INTAKE AND EXHAUST SYSTEM COMPONENTS FOR RA...
MODELLING AND TESTING OF ADVANCED INTAKE AND EXHAUST SYSTEM COMPONENTS FOR RA...
 
REMAPPING AND SIMULATION OF EFI SYSTEM FOR SI ENGINE USING PIGGYBACK ECU
REMAPPING AND SIMULATION OF EFI SYSTEM FOR SI ENGINE USING PIGGYBACK ECUREMAPPING AND SIMULATION OF EFI SYSTEM FOR SI ENGINE USING PIGGYBACK ECU
REMAPPING AND SIMULATION OF EFI SYSTEM FOR SI ENGINE USING PIGGYBACK ECU
 
Evaluation of Shell and Tube Heat Exchanger Performance by Using ZnO/Water Na...
Evaluation of Shell and Tube Heat Exchanger Performance by Using ZnO/Water Na...Evaluation of Shell and Tube Heat Exchanger Performance by Using ZnO/Water Na...
Evaluation of Shell and Tube Heat Exchanger Performance by Using ZnO/Water Na...
 
Enhancement of Double-Pipe Heat Exchanger Effectiveness by Using Porous Media...
Enhancement of Double-Pipe Heat Exchanger Effectiveness by Using Porous Media...Enhancement of Double-Pipe Heat Exchanger Effectiveness by Using Porous Media...
Enhancement of Double-Pipe Heat Exchanger Effectiveness by Using Porous Media...
 
Rotary dryer
Rotary dryerRotary dryer
Rotary dryer
 
Gas absorption in packed tower with Raschig rings packings
Gas absorption in packed tower with Raschig rings packingsGas absorption in packed tower with Raschig rings packings
Gas absorption in packed tower with Raschig rings packings
 
The effect of varying water flow rate on the performance of mechanical draugh...
The effect of varying water flow rate on the performance of mechanical draugh...The effect of varying water flow rate on the performance of mechanical draugh...
The effect of varying water flow rate on the performance of mechanical draugh...
 
The effect of varying water flow rate on the performance of mechanical draugh...
The effect of varying water flow rate on the performance of mechanical draugh...The effect of varying water flow rate on the performance of mechanical draugh...
The effect of varying water flow rate on the performance of mechanical draugh...
 
The effect of varying flow rate-counter flow shell and tube heat exchanger
The effect of varying flow rate-counter flow shell and tube heat exchangerThe effect of varying flow rate-counter flow shell and tube heat exchanger
The effect of varying flow rate-counter flow shell and tube heat exchanger
 
The effect of varying flow rate-parallel flow shell and tube heat exchanger
The effect of varying flow rate-parallel flow shell and tube heat exchangerThe effect of varying flow rate-parallel flow shell and tube heat exchanger
The effect of varying flow rate-parallel flow shell and tube heat exchanger
 

Recently uploaded

Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsvanyagupta248
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Servicemeghakumariji156
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaOmar Fathy
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueBhangaleSonal
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...soginsider
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdfKamal Acharya
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptMsecMca
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersMairaAshraf6
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...Health
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
Rums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdfRums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdfsmsksolar
 
Learn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksLearn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksMagic Marks
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxSCMS School of Architecture
 

Recently uploaded (20)

FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
Rums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdfRums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdf
 
Learn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksLearn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic Marks
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 

Free and Forced Convection

  • 1. Heat Transfer Laboratory E n g . H a y m e n F . F a t t a h E x p e r i m e n t N o . 3 Page 1 EXPERIMENT NO. 3 ((Free and Forced Convection)) Aim: 1. Comparing free and forced convection for different surfaces. 2. Determination of heat transfer coefficient (h), for free and forced convection in different geometries. 3. Comparison of heat transfer surface efficiency. 1. Theory There are three modes for heat transfer: convection, conduction, and radiation. The convection heat transfer plays an important role in many industrial applications. The convection heat transfer is usually subdivided into free and forced convection. In the forced convection, the fluid is blown or pumped past the heated surface using a pump or a fan, while in the natural (or free) convection, fluid flow is naturally achieved by buoyancy effects, i.e., density variation in the fluid. The heat transfer rate to the fluid (Q) can be calculated using the first law of thermodynamics for the heated fluid: Q = m. ∆h (1) Where: Q: Rate of heat transfer (W). m: Mass flow rate of air (kg/s). ∆h: Enthalpy variation of the fluid before and after the heated surface (Kj/Kg). Then mass flow rate can be expressed by: m = pwA (2) Where: P: Air density which is 1.29 (Kg/m3) from thermodynamic table. W: the averaged velocity of air (m/s). A: the cross-sectional area of the duct which is equal to (0.0144 m²). The Eq.1 can be written as: Q = mcp∆T (3)
  • 2. Heat Transfer Laboratory E n g . H a y m e n F . F a t t a h E x p e r i m e n t N o . 3 Page 2 Where: Cp: The specific heat capacity of the air (1.004 kJ/kg.K). ∆T: Temperature different, inlet and outlet of air by (k). The heat sources on the test bed consist of electrical resistors; thus, the amount of power that is fed to the heaters (P₁) by watt can be calculated. The factor for fin efficiency, (ƞ) provides information on the losses which occur during heat transfer. This factor indicates the portion of the input energy that is transferred to the fluid. This can be written as: Ƞ= Q/p1 (4) Where: Ƞ: Fin or pin or flat plate efficiency. Note: The amount of (1- Ƞ) shows all losses resulted from convection and radiation to the surroundings and not to the fluid. 2. Procedure The bench-mounting equipment includes a vertical duct that holds the chosen heat transfer surface and all instruments needed. The apparatus includes three different common heat transfer surfaces with the equipment: a) A Flat Plate. b) A Pinned Surface – similar to a tubular heat exchanger. c) A Finned Surface – similar to the fins on air-cooled. Engines or electrical heat sinks each surface has its own built-in variable-power electric heater. Students choose which surface they need to test and fit it to the duct using simple fixings. For free convection tests, the heated air rises from the surface and up the duct. For forced convection tests, a variable-speed fan draws air up through the duct and across the surface. Thermocouples measure the air temperature upstream and downstream of the surface and the temperature at the heat transfer surface. The downstream probe moves in a traverse mechanism to measure the temperature distribution across the duct, allowing calculation of the bulk outlet temperature. An Additional probe allows students to measure the temperature distribution along the extended surfaces of the pinned and finned heater transfer surfaces. A sensitive anemometer measures the air velocity. Two controls allow students to set different air velocities and heater power for a full range of tests. A digital display shows the heater power, air velocity and the temperatures measured by the thermocouples [1-4] .
  • 3. Heat Transfer Laboratory E n g . H a y m e n F . F a t t a h E x p e r i m e n t N o . 3 Page 3 Table 1 Measurement data Parameters Flat plate Pinned surface Finned surface Natural Force Natural Force Natural Force T₁ T₂ w p₁ ƞ 3. Heat transfer surfaces a) Flat plate surface: Surface material: aluminum Area: 0.0112 M² b) Finned surface: Surface material: stainless steel Area: 0.092 M² include all fins c) Pinned surface: Surface material: stainless steel Area: 0.027 M² include all pins Maximum anemometer range: 0 to3.8 m/s Maximum power heater: 0 to 100 W d) A typical value of heat transfer to air: 5 to 25 w/m².K in free or natural convection 10 to 200 w/m².K in forced convection Heat transfer coefficient: (5) ∆Tm: Logarithm mean temperature difference: (6)
  • 4. Heat Transfer Laboratory E n g . H a y m e n F . F a t t a h E x p e r i m e n t N o . 3 Page 4 Fig.1 Free and forced convection apparatus with screenshot of the optional VDAS® Software [1] . 4. Discussion questions a) Why we get different heat transfer coefficient (h) for the same material? b) Why we have errors? c) Discuss the (hc-Ƞ) diagram that you draw it. d) What do you suggest to get a better reading? References 1. TecQuipment Ltd, Free and forced convection apparatus, Model: VDAS TD1005. 2. Мохамед Б, Кароли Я, Зеленцов А.А. (2020) Трехмерное моделирование течения газа во впускной системе автомобиля «формулы студент» Журнал Сибирского федерального университета, 13(5); pp. 597-610. https://doi.org/10.17516/1999-494X- 0249.
  • 5. Heat Transfer Laboratory E n g . H a y m e n F . F a t t a h E x p e r i m e n t N o . 3 Page 5 3. Mohamad B., Karoly J., Zelentsov A.A. (2020) Hangtompító akusztikai tervezése hibrid módszerrel, Multidiszciplináris Tudományok, 9(4), pp. 548-555. https://doi.org/10.35925/j.multi.2019.4.58. 4. Yunus Cengel, Heat Transfer: A Practical Approach, 2nd ed., McGraw-Hill Education – Europe, 1997. Barhm Abdullah Mohamad Erbil Polytechnic University LinkedIn: https://www.linkedin.com/in/barhm-mohamad-900b1b138/ Google Scholar: https://scholar.google.com/citations?user=KRQ96qgAAAAJ&hl=en ResearchGate: https://www.researchgate.net/profile/Barhm_Mohamad YouTube channel: https://www.youtube.com/channel/UC16-u0i4mxe6TmAUQH0kmNw