-
Soyez le premier à aimer ceci
SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez nos Conditions d’utilisation et notre Politique de confidentialité.
SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez notre Politique de confidentialité et nos Conditions d’utilisation pour en savoir plus.
Publié le
Face biometric data are with high dimensional features and hence, traditional searching techniques are not applicable to retrieve them. As a consequence, it is an issue to identify a person with face data from a large pool of face database in real-time. This paper addresses this issue and proposes an indexing technique to narrow down the search space. We create a two level index space based on the SURF key points and divide the index space into a number of cells. We define a set of hash functions to store the SURF descriptors of a face image into the cell. The SURF descriptors within an index cell are stored into kd-tree. A candidate set is retrieved from the index space by applying the same hash functions on the query key points and kd-tree based nearest neighbor searching. Finally, we rank the retrieved candidates according to their occurrences. We have done our experiment with three popular face databases namely, FERET, FRGC and CalTech face databases and achieved 95.57%, 97.00% and 92.31% hit rate with 7.90%, 12.55% and 23.72% penetration rate for FERET, FRGC and CalTech databases, respectively. The hit rate increases to 97.78%, 99.36% and 100% for FERET, FRGC and CalTech databases, respectively when we consider top fifty ranks. Further, in our proposed approach, it is possible to retrieve a set of face templates similar with query template in the order of milliseconds. From the experimental results we can substantiate that application of indexing using hash function on SURF key points is effective for fast and accurate face image retrieval.
Soyez le premier à aimer ceci
Il semblerait que vous ayez déjà ajouté cette diapositive à .
Identifiez-vous pour voir les commentaires