SlideShare une entreprise Scribd logo
1  sur  77
Télécharger pour lire hors ligne
1
Topologie et architecture
Ing EBODE MBALLA
2
Plan
• Les différents types de réseau
• Topologie physique
• Architectures type
• Méthodes d’accès
• Interconnexion de réseaux : Éléments actifs
• Liaisons commutées
• Liaisons longues distances
• Liaisons spécialisées
3
Les différents types de réseaux
• LAN : Local Area Network
– Ethernet , Wifi
• MAN : Metropolitan Area Network
– Wifi, WiMax, FO
• WAN : Wide Area Network
– Ligne louée
– Circuit commuté (RNIS)
– Commutation de paquets 5X25, FR, ATM,…)
• Internet
4
LAN
• LAN : Local Area Network
– Un étage
– Un bâtiment
– Diamètre < 2 km
– Un site géographique : domaine privé
– Plusieurs bâtiments (site-campus)
5
Topologie physique
• Les différentes topologies en canal point à
point
6
Topologie physique en canal
point à point
• Étoile
• Anneau
• Arbre
• Maillage régulier
• Maillage irrégulier
• Intersection d’anneaux
7
Topologie physique en canal de
diffusion
• Bus
• Satellite
• Anneau
8
Distinction topologie physique /
topologie logique
• Un réseau logique en anneau peut être un
réseau physique en étoile
• Les ordinateurs sont alors reliés à un
répartiteur (MAU : Multistation Access
Unit) qui gère le passage de parole en
Token Ring
9
Architectures type
• Le client / serveur
• Le n tiers
• Le peer to peer
10
Le client /serveur
• Les ressources réseau sont centralisées.
• Un ou plusieurs serveurs sont dédiés au partage
de ces ressources et en assurent la sécurité
• Les postes clients,
en principe, ne partagent
pas de ressources, ils
utilisent celles qui sont
offertes par les serveurs.
11
Le client / serveur : Avantages
• Serveurs à dimensionner suivant la taille du réseau et le
nombre de clients.
• Véritable politique de sécurité
• Fonctions avancées pour les utilisateurs comme par
exemple les profils itinérants qui permettent à un
utilisateur de retrouver son environnement de travail sur
différentes machines.
• Ressources toujours disponibles pour les utilisateurs.
• Les sauvegardes de données sont centralisées
• Un administrateur gère le fonctionnement du réseau et les
utilisateurs n'ont pas à s'en préoccuper
12
Le client / serveur :
Inconvénients
• Mise en place beaucoup plus lourde qu'un simple
"poste à poste"
• Nécessite la présence d'un administrateur
• Coût est évidemment plus élevé puisqu'il faut la
présence d'un ou de plusieurs serveurs.
• Si un serveur tombe en panne, ses ressources ne
sont plus disponibles. Il faut donc prévoir des
solutions plus ou moins complexes, plus ou moins
onéreuses, pour assurer un fonctionnement au
moins minimum en cas de panne.
13
Le n tiers
• Présentation de l'architecture à 2 niveaux
– L'architecture à deux niveaux caractérise les systèmes
clients/serveurs dans lesquels le client demande une
ressource et le serveur la lui fournit directement. Cela
signifie que le serveur ne fait pas appel à une autre
application afin de fournir le service.
14
Le n tiers
• Présentation de l'architecture à 3 niveaux
– Dans l'architecture à 3 niveaux (appelée architecture 3-tier), il
existe un niveau intermédiaire, c'est-à-dire que l'on a
généralement une architecture partagée entre :
• 1. Le client : le demandeur de ressources
• 2. Le serveur d'application (appelé aussi middleware) : le serveur chargé
de fournir la ressource mais faisant appel à un autre serveur
• 3. Le serveur secondaire (généralement un serveur de base de données),
fournissant un service au premier serveur
15
Le n tiers
• Peut désigner les architectures suivantes :
– Partage d'application entre client, serveur
intermédiaire, et serveur d'entreprise
– Partage d'application entre client, BDD
intermédiaire, et BDD d'entreprise
• Comparaison des deux types d'architecture
– C/S : le serveur est polyvalent. Il fournit les
ressources au client.
– Pour le 3 tiers, chaque serveur est spécialisé dans
une tâche (serveur web ou BDD). Cela permet :
• une plus grande flexibilité/souplesse
• une plus grande sécurité
• de meilleures performances (les tâches sont partagées)
16
Le n tiers
• L'architecture multi niveaux
• Dans l'architecture à 3 niveaux,
chaque serveur (niveaux 2 et 3)
effectue une tâche (un service)
spécialisée. Ainsi, un serveur peut
utiliser les services d'un ou
plusieurs autres serveurs afin de
fournir son propre service. Par
conséquent, l'architecture à trois
niveaux est potentiellement une
architecture à N niveaux...
17
Le peer to peer
• Postes de travail simplement reliés entre eux par le
réseau. Aucune machine ne joue un rôle
particulier. Chaque poste peut partager ses
ressources avec les autres postes.
• L'utilisateur de chaque poste définit l'accès à ses
ressources. Il n'y a pas obligatoirement
d'administrateur attitré.
• Ici, chaque poste peut
partager tout ou partie de sa
mémoire de masse, et P-2
peut partager son imprimante.
18
Le peer to peer : Avantages
• Facilité de mise en place
• Chaque utilisateur peut décider de partager
l'une de ses ressources avec les autres
postes.
• Dans un groupe de travail, l'imprimante
peut être utilisée par tous.
19
Le peer to peer : Inconvénients
• Chaque utilisateur a la responsabilité du
fonctionnement du réseau.
• Les outils de sécurité sont très limités.
• Si un poste est éteint ou s'il se "plante", ses
ressources ne sont plus accessibles
• Le système devient ingérable lorsque le nombre de
postes augmente.
• Lorsqu'une ressource est utilisée sur une machine,
l'utilisateur de cette machine peut voir ses
performances diminuer.
20
ETTD et ETCD
• ETTD : Équipement Terminal de Traitement de
Données : Tous les éléments actifs qui agissent sur
les données elles même (ordinateurs, imprimantes
réseau,…)
• ETCD: Équipement de Terminaison de Circuit de
Données : Adapte le signal à transmettre (carte
réseau, modem…)
LES TYPES D’ÉCHANGE DE
DONNÉES
21
Commutation et connexions
• Couche 3 : réseau Commutation et acheminement
des paquets. Etablissement de circuits virtuels
entre un noeud et un autre, séquençage des
paquets, acheminement des paquets d'un routeur à
un autre.
• Couche 4 : transport Contrôle de flux et correction
d'erreur au niveau du paquet. Acheminement des
paquets de l'émetteur au récepteur final.
• Couche 5 : session Etablissement des
communications entre deux applications et gestion
du dialogue 22
23
Méthodes de commutation
• La commutation de circuit
– RNIS, téléphone
• La commutation de messages
• La commutation de paquets
– TCP
– X.25 et Frame Relay (obsolète)
– ATM (encore utilisé, en voie d'obsolescence)
– MPLS (Multiprotocol Label Switching)
– PBT/PBB-TE: Ethernet en tant que technologie
de transport avec ingénierie de trafic
24
Commutation de circuit
• Quand une machine veut envoyer une trame
dans un réseau à commutation de circuits, il
faut réserver un chemin physique à travers
le réseau maillé, jusqu’au destinataire
• Communication en 3 phases:
– Établissement de la connexion (circuit fixe
entre les ETTD)
– Transfert des données
– Fermeture de la connexion
25
Commutation de circuits
• + : Pas de perte de temps de routage
• - : Inutile si peu de données à transférer
26
Commutation de circuits
• Transparence de l’information
• Retard faible et constant (adapté aux flux
isochrones : voix et vidéo)
• Débits prédéterminés (possibilité de
contrats)
• Difficulté de prévoir à priori le débit
nécessaire
27
Commutation de messages
• Le temps de commutation est le même quelle que soit la
longueur du message
• Pas de phase d’établissement de connexion
28
Commutation de paquets
• Principe similaire à celui de la commutation de messages,
mais le message initial est ici découpé en paquets de
longueur fixe.
• Le gain total d’acheminement est important
• Le nombre de message envoyés simultanément est appelé
fenêtre de transmission
29
Commutation de paquets
• Utilisation efficace des artères de
transmission
• Débit dépendant de la source et du trafic 
souplesse, adaptabilité
• Bien adapté à la transmission de données
• Possibilité d’alléger les protocoles (FR)
Commutation de paquets
• Il existe deux modes de fonctionnement:
– Circuit virtuel (X25)
– Datagramme (TCP)
30
31
Notion de circuit virtuel
• Utilisation de circuits virtuels
– Avantage: la rapidité de commutation.
• Communication en mode connecté
– Associé au mode circuits virtuels
• Livraison en séquence
– Paquets à la suite selon un circuit virtuel
• Sans contrôle d'erreur
– Médium fibre optique: taux d’erreur faible
• Couche supplémentaire d'adaptation
• Qualité de service
Notion de circuit virtuel
• Circuit virtuels commutés
 Téléphone
• Circuit virtuel permanent
 Connexion dédiée
32
33
Niveau Réseau en mode connecté
ou sans connexion
• Mode connecté  TCP (Transmission
Control Protocol)
• Requiert ouverture et fermeture de
connexion.
• La connexion est identifiée par une
référence unique, le 'socket'
– Définition d'une qualité de service associée à la
connexion.
Format d’une en tête TCP
34
35
Niveau Réseau en mode connecté
ou sans connexion
• Mode non Connecté  UDP (User
Datagram Protocol)
• Pas de délimitation temporelle des
échanges.
• Désignation explicite des extrémités
communicantes dans tous les messages.
• Pas assuré de l’ordre des paquets (sauf par
couche inférieure)
• Contrôle des données (checksum)
Format d’une en tête UDP
36
37
Remarques
• Ne pas faire les équivalences suivantes
– Datagramme = Mode non connecté
– Circuits virtuels = Mode connecté
• Car même si leurs fonctionnements se
rapprochent, les égalités sont fausses
• Exemple : Possibilité de construire un
protocole en mode connecté sur un
réseau à datagrammes
38
Méthodes d’accès
• Définit comment la carte réseau accède au réseau
(comment les données sont déposées et
récupérées)
• Cela permet de contrôler le trafic sur un réseau
• Également appelée « méthode de transmission ».
• Permet de classer les réseaux :
– CSMA/CD et CSMA/CA : réseaux en bus et en étoile
(Ethernet)
– Le passage du jeton : réseaux en anneau (TOKEN
RING et FDDI)
– La priorité de la demande : réseaux 100VG-AnyLAN
(ETHERNET à 100 Mb/s)
STOP
39
Méthodes d’accès et carte réseau
• Certaines cartes réseaux ne peuvent fonctionner
qu’avec telle ou telle méthode d’accès.
• Sur un réseau, il ne peut avoir qu’une seule
méthode d’accès qui régente l’accès au support
• Toutes les cartes réseaux doivent être du même
type
• Les cartes réseaux doivent transmettre à la même
vitesse.
• En général, les cartes réseaux de même type, mais
provenant de fabricants différents, sont
compatibles…
40
Les collisions de paquets
• La carte réseau doit « écouter », attendre que le
câble soit libre, émettre et retransmettre si les
trames ont été détruites pendant le voyage.
• Les collisions proviennent le plus souvent de
l’émission simultanée de plusieurs ordinateurs. Le
rôle de la méthode d’accès consiste soit à réduire
les inconvénients d’une telle concomitance, soit de
l’empêcher.
• La méthode d’accès doit permettre à toutes les
stations d’émettre. Le passage du jeton permet de
répartir uniformément le temps de transmission
entre toutes les stations.
• On parle alors de méthode d’accès «
isofonctionnelle ».
41
Les principales méthodes d’accès
• Les principales méthodes d’accès sont les
suivantes :
– L’accès multiple avec écoute de la porteuse :
• Avec détection des collisions, CSMA/CD
• Avec prévention des collisions, CSMA/CA
– Le passage du jeton
– La priorité de la demande
– Etc…
42
La méthode d’accès CSMA/CD
• La méthode d’accès CSMA/CD (Carrier-Sense Multiple
Access / Collision Detection) impose à toutes les stations
d’un réseau d’écouter continuellement le support de
communication, pour détecter les porteuses et les
collisions.
• C’est le transceiver (transmeter et receiver) qui écoute le
câble, et qui lit les entêtes des paquets (de 64 octets à 1500
octets au maximum).
• Méthode d’accès relativement fiable et rapide pour les
réseaux composés d’un nombre restreint de stations.
• Plus le nombre de station est important, plus le risque de
collision croît, plus le nombre de collisions augmente, et
plus les délais d’attente sont importants.
43
Caractéristiques de CSMA/CD
• L’accès multiple au réseau, plusieurs ordinateurs peuvent
émettre en même temps, le risque de collision est accepté.
• Pas de priorité, ni d’autorisation pour émettre.
• Écoute du câble et détection de la porteuse et des collisions
• Interdiction à toutes les stations d’un réseau d’émettre si le
support n’est pas libre
• En cas de collision :
– Les stations concernées cessent de transmettre pendant une durée
aléatoire
– Les stations émettent de nouveau si le câble est libre après ces
délais
• Distance maximale entre deux stations : 2500 m
• Fiable, rapide mais limité à un nombre de stations restreint
44
La méthode d’accès CSMA/CA
• La méthode d’accès CSMA/CA (Carrier-Sense
Multiple Access / Collision Avoidance) n’est pas
une méthode très répandue.
• Les collisions sont proscrites, chaque station avant
d’émettre doit signaler son intention.
• Les demandes de transmission augmentent le
trafic et ralentissent le réseau.
• La méthode d’accès CSMA/CA est plus lente que
CSMA/CD.
• Utilisé par le Wifi
45
La méthode du passage du jeton
• Propre aux réseaux en anneau. Les collisions sont
proscrites, les stations ne peuvent pas émettre
simultanément.
• Les stations doivent attendre le jeton qui donne la
permission de « parler »,
• Le jeton est un paquet spécial qui passe de station en
station, et qui autorise celle qui le détient à émettre.
• Une station a la responsabilité de surveiller le bon
fonctionnement du jeton (durée des trames pour parcourir
l’anneau, temps moyen de rotation,,…), et éventuellement
d’en créer un nouveau.
• Le superviseur d’un réseau Token Ring est d’abord la
première station allumée sur le réseau, puis si celle-ci se
déconnecte, il y a une l’élection du nouveau superviseur.
46
La méthode d’accès de la priorité
de la demande
• Aussi appelée DPMA (Demand Priority Access Method)
• Destinée aux réseaux mixtes en bus en étoile.
• Les concentrateurs gèrent l’accès au réseau. Chacun s’occupe de son
sous-ensemble.
• Les messages ne sont pas diffusés sur tout le réseau, mais seulement
sur la partie concernée. La gestion de l’accès au réseau est centralisée.
• Les concentrateurs interrogent tous les « nœuds terminaux » de la
partie du réseau dont ils ont la charge, c’est à dire toutes les stations
branchées sur leur anneau, et tous les concentrateurs auxquels ils sont
reliés.
• L’interrogation des nœuds s’effectue à tour de rôle (méthode « round-
robin »), et permet à chaque concentrateur de connaître les
informations d’adressage et de routage de chacun
47
Comparaison des méthodes
d’accès
CSMA/CD CSMA/CA Passage du jeton Priorité de la demande
Diffusion
Tout le réseau Tout le réseau Tout le réseau Une partie du réseau
Routage NON NON NON OUI
Rivalité Contention Contention Pas de contention Contention
Réseaux ETHERNET LOCALTALK TOKEN RING
ARCNET
100VG-AnyLAN
Topologie Bus Bus Anneau Bus en anneau
Accès Multiple Multiple Unique Simultané
Collision OUI NON NON NON
Gestion Décentralisée Décentralisée Centralisée Centralisée multi pôles
48
Éléments d’interconnexion de
réseaux
• Intérêt
– Ré-amplifier le signal
– Connecter n réseaux
– Sécuriser un réseau( limiter l’accès à certaines
zones)
– Pouvoir choisir un chemin différent pour
accéder à une ressource
– Limiter la surcharge du réseau
– Segmenter le réseau
49
Interconnexion au niveau
physique
• Répétiteurs , ou hub
– Remise en forme, ré -amplification des signaux
(électroniques ou optiques)
– But augmenter la taille du réseau (au sens
Ethernet)
50
Interconnexion au niveau
physique
• Ne regarde pas le contenu de la trame
• Il n'a pas d'adresse Ethernet
– Transparent pour les stations Ethernet
• Entre supports coaxiaux, TP et FO
Avantages
débit 10Mbits/s
ou 100Mbit/s
pas (ou très peu)
d'administration
Désavantages
Ne diminue pas la charge
Ne filtre pas les collisions
N’augmente pas la bande passante
Pas de possibilité de réseau virtuel
(VLAN)
51
Interconnexion au niveau liaison
• Ponts : Raccorde 2 réseaux
– Avantages
• Augmente la distance max entre 2 stations Ethernet
• Diminue la charge des réseaux et limite les
collisions
52
Extension de la notion de pont
• Notion de pont filtrant
– Raccorde 2 réseaux en filtrant les adresses.
• Tout ce qui doit passer d'un réseau sur l'autre
traverse le pont
• Toute communication propre à un réseau le reste
• Notion de commutateur de réseaux locaux
– Raccorde plusieurs réseaux en filtrant les
adresses et en assurant les fonctions de
commutation d'un tronçon vers un autre.
53
Interconnexion au niveau liaison
• Commutateur - Switch Ethernet de niveau 2
– 10, 100, 1000 Mb/s TP ou FO
– Fonction : multi-ponts, cœur d’étoile
– Commute les trames Ethernet sur un port ou un autre
– Permet : Ethernet Full duplex (TP ou FO)
• Emission et réception en même temps : 2x10 ou 2x100
• « Auto-negotiation » possible (IEEE 802.3u)
• Fonctions supplémentaires
– Auto-sensing débit (IEEE 802.3u)
– Affectation statique d’@ MAC et filtrage au niveau 2
– Spanning Tree : évite les boucles
54
Commutateur
• Construction d’un arbre
• A un instant : un seul chemin utilisé
– Réseaux virtuels : VLAN
– Port d’écoute qui reçoit tout le trafic des autres ports
• Limitations d’un réseau de commutateurs
– Théoriquement pas de distance maximum
– Broadcast et multicast diffusés partout
– 1 seul réseau IP possible
• Très répandu :
– Local : workgroup switch
– Campus : complété par le routeur (plus « lent » et plus cher)
– Remplacé par le commutateur-routeur (plus cher) quand besoin
55
Commutateur
• Au démarrage, un switch va construire une
table de correspondance adresse MAC -
numéro de port de connexion.
• Cette table est une mémoire interne du
switch.
• Ceci ne pose pas de problèmes pour un petit
réseau mais bien pour de gros réseaux
56
Commutateur
• Un Switch peut être stackable (empilable).
• Dans ce cas, un connecteur spécial permet de
relier plusieurs switch de même marque entre-eux.
• Le nombre de switch empilés (du même modèle)
est limité.
• L'ensemble du groupe de switch est vu comme un
seul switch.
• Ceci permet d'augmenter le nombre de ports et de
reprendre une table commune plus importante
57
Commutateur
• Certains switch sont manageables.
• Par une interface de type WEB reliée à l'adresse IP
du switch ou par RS232 et l'utilisation de Telnet,
afin de déterminer physiquement quel PC a accès
à quel serveur.
• Ceci permet également de déterminer des plages
d'adresses sur des ports (cas où plusieurs switch -
Hub sont chaînés) et ainsi d'augmenter la vitesse.
• Le management se fait généralement en fonction
des adresses MAC
58
Interconnexion au niveau réseau
• Routeurs et passerelles, aussi appelés
commutateur niveau 3
– Raccorde des réseaux
• IP.
• X25
• Apple Talk, ...
59
Routeur
• Les hub et switch permettent de connecter des
appareils faisant partie d'une même classe
d'adresse en IP ou d'un même sous-réseau
• Le routeur permet la communication entre
machines de classes différentes.
• De plus, comme les adresses des sites INTERNET
peuvent être pratiquement dans toutes les plages
d'adresses A et de classe B, le raccordement d'un
réseau interne à INTERNET passe obligatoirement
par un routeur
60
Routeur
• Table de routage / @ IP destination
• N’est pas transparent pour les stations
– Chaque station doit connaître l’@ IP du coupleur du
routeur pour « le traverser »
• Pour le protocole Ethernet
– C’est une station Ethernet
– Chaque port possède une adresse Ethernet
• Routage : ASIC
– Un PC Linux avec 2 cartes Ethernet peut faire fonction
de routeur
61
Routeur
• Les routeurs sont paramétrables et permettent
notamment de bloquer certaines connexions.
• Mais ils n'assurent pas de sécurité au niveau des
ports TCP ou UDP.
• Ils sont utilisés pour interfacer différents groupes
de PC en assurant un semblant de sécurité.
• Les routeurs ne servent pas qu'à connecter des
réseaux à Internet, ils permettent également de
servir de pont pour se connecter à un réseau
d'entreprise (ex: VPN via INTERNET)
62
Liaisons commutées
• RTC : Réseau Téléphonique Commuté
• Équipement : modem V90 56.6 Kbit/s (réception)
– Émission à 33.6 Kbit/s
• Connexion : interne, externe sur port série …
• Liaison non permanente
– Le PC ne peut pas être serveur
• Toujours très utilisé
– Réseau RTC disponible partout, ou presque
• Données transformées en analogique
63
Liaisons commutées
• RNIS (Réseau Numérique à Intégration de Service)
ISDN (Integrated Services Digital Network)
• 2 types de canaux de communication :
– - Un canal de signalisation (canal D - Data Channel -
couche 2 : Communtation de paquet : Protocole LAP-D)
(16 kbit/s pour les accès de base ou à 64 kbit/s pour les
accès primaires)
– - Des canaux de transfert (canaux B - Bearer Channel -
Couche 1 : Commutation de circuit : PPP, HDLC). Bien
qu'ils soient transportés par les mêmes fils électriques,
les canaux B sont distincts les uns des autres. (64 kbit/s
chacun)
Liaisons commutées
• Ces canaux sont full duplex et les canaux B
peuvent être utilisés séparément, ou réunis à
plusieurs pour créer une liaison fonctionnant à un
multiple de 64 kilobits/sec.
• Réseau national de FT : Numéris
• Accès de base (particulier-agence) : 144 Kb/s
– 2 canaux B à 64 Kb/s : téléphone + Internet par
exemple
– 1 canal D à 14 Kb/s : signalisation
– Utilisation liaison téléphonique classique
64
65
Liaisons longues distance :
Technologie DSL
(Digital Subscriber Line)
• Regroupe l’ensemble des technologies
mises en place pour un transport numérique
de l’information sur une simple ligne de
raccordement téléphonique
• Les technologies xDSL sont divisées en
deux grandes familles, celle utilisant une
transmission symétrique et celle utilisant
une transmission asymétrique.
66
Les solutions symétriques :HDSL
(High bit rate DSL)
• 1ère technique en 1990.
• Débit de 2Mbps dans les 2 sens sur 3 paires torsadées
et 1,5 Mbps dans les 2 sens sur 2 paires torsadées. Le
débit diminue en fonction de la qualité de la ligne et de
la distance de la ligne
• La connexion peut être permanente mais il n’y a pas de
canal de téléphonie disponible lors d’une connexion
HDSL.
67
Les solutions symétriques
• SDSL (Single pair DSL, ou symmetric DSL) est
le précurseur de HDSL2 (Technologie dérivée de HDSL
qui devrait offrir les mêmes perf sur 1 paire torsadée).
• Technique conçue pour une plus courte distance
qu’HDSL
• Altitude Telecom,Magic Online, Nerim, Neuf
Connect,Orange Business Internet
• de 512kbit/s à 8Mbit/s symétrique
• 1er
prix de 100 à 200€
68
Les solutions asymétriques : ADSL
(Asymmetric Digital Subscriber Line)
• Une des seule technologie disponible qui offre le
transport de la TV/vidéo sous forme numérique
(MPEG1 ou MPEG 2) en utilisant un raccordement
téléphonique
• Le standard ADSL a été finalisé en 1995 et prévoit :
– Un canal téléphonique avec raccordement analogique ou
RNIS
• ADSL 2+
– Un canal montant avec une capacité maximale de 1024 kbits/s
– Un canal descendant avec un débit maximal de 22Mbits/s
ADSL – fonctionnement
• La téléphonie classique utilise une plage de
fréquence basse (25 et 3500 Hz )
• ADSL utilise une fréquence supérieure
• Transport de données numérique sur
support analogique
• ADSL Couche OSI 1
• Commutateur public / commutateur privé
ou PABX
69
70
Les solutions asymétriques : RADSL
(Rate Adaptive DSL)
• La vitesse de transmission est fixée de manière
automatique et dynamique en recherchant la
vitesse maximale possible sur la ligne de
raccordement et en la réadaptant en permanence et
sans coupure.
• RADSL permettrait des débits ascendants de
128kbps à 1Mbps et des débits descendants de
600kbps à 7Mbps, pour une longueur maximale de
boucle locale de 5,4 km.
71
Les solutions asymétriques :VDSL
(Very High Bit Rate DSL)
• C’est la plus rapide des technologies DSL. Elle
peut supporter, sur une simple paire torsadée, des
débit de 13 à 55.2 Mbps en downstream et de 1,5 à
6 Mbps en upstream ou, si l’on veut en faire une
connexion symétrique un débit de 34Mbps dans
les 2 sens. Donc à noter que VDSL est utilisable
en connexion asymétrique ou symétrique.
• VDSL a principalement été développé pour le
transport de l’ATM (Asynchronous Transfer
Mode) à haut débit sur une courte distance
• VDSL fonctionne avec F.O.
• Déployé en France par Erenis
72
Équipements ADSL
• Le DSLAM (DSL Access Multiplexer)
interconnecte tous les modems ADSL reliés à ce
central.
• Cet élément peut aussi accueillir différents
services DSL tels que ADSL, SDSL ou HDSL
• Tous les services disponibles sur le réseau arrivent
par broadband vers une station DSLAM pour être
ensuite redistribués vers les utilisateurs.
• La maintenance et la configuration du DSLAM est
effectuée à distance.
73
Équipements ADSL
• Le splitter : le splitter est un filtre d’aiguillage qui
sépare la bande passante réservée au service
téléphonique de la bande passante utilisée pour la
transmission ADSL. Il assure un découplage suffisant
pour éviter que les signaux émis sur l’une des bandes
fréquences ne vienne perturber le fonctionnement de
l’autre. A noter que l’installation du splitter est
obligatoire pour avoir ADSL avec un connexion ISDN.
• Le microfiltre : le microfiltre est un filtre passe-bas qui
est installé sur les connexions analogiques. Il n y a donc
pas besoin d’installer de splitter.
• Rq: L’installation est obligatoire pour chaque téléphone
74
Équipements ADSL
Offres fibre optiques
• Magic Online, Neuf ADSL, Orange
Business Internet
• Tarif : 700 € pour débit jusqu’à 10 Gbps
75
76
Liaisons longues distances : X25
• Réseau à commutation de paquets :
– Couches 2-3
– Circuits virtuels
– Adresses X25
• Opérateur historique : Transpac
• Accès jusqu’à 64 Kb/s (ou guère plus)
• Les serveurs vidéotex (minitel) ont une connexion X25
• Remplacé par IP sous toutes ses formes
77
Liaisons spécialisées FT
• Transfix (nationales)
– 2.4 K b/s à 34 Mb/s
– STAS : Spécifications Techniques d’Accès au Service
– 2.4 K à 19.2 K : interfaces : V24, V28
– 64 K à 34 M : interfaces : X24/V11 ou G703-G704
– Modems fournis par opérateur
– Liaisons internationales : idem nationales mais plus difficiles à
mettre en place de bout en bout : sur-mesure
• Connexions :
– Routeurs
– Ponts (distants)
– Commutateurs ATM
– PABX Téléphoniques

Contenu connexe

Tendances

Typologie des réseaux informatiques
Typologie des réseaux informatiquesTypologie des réseaux informatiques
Typologie des réseaux informatiquesATPENSC-Group
 
1 - Généralités - Réseaux Informatiques.pdf
1 - Généralités - Réseaux Informatiques.pdf1 - Généralités - Réseaux Informatiques.pdf
1 - Généralités - Réseaux Informatiques.pdfKanySidibe
 
Etude et Mise en Œuvre d’un service convergé Voix/Données : Cas de la vidéoph...
Etude et Mise en Œuvre d’un service convergé Voix/Données : Cas de la vidéoph...Etude et Mise en Œuvre d’un service convergé Voix/Données : Cas de la vidéoph...
Etude et Mise en Œuvre d’un service convergé Voix/Données : Cas de la vidéoph...Axelle L. N. Tchadjet
 
QoS Cheatsheet by packetlife.net
QoS Cheatsheet by packetlife.netQoS Cheatsheet by packetlife.net
QoS Cheatsheet by packetlife.netFebrian ‎
 
Évaluation de l'interface radio UMTS/HSPA
Évaluation de l'interface radio UMTS/HSPAÉvaluation de l'interface radio UMTS/HSPA
Évaluation de l'interface radio UMTS/HSPAmey006
 
Transition ipv4-ipv6
Transition ipv4-ipv6Transition ipv4-ipv6
Transition ipv4-ipv6Arrow Djibio
 
Architectures distribuées
Architectures distribuéesArchitectures distribuées
Architectures distribuéesFranck SIMON
 
Projet fibre optique master 1 télécom & réseaux
Projet fibre optique master 1 télécom & réseauxProjet fibre optique master 1 télécom & réseaux
Projet fibre optique master 1 télécom & réseauxCheikh Tidiane DIABANG
 
Les Topologies Physiques des réseaux informatiques
Les Topologies Physiques des réseaux informatiquesLes Topologies Physiques des réseaux informatiques
Les Topologies Physiques des réseaux informatiquesATPENSC-Group
 
Présentation du projet IPTV
Présentation du projet IPTV Présentation du projet IPTV
Présentation du projet IPTV Mohammed JAITI
 
Mise en place vidéoconférence + chat avec Openfire
Mise en place vidéoconférence + chat avec OpenfireMise en place vidéoconférence + chat avec Openfire
Mise en place vidéoconférence + chat avec OpenfireAbdou Lahad SYLLA
 
La fibre optique
La fibre optiqueLa fibre optique
La fibre optiqueGONEAxel
 

Tendances (20)

Les réseaux informatiques 2
Les réseaux informatiques 2Les réseaux informatiques 2
Les réseaux informatiques 2
 
Etude de la VoIP
Etude de la VoIPEtude de la VoIP
Etude de la VoIP
 
Multiplexage spatial
Multiplexage spatialMultiplexage spatial
Multiplexage spatial
 
Typologie des réseaux informatiques
Typologie des réseaux informatiquesTypologie des réseaux informatiques
Typologie des réseaux informatiques
 
1 - Généralités - Réseaux Informatiques.pdf
1 - Généralités - Réseaux Informatiques.pdf1 - Généralités - Réseaux Informatiques.pdf
1 - Généralités - Réseaux Informatiques.pdf
 
Etude et Mise en Œuvre d’un service convergé Voix/Données : Cas de la vidéoph...
Etude et Mise en Œuvre d’un service convergé Voix/Données : Cas de la vidéoph...Etude et Mise en Œuvre d’un service convergé Voix/Données : Cas de la vidéoph...
Etude et Mise en Œuvre d’un service convergé Voix/Données : Cas de la vidéoph...
 
Cours frame relay
Cours frame relayCours frame relay
Cours frame relay
 
QoS Cheatsheet by packetlife.net
QoS Cheatsheet by packetlife.netQoS Cheatsheet by packetlife.net
QoS Cheatsheet by packetlife.net
 
Présentation 5 g
Présentation 5 gPrésentation 5 g
Présentation 5 g
 
Évaluation de l'interface radio UMTS/HSPA
Évaluation de l'interface radio UMTS/HSPAÉvaluation de l'interface radio UMTS/HSPA
Évaluation de l'interface radio UMTS/HSPA
 
Reseau informatique
Reseau informatiqueReseau informatique
Reseau informatique
 
Transition ipv4-ipv6
Transition ipv4-ipv6Transition ipv4-ipv6
Transition ipv4-ipv6
 
Architectures distribuées
Architectures distribuéesArchitectures distribuées
Architectures distribuées
 
Projet fibre optique master 1 télécom & réseaux
Projet fibre optique master 1 télécom & réseauxProjet fibre optique master 1 télécom & réseaux
Projet fibre optique master 1 télécom & réseaux
 
Les Topologies Physiques des réseaux informatiques
Les Topologies Physiques des réseaux informatiquesLes Topologies Physiques des réseaux informatiques
Les Topologies Physiques des réseaux informatiques
 
Services IP
Services IPServices IP
Services IP
 
Internet Of Things
Internet Of Things Internet Of Things
Internet Of Things
 
Présentation du projet IPTV
Présentation du projet IPTV Présentation du projet IPTV
Présentation du projet IPTV
 
Mise en place vidéoconférence + chat avec Openfire
Mise en place vidéoconférence + chat avec OpenfireMise en place vidéoconférence + chat avec Openfire
Mise en place vidéoconférence + chat avec Openfire
 
La fibre optique
La fibre optiqueLa fibre optique
La fibre optique
 

Similaire à Général réseau typologie et architecture

416769859360_chap2fondementdesreseaux2023.pdf
416769859360_chap2fondementdesreseaux2023.pdf416769859360_chap2fondementdesreseaux2023.pdf
416769859360_chap2fondementdesreseaux2023.pdfRihabBENLAMINE
 
administration réseaux.pdf
administration réseaux.pdfadministration réseaux.pdf
administration réseaux.pdfharizi riadh
 
II - Archi_Couches_Basses.pdf
II - Archi_Couches_Basses.pdfII - Archi_Couches_Basses.pdf
II - Archi_Couches_Basses.pdfMeriemBalhaddad
 
II - Archi_Couches_Basses.pdf
II - Archi_Couches_Basses.pdfII - Archi_Couches_Basses.pdf
II - Archi_Couches_Basses.pdfMeriemBalhaddad
 
Introductionreseaux1-2.pdf
Introductionreseaux1-2.pdfIntroductionreseaux1-2.pdf
Introductionreseaux1-2.pdfbenjat3
 
Introduction_Reseau.pdf
Introduction_Reseau.pdfIntroduction_Reseau.pdf
Introduction_Reseau.pdfMohamedElbrak2
 
1254851542chap1 interconnexion routage
1254851542chap1 interconnexion routage1254851542chap1 interconnexion routage
1254851542chap1 interconnexion routageSimo Qb
 
Introduction_Reseau.ppt
Introduction_Reseau.pptIntroduction_Reseau.ppt
Introduction_Reseau.pptAmalHadri2
 
CM2-TD1_-_Topologie_et_Supports_de_transmission.pdf
CM2-TD1_-_Topologie_et_Supports_de_transmission.pdfCM2-TD1_-_Topologie_et_Supports_de_transmission.pdf
CM2-TD1_-_Topologie_et_Supports_de_transmission.pdfdocteurgyneco1
 
Projet reseau-de-kherfallah-ipm-2010-2011
Projet reseau-de-kherfallah-ipm-2010-2011Projet reseau-de-kherfallah-ipm-2010-2011
Projet reseau-de-kherfallah-ipm-2010-2011Boubaker KHERFALLAH
 
Cours 2 les architectures reparties
Cours 2 les architectures repartiesCours 2 les architectures reparties
Cours 2 les architectures repartiesMariem ZAOUALI
 
reseauxUE1.2_v2021.pptx
reseauxUE1.2_v2021.pptxreseauxUE1.2_v2021.pptx
reseauxUE1.2_v2021.pptxjjsek
 
CoursReseauxInfo.pdf
CoursReseauxInfo.pdfCoursReseauxInfo.pdf
CoursReseauxInfo.pdfOULAKBIRIlham
 
Réseaux industriels et bas de terrain.ppt
Réseaux industriels et bas de terrain.pptRéseaux industriels et bas de terrain.ppt
Réseaux industriels et bas de terrain.pptsaaid6
 
ITN_Module_6.pptx
ITN_Module_6.pptxITN_Module_6.pptx
ITN_Module_6.pptxserieux1
 
Chapitre 3 Comprendre la notion de socket.docx
Chapitre 3 Comprendre la notion de socket.docxChapitre 3 Comprendre la notion de socket.docx
Chapitre 3 Comprendre la notion de socket.docxKoffi Kanga
 

Similaire à Général réseau typologie et architecture (20)

416769859360_chap2fondementdesreseaux2023.pdf
416769859360_chap2fondementdesreseaux2023.pdf416769859360_chap2fondementdesreseaux2023.pdf
416769859360_chap2fondementdesreseaux2023.pdf
 
assiter AR.pdf
assiter AR.pdfassiter AR.pdf
assiter AR.pdf
 
administration réseaux.pdf
administration réseaux.pdfadministration réseaux.pdf
administration réseaux.pdf
 
II - Archi_Couches_Basses.pdf
II - Archi_Couches_Basses.pdfII - Archi_Couches_Basses.pdf
II - Archi_Couches_Basses.pdf
 
II - Archi_Couches_Basses.pdf
II - Archi_Couches_Basses.pdfII - Archi_Couches_Basses.pdf
II - Archi_Couches_Basses.pdf
 
Introductionreseaux1-2.pdf
Introductionreseaux1-2.pdfIntroductionreseaux1-2.pdf
Introductionreseaux1-2.pdf
 
1421224369492.pdf
1421224369492.pdf1421224369492.pdf
1421224369492.pdf
 
Introduction_Reseau.pdf
Introduction_Reseau.pdfIntroduction_Reseau.pdf
Introduction_Reseau.pdf
 
1254851542chap1 interconnexion routage
1254851542chap1 interconnexion routage1254851542chap1 interconnexion routage
1254851542chap1 interconnexion routage
 
Introduction_Reseau.ppt
Introduction_Reseau.pptIntroduction_Reseau.ppt
Introduction_Reseau.ppt
 
CM2-TD1_-_Topologie_et_Supports_de_transmission.pdf
CM2-TD1_-_Topologie_et_Supports_de_transmission.pdfCM2-TD1_-_Topologie_et_Supports_de_transmission.pdf
CM2-TD1_-_Topologie_et_Supports_de_transmission.pdf
 
Projet reseau-de-kherfallah-ipm-2010-2011
Projet reseau-de-kherfallah-ipm-2010-2011Projet reseau-de-kherfallah-ipm-2010-2011
Projet reseau-de-kherfallah-ipm-2010-2011
 
Cours 2 les architectures reparties
Cours 2 les architectures repartiesCours 2 les architectures reparties
Cours 2 les architectures reparties
 
reseauxUE1.2_v2021.pptx
reseauxUE1.2_v2021.pptxreseauxUE1.2_v2021.pptx
reseauxUE1.2_v2021.pptx
 
chapitre1.ppt
chapitre1.pptchapitre1.ppt
chapitre1.ppt
 
CoursReseauxInfo.pdf
CoursReseauxInfo.pdfCoursReseauxInfo.pdf
CoursReseauxInfo.pdf
 
Réseaux industriels et bas de terrain.ppt
Réseaux industriels et bas de terrain.pptRéseaux industriels et bas de terrain.ppt
Réseaux industriels et bas de terrain.ppt
 
ITN_Module_6.pptx
ITN_Module_6.pptxITN_Module_6.pptx
ITN_Module_6.pptx
 
Chapitre 3 Comprendre la notion de socket.docx
Chapitre 3 Comprendre la notion de socket.docxChapitre 3 Comprendre la notion de socket.docx
Chapitre 3 Comprendre la notion de socket.docx
 
Exposer reseaux haut débit
Exposer reseaux haut débitExposer reseaux haut débit
Exposer reseaux haut débit
 

Plus de Manuel Cédric EBODE MBALLA (13)

Pres requis pour instalation des clients pour symantion endpoint
Pres requis pour instalation des clients pour symantion endpoint Pres requis pour instalation des clients pour symantion endpoint
Pres requis pour instalation des clients pour symantion endpoint
 
Tutoriel word
Tutoriel wordTutoriel word
Tutoriel word
 
petit cours sur la sécurité des réseaux informatiques
petit cours sur la sécurité des réseaux informatiques petit cours sur la sécurité des réseaux informatiques
petit cours sur la sécurité des réseaux informatiques
 
mis en place d'une solution multi-tenant pour la supervision
mis en place d'une solution multi-tenant pour la supervisionmis en place d'une solution multi-tenant pour la supervision
mis en place d'une solution multi-tenant pour la supervision
 
Nessus outil d audit
Nessus outil d auditNessus outil d audit
Nessus outil d audit
 
Audit et sécurité des systèmes d'information
Audit et sécurité des systèmes d'informationAudit et sécurité des systèmes d'information
Audit et sécurité des systèmes d'information
 
Introduction informatique
Introduction informatiqueIntroduction informatique
Introduction informatique
 
tutoriel sur la mise en place d'une politique de sécurité informatique
tutoriel sur la mise en place d'une politique de sécurité informatiquetutoriel sur la mise en place d'une politique de sécurité informatique
tutoriel sur la mise en place d'une politique de sécurité informatique
 
présentation sur le vpn
présentation sur le vpn présentation sur le vpn
présentation sur le vpn
 
mis en place dun vpn site à site
mis en place dun vpn site à site mis en place dun vpn site à site
mis en place dun vpn site à site
 
projet sur le vpn presentation
projet sur le vpn presentationprojet sur le vpn presentation
projet sur le vpn presentation
 
VPN WINDOWS LINUX OPENVPN
VPN WINDOWS LINUX OPENVPNVPN WINDOWS LINUX OPENVPN
VPN WINDOWS LINUX OPENVPN
 
politique de sécurité a mettre en place
politique de sécurité a mettre en place politique de sécurité a mettre en place
politique de sécurité a mettre en place
 

Dernier

Bibdoc 2024 - Sobriete numerique en bibliotheque et centre de documentation.pdf
Bibdoc 2024 - Sobriete numerique en bibliotheque et centre de documentation.pdfBibdoc 2024 - Sobriete numerique en bibliotheque et centre de documentation.pdf
Bibdoc 2024 - Sobriete numerique en bibliotheque et centre de documentation.pdfBibdoc 37
 
Pas de vagues. pptx Film français
Pas de vagues.  pptx      Film   françaisPas de vagues.  pptx      Film   français
Pas de vagues. pptx Film françaisTxaruka
 
PIE-A2-P4-support stagiaires sept 22-validé.pdf
PIE-A2-P4-support stagiaires sept 22-validé.pdfPIE-A2-P4-support stagiaires sept 22-validé.pdf
PIE-A2-P4-support stagiaires sept 22-validé.pdfRiDaHAziz
 
Bibdoc 2024 - L’Éducation aux Médias et à l’Information face à l’intelligence...
Bibdoc 2024 - L’Éducation aux Médias et à l’Information face à l’intelligence...Bibdoc 2024 - L’Éducation aux Médias et à l’Information face à l’intelligence...
Bibdoc 2024 - L’Éducation aux Médias et à l’Information face à l’intelligence...Bibdoc 37
 
Présentation - Initiatives - CECOSDA - OIF - Fact Checking.pptx
Présentation - Initiatives - CECOSDA - OIF - Fact Checking.pptxPrésentation - Initiatives - CECOSDA - OIF - Fact Checking.pptx
Présentation - Initiatives - CECOSDA - OIF - Fact Checking.pptxJCAC
 
DIGNITAS INFINITA - DIGNITÉ HUMAINE; déclaration du dicastère .pptx
DIGNITAS INFINITA - DIGNITÉ HUMAINE; déclaration du dicastère .pptxDIGNITAS INFINITA - DIGNITÉ HUMAINE; déclaration du dicastère .pptx
DIGNITAS INFINITA - DIGNITÉ HUMAINE; déclaration du dicastère .pptxMartin M Flynn
 
PIE-A2-P 5- Supports stagiaires.pptx.pdf
PIE-A2-P 5- Supports stagiaires.pptx.pdfPIE-A2-P 5- Supports stagiaires.pptx.pdf
PIE-A2-P 5- Supports stagiaires.pptx.pdfRiDaHAziz
 
Aux origines de la sociologie : du XIXème au début XX ème siècle
Aux origines de la sociologie : du XIXème au début XX ème siècleAux origines de la sociologie : du XIXème au début XX ème siècle
Aux origines de la sociologie : du XIXème au début XX ème siècleAmar LAKEL, PhD
 
Bibdoc 2024 - Les intelligences artificielles en bibliotheque.pdf
Bibdoc 2024 - Les intelligences artificielles en bibliotheque.pdfBibdoc 2024 - Les intelligences artificielles en bibliotheque.pdf
Bibdoc 2024 - Les intelligences artificielles en bibliotheque.pdfBibdoc 37
 
Apprendre avec des top et nano influenceurs
Apprendre avec des top et nano influenceursApprendre avec des top et nano influenceurs
Apprendre avec des top et nano influenceursStagiaireLearningmat
 
Calendrier de la semaine du 8 au 12 avril
Calendrier de la semaine du 8 au 12 avrilCalendrier de la semaine du 8 au 12 avril
Calendrier de la semaine du 8 au 12 avrilfrizzole
 
Faut-il avoir peur de la technique ? (G. Gay-Para)
Faut-il avoir peur de la technique ? (G. Gay-Para)Faut-il avoir peur de la technique ? (G. Gay-Para)
Faut-il avoir peur de la technique ? (G. Gay-Para)Gabriel Gay-Para
 
Chana Orloff.pptx Sculptrice franco-ukranienne
Chana Orloff.pptx Sculptrice franco-ukranienneChana Orloff.pptx Sculptrice franco-ukranienne
Chana Orloff.pptx Sculptrice franco-ukranienneTxaruka
 
Pas de vagues. pptx Film français
Pas de vagues.  pptx   Film     françaisPas de vagues.  pptx   Film     français
Pas de vagues. pptx Film françaisTxaruka
 
La Base unique départementale - Quel bilan, au bout de 5 ans .pdf
La Base unique départementale - Quel bilan, au bout de 5 ans .pdfLa Base unique départementale - Quel bilan, au bout de 5 ans .pdf
La Base unique départementale - Quel bilan, au bout de 5 ans .pdfbdp12
 
Vulnérabilité numérique d’usage : un enjeu pour l’aide à la réussitepdf
Vulnérabilité numérique d’usage : un enjeu pour l’aide à la réussitepdfVulnérabilité numérique d’usage : un enjeu pour l’aide à la réussitepdf
Vulnérabilité numérique d’usage : un enjeu pour l’aide à la réussitepdfSylvianeBachy
 
Newsletter SPW Agriculture en province du Luxembourg du 10-04-24
Newsletter SPW Agriculture en province du Luxembourg du 10-04-24Newsletter SPW Agriculture en province du Luxembourg du 10-04-24
Newsletter SPW Agriculture en province du Luxembourg du 10-04-24BenotGeorges3
 

Dernier (18)

Bibdoc 2024 - Sobriete numerique en bibliotheque et centre de documentation.pdf
Bibdoc 2024 - Sobriete numerique en bibliotheque et centre de documentation.pdfBibdoc 2024 - Sobriete numerique en bibliotheque et centre de documentation.pdf
Bibdoc 2024 - Sobriete numerique en bibliotheque et centre de documentation.pdf
 
Pas de vagues. pptx Film français
Pas de vagues.  pptx      Film   françaisPas de vagues.  pptx      Film   français
Pas de vagues. pptx Film français
 
PIE-A2-P4-support stagiaires sept 22-validé.pdf
PIE-A2-P4-support stagiaires sept 22-validé.pdfPIE-A2-P4-support stagiaires sept 22-validé.pdf
PIE-A2-P4-support stagiaires sept 22-validé.pdf
 
Bibdoc 2024 - L’Éducation aux Médias et à l’Information face à l’intelligence...
Bibdoc 2024 - L’Éducation aux Médias et à l’Information face à l’intelligence...Bibdoc 2024 - L’Éducation aux Médias et à l’Information face à l’intelligence...
Bibdoc 2024 - L’Éducation aux Médias et à l’Information face à l’intelligence...
 
Présentation - Initiatives - CECOSDA - OIF - Fact Checking.pptx
Présentation - Initiatives - CECOSDA - OIF - Fact Checking.pptxPrésentation - Initiatives - CECOSDA - OIF - Fact Checking.pptx
Présentation - Initiatives - CECOSDA - OIF - Fact Checking.pptx
 
DIGNITAS INFINITA - DIGNITÉ HUMAINE; déclaration du dicastère .pptx
DIGNITAS INFINITA - DIGNITÉ HUMAINE; déclaration du dicastère .pptxDIGNITAS INFINITA - DIGNITÉ HUMAINE; déclaration du dicastère .pptx
DIGNITAS INFINITA - DIGNITÉ HUMAINE; déclaration du dicastère .pptx
 
PIE-A2-P 5- Supports stagiaires.pptx.pdf
PIE-A2-P 5- Supports stagiaires.pptx.pdfPIE-A2-P 5- Supports stagiaires.pptx.pdf
PIE-A2-P 5- Supports stagiaires.pptx.pdf
 
Aux origines de la sociologie : du XIXème au début XX ème siècle
Aux origines de la sociologie : du XIXème au début XX ème siècleAux origines de la sociologie : du XIXème au début XX ème siècle
Aux origines de la sociologie : du XIXème au début XX ème siècle
 
Bibdoc 2024 - Les intelligences artificielles en bibliotheque.pdf
Bibdoc 2024 - Les intelligences artificielles en bibliotheque.pdfBibdoc 2024 - Les intelligences artificielles en bibliotheque.pdf
Bibdoc 2024 - Les intelligences artificielles en bibliotheque.pdf
 
Apprendre avec des top et nano influenceurs
Apprendre avec des top et nano influenceursApprendre avec des top et nano influenceurs
Apprendre avec des top et nano influenceurs
 
Calendrier de la semaine du 8 au 12 avril
Calendrier de la semaine du 8 au 12 avrilCalendrier de la semaine du 8 au 12 avril
Calendrier de la semaine du 8 au 12 avril
 
Bulletin des bibliotheques Burkina Faso mars 2024
Bulletin des bibliotheques Burkina Faso mars 2024Bulletin des bibliotheques Burkina Faso mars 2024
Bulletin des bibliotheques Burkina Faso mars 2024
 
Faut-il avoir peur de la technique ? (G. Gay-Para)
Faut-il avoir peur de la technique ? (G. Gay-Para)Faut-il avoir peur de la technique ? (G. Gay-Para)
Faut-il avoir peur de la technique ? (G. Gay-Para)
 
Chana Orloff.pptx Sculptrice franco-ukranienne
Chana Orloff.pptx Sculptrice franco-ukranienneChana Orloff.pptx Sculptrice franco-ukranienne
Chana Orloff.pptx Sculptrice franco-ukranienne
 
Pas de vagues. pptx Film français
Pas de vagues.  pptx   Film     françaisPas de vagues.  pptx   Film     français
Pas de vagues. pptx Film français
 
La Base unique départementale - Quel bilan, au bout de 5 ans .pdf
La Base unique départementale - Quel bilan, au bout de 5 ans .pdfLa Base unique départementale - Quel bilan, au bout de 5 ans .pdf
La Base unique départementale - Quel bilan, au bout de 5 ans .pdf
 
Vulnérabilité numérique d’usage : un enjeu pour l’aide à la réussitepdf
Vulnérabilité numérique d’usage : un enjeu pour l’aide à la réussitepdfVulnérabilité numérique d’usage : un enjeu pour l’aide à la réussitepdf
Vulnérabilité numérique d’usage : un enjeu pour l’aide à la réussitepdf
 
Newsletter SPW Agriculture en province du Luxembourg du 10-04-24
Newsletter SPW Agriculture en province du Luxembourg du 10-04-24Newsletter SPW Agriculture en province du Luxembourg du 10-04-24
Newsletter SPW Agriculture en province du Luxembourg du 10-04-24
 

Général réseau typologie et architecture

  • 2. 2 Plan • Les différents types de réseau • Topologie physique • Architectures type • Méthodes d’accès • Interconnexion de réseaux : Éléments actifs • Liaisons commutées • Liaisons longues distances • Liaisons spécialisées
  • 3. 3 Les différents types de réseaux • LAN : Local Area Network – Ethernet , Wifi • MAN : Metropolitan Area Network – Wifi, WiMax, FO • WAN : Wide Area Network – Ligne louée – Circuit commuté (RNIS) – Commutation de paquets 5X25, FR, ATM,…) • Internet
  • 4. 4 LAN • LAN : Local Area Network – Un étage – Un bâtiment – Diamètre < 2 km – Un site géographique : domaine privé – Plusieurs bâtiments (site-campus)
  • 5. 5 Topologie physique • Les différentes topologies en canal point à point
  • 6. 6 Topologie physique en canal point à point • Étoile • Anneau • Arbre • Maillage régulier • Maillage irrégulier • Intersection d’anneaux
  • 7. 7 Topologie physique en canal de diffusion • Bus • Satellite • Anneau
  • 8. 8 Distinction topologie physique / topologie logique • Un réseau logique en anneau peut être un réseau physique en étoile • Les ordinateurs sont alors reliés à un répartiteur (MAU : Multistation Access Unit) qui gère le passage de parole en Token Ring
  • 9. 9 Architectures type • Le client / serveur • Le n tiers • Le peer to peer
  • 10. 10 Le client /serveur • Les ressources réseau sont centralisées. • Un ou plusieurs serveurs sont dédiés au partage de ces ressources et en assurent la sécurité • Les postes clients, en principe, ne partagent pas de ressources, ils utilisent celles qui sont offertes par les serveurs.
  • 11. 11 Le client / serveur : Avantages • Serveurs à dimensionner suivant la taille du réseau et le nombre de clients. • Véritable politique de sécurité • Fonctions avancées pour les utilisateurs comme par exemple les profils itinérants qui permettent à un utilisateur de retrouver son environnement de travail sur différentes machines. • Ressources toujours disponibles pour les utilisateurs. • Les sauvegardes de données sont centralisées • Un administrateur gère le fonctionnement du réseau et les utilisateurs n'ont pas à s'en préoccuper
  • 12. 12 Le client / serveur : Inconvénients • Mise en place beaucoup plus lourde qu'un simple "poste à poste" • Nécessite la présence d'un administrateur • Coût est évidemment plus élevé puisqu'il faut la présence d'un ou de plusieurs serveurs. • Si un serveur tombe en panne, ses ressources ne sont plus disponibles. Il faut donc prévoir des solutions plus ou moins complexes, plus ou moins onéreuses, pour assurer un fonctionnement au moins minimum en cas de panne.
  • 13. 13 Le n tiers • Présentation de l'architecture à 2 niveaux – L'architecture à deux niveaux caractérise les systèmes clients/serveurs dans lesquels le client demande une ressource et le serveur la lui fournit directement. Cela signifie que le serveur ne fait pas appel à une autre application afin de fournir le service.
  • 14. 14 Le n tiers • Présentation de l'architecture à 3 niveaux – Dans l'architecture à 3 niveaux (appelée architecture 3-tier), il existe un niveau intermédiaire, c'est-à-dire que l'on a généralement une architecture partagée entre : • 1. Le client : le demandeur de ressources • 2. Le serveur d'application (appelé aussi middleware) : le serveur chargé de fournir la ressource mais faisant appel à un autre serveur • 3. Le serveur secondaire (généralement un serveur de base de données), fournissant un service au premier serveur
  • 15. 15 Le n tiers • Peut désigner les architectures suivantes : – Partage d'application entre client, serveur intermédiaire, et serveur d'entreprise – Partage d'application entre client, BDD intermédiaire, et BDD d'entreprise • Comparaison des deux types d'architecture – C/S : le serveur est polyvalent. Il fournit les ressources au client. – Pour le 3 tiers, chaque serveur est spécialisé dans une tâche (serveur web ou BDD). Cela permet : • une plus grande flexibilité/souplesse • une plus grande sécurité • de meilleures performances (les tâches sont partagées)
  • 16. 16 Le n tiers • L'architecture multi niveaux • Dans l'architecture à 3 niveaux, chaque serveur (niveaux 2 et 3) effectue une tâche (un service) spécialisée. Ainsi, un serveur peut utiliser les services d'un ou plusieurs autres serveurs afin de fournir son propre service. Par conséquent, l'architecture à trois niveaux est potentiellement une architecture à N niveaux...
  • 17. 17 Le peer to peer • Postes de travail simplement reliés entre eux par le réseau. Aucune machine ne joue un rôle particulier. Chaque poste peut partager ses ressources avec les autres postes. • L'utilisateur de chaque poste définit l'accès à ses ressources. Il n'y a pas obligatoirement d'administrateur attitré. • Ici, chaque poste peut partager tout ou partie de sa mémoire de masse, et P-2 peut partager son imprimante.
  • 18. 18 Le peer to peer : Avantages • Facilité de mise en place • Chaque utilisateur peut décider de partager l'une de ses ressources avec les autres postes. • Dans un groupe de travail, l'imprimante peut être utilisée par tous.
  • 19. 19 Le peer to peer : Inconvénients • Chaque utilisateur a la responsabilité du fonctionnement du réseau. • Les outils de sécurité sont très limités. • Si un poste est éteint ou s'il se "plante", ses ressources ne sont plus accessibles • Le système devient ingérable lorsque le nombre de postes augmente. • Lorsqu'une ressource est utilisée sur une machine, l'utilisateur de cette machine peut voir ses performances diminuer.
  • 20. 20 ETTD et ETCD • ETTD : Équipement Terminal de Traitement de Données : Tous les éléments actifs qui agissent sur les données elles même (ordinateurs, imprimantes réseau,…) • ETCD: Équipement de Terminaison de Circuit de Données : Adapte le signal à transmettre (carte réseau, modem…)
  • 21. LES TYPES D’ÉCHANGE DE DONNÉES 21
  • 22. Commutation et connexions • Couche 3 : réseau Commutation et acheminement des paquets. Etablissement de circuits virtuels entre un noeud et un autre, séquençage des paquets, acheminement des paquets d'un routeur à un autre. • Couche 4 : transport Contrôle de flux et correction d'erreur au niveau du paquet. Acheminement des paquets de l'émetteur au récepteur final. • Couche 5 : session Etablissement des communications entre deux applications et gestion du dialogue 22
  • 23. 23 Méthodes de commutation • La commutation de circuit – RNIS, téléphone • La commutation de messages • La commutation de paquets – TCP – X.25 et Frame Relay (obsolète) – ATM (encore utilisé, en voie d'obsolescence) – MPLS (Multiprotocol Label Switching) – PBT/PBB-TE: Ethernet en tant que technologie de transport avec ingénierie de trafic
  • 24. 24 Commutation de circuit • Quand une machine veut envoyer une trame dans un réseau à commutation de circuits, il faut réserver un chemin physique à travers le réseau maillé, jusqu’au destinataire • Communication en 3 phases: – Établissement de la connexion (circuit fixe entre les ETTD) – Transfert des données – Fermeture de la connexion
  • 25. 25 Commutation de circuits • + : Pas de perte de temps de routage • - : Inutile si peu de données à transférer
  • 26. 26 Commutation de circuits • Transparence de l’information • Retard faible et constant (adapté aux flux isochrones : voix et vidéo) • Débits prédéterminés (possibilité de contrats) • Difficulté de prévoir à priori le débit nécessaire
  • 27. 27 Commutation de messages • Le temps de commutation est le même quelle que soit la longueur du message • Pas de phase d’établissement de connexion
  • 28. 28 Commutation de paquets • Principe similaire à celui de la commutation de messages, mais le message initial est ici découpé en paquets de longueur fixe. • Le gain total d’acheminement est important • Le nombre de message envoyés simultanément est appelé fenêtre de transmission
  • 29. 29 Commutation de paquets • Utilisation efficace des artères de transmission • Débit dépendant de la source et du trafic  souplesse, adaptabilité • Bien adapté à la transmission de données • Possibilité d’alléger les protocoles (FR)
  • 30. Commutation de paquets • Il existe deux modes de fonctionnement: – Circuit virtuel (X25) – Datagramme (TCP) 30
  • 31. 31 Notion de circuit virtuel • Utilisation de circuits virtuels – Avantage: la rapidité de commutation. • Communication en mode connecté – Associé au mode circuits virtuels • Livraison en séquence – Paquets à la suite selon un circuit virtuel • Sans contrôle d'erreur – Médium fibre optique: taux d’erreur faible • Couche supplémentaire d'adaptation • Qualité de service
  • 32. Notion de circuit virtuel • Circuit virtuels commutés  Téléphone • Circuit virtuel permanent  Connexion dédiée 32
  • 33. 33 Niveau Réseau en mode connecté ou sans connexion • Mode connecté  TCP (Transmission Control Protocol) • Requiert ouverture et fermeture de connexion. • La connexion est identifiée par une référence unique, le 'socket' – Définition d'une qualité de service associée à la connexion.
  • 34. Format d’une en tête TCP 34
  • 35. 35 Niveau Réseau en mode connecté ou sans connexion • Mode non Connecté  UDP (User Datagram Protocol) • Pas de délimitation temporelle des échanges. • Désignation explicite des extrémités communicantes dans tous les messages. • Pas assuré de l’ordre des paquets (sauf par couche inférieure) • Contrôle des données (checksum)
  • 36. Format d’une en tête UDP 36
  • 37. 37 Remarques • Ne pas faire les équivalences suivantes – Datagramme = Mode non connecté – Circuits virtuels = Mode connecté • Car même si leurs fonctionnements se rapprochent, les égalités sont fausses • Exemple : Possibilité de construire un protocole en mode connecté sur un réseau à datagrammes
  • 38. 38 Méthodes d’accès • Définit comment la carte réseau accède au réseau (comment les données sont déposées et récupérées) • Cela permet de contrôler le trafic sur un réseau • Également appelée « méthode de transmission ». • Permet de classer les réseaux : – CSMA/CD et CSMA/CA : réseaux en bus et en étoile (Ethernet) – Le passage du jeton : réseaux en anneau (TOKEN RING et FDDI) – La priorité de la demande : réseaux 100VG-AnyLAN (ETHERNET à 100 Mb/s) STOP
  • 39. 39 Méthodes d’accès et carte réseau • Certaines cartes réseaux ne peuvent fonctionner qu’avec telle ou telle méthode d’accès. • Sur un réseau, il ne peut avoir qu’une seule méthode d’accès qui régente l’accès au support • Toutes les cartes réseaux doivent être du même type • Les cartes réseaux doivent transmettre à la même vitesse. • En général, les cartes réseaux de même type, mais provenant de fabricants différents, sont compatibles…
  • 40. 40 Les collisions de paquets • La carte réseau doit « écouter », attendre que le câble soit libre, émettre et retransmettre si les trames ont été détruites pendant le voyage. • Les collisions proviennent le plus souvent de l’émission simultanée de plusieurs ordinateurs. Le rôle de la méthode d’accès consiste soit à réduire les inconvénients d’une telle concomitance, soit de l’empêcher. • La méthode d’accès doit permettre à toutes les stations d’émettre. Le passage du jeton permet de répartir uniformément le temps de transmission entre toutes les stations. • On parle alors de méthode d’accès « isofonctionnelle ».
  • 41. 41 Les principales méthodes d’accès • Les principales méthodes d’accès sont les suivantes : – L’accès multiple avec écoute de la porteuse : • Avec détection des collisions, CSMA/CD • Avec prévention des collisions, CSMA/CA – Le passage du jeton – La priorité de la demande – Etc…
  • 42. 42 La méthode d’accès CSMA/CD • La méthode d’accès CSMA/CD (Carrier-Sense Multiple Access / Collision Detection) impose à toutes les stations d’un réseau d’écouter continuellement le support de communication, pour détecter les porteuses et les collisions. • C’est le transceiver (transmeter et receiver) qui écoute le câble, et qui lit les entêtes des paquets (de 64 octets à 1500 octets au maximum). • Méthode d’accès relativement fiable et rapide pour les réseaux composés d’un nombre restreint de stations. • Plus le nombre de station est important, plus le risque de collision croît, plus le nombre de collisions augmente, et plus les délais d’attente sont importants.
  • 43. 43 Caractéristiques de CSMA/CD • L’accès multiple au réseau, plusieurs ordinateurs peuvent émettre en même temps, le risque de collision est accepté. • Pas de priorité, ni d’autorisation pour émettre. • Écoute du câble et détection de la porteuse et des collisions • Interdiction à toutes les stations d’un réseau d’émettre si le support n’est pas libre • En cas de collision : – Les stations concernées cessent de transmettre pendant une durée aléatoire – Les stations émettent de nouveau si le câble est libre après ces délais • Distance maximale entre deux stations : 2500 m • Fiable, rapide mais limité à un nombre de stations restreint
  • 44. 44 La méthode d’accès CSMA/CA • La méthode d’accès CSMA/CA (Carrier-Sense Multiple Access / Collision Avoidance) n’est pas une méthode très répandue. • Les collisions sont proscrites, chaque station avant d’émettre doit signaler son intention. • Les demandes de transmission augmentent le trafic et ralentissent le réseau. • La méthode d’accès CSMA/CA est plus lente que CSMA/CD. • Utilisé par le Wifi
  • 45. 45 La méthode du passage du jeton • Propre aux réseaux en anneau. Les collisions sont proscrites, les stations ne peuvent pas émettre simultanément. • Les stations doivent attendre le jeton qui donne la permission de « parler », • Le jeton est un paquet spécial qui passe de station en station, et qui autorise celle qui le détient à émettre. • Une station a la responsabilité de surveiller le bon fonctionnement du jeton (durée des trames pour parcourir l’anneau, temps moyen de rotation,,…), et éventuellement d’en créer un nouveau. • Le superviseur d’un réseau Token Ring est d’abord la première station allumée sur le réseau, puis si celle-ci se déconnecte, il y a une l’élection du nouveau superviseur.
  • 46. 46 La méthode d’accès de la priorité de la demande • Aussi appelée DPMA (Demand Priority Access Method) • Destinée aux réseaux mixtes en bus en étoile. • Les concentrateurs gèrent l’accès au réseau. Chacun s’occupe de son sous-ensemble. • Les messages ne sont pas diffusés sur tout le réseau, mais seulement sur la partie concernée. La gestion de l’accès au réseau est centralisée. • Les concentrateurs interrogent tous les « nœuds terminaux » de la partie du réseau dont ils ont la charge, c’est à dire toutes les stations branchées sur leur anneau, et tous les concentrateurs auxquels ils sont reliés. • L’interrogation des nœuds s’effectue à tour de rôle (méthode « round- robin »), et permet à chaque concentrateur de connaître les informations d’adressage et de routage de chacun
  • 47. 47 Comparaison des méthodes d’accès CSMA/CD CSMA/CA Passage du jeton Priorité de la demande Diffusion Tout le réseau Tout le réseau Tout le réseau Une partie du réseau Routage NON NON NON OUI Rivalité Contention Contention Pas de contention Contention Réseaux ETHERNET LOCALTALK TOKEN RING ARCNET 100VG-AnyLAN Topologie Bus Bus Anneau Bus en anneau Accès Multiple Multiple Unique Simultané Collision OUI NON NON NON Gestion Décentralisée Décentralisée Centralisée Centralisée multi pôles
  • 48. 48 Éléments d’interconnexion de réseaux • Intérêt – Ré-amplifier le signal – Connecter n réseaux – Sécuriser un réseau( limiter l’accès à certaines zones) – Pouvoir choisir un chemin différent pour accéder à une ressource – Limiter la surcharge du réseau – Segmenter le réseau
  • 49. 49 Interconnexion au niveau physique • Répétiteurs , ou hub – Remise en forme, ré -amplification des signaux (électroniques ou optiques) – But augmenter la taille du réseau (au sens Ethernet)
  • 50. 50 Interconnexion au niveau physique • Ne regarde pas le contenu de la trame • Il n'a pas d'adresse Ethernet – Transparent pour les stations Ethernet • Entre supports coaxiaux, TP et FO Avantages débit 10Mbits/s ou 100Mbit/s pas (ou très peu) d'administration Désavantages Ne diminue pas la charge Ne filtre pas les collisions N’augmente pas la bande passante Pas de possibilité de réseau virtuel (VLAN)
  • 51. 51 Interconnexion au niveau liaison • Ponts : Raccorde 2 réseaux – Avantages • Augmente la distance max entre 2 stations Ethernet • Diminue la charge des réseaux et limite les collisions
  • 52. 52 Extension de la notion de pont • Notion de pont filtrant – Raccorde 2 réseaux en filtrant les adresses. • Tout ce qui doit passer d'un réseau sur l'autre traverse le pont • Toute communication propre à un réseau le reste • Notion de commutateur de réseaux locaux – Raccorde plusieurs réseaux en filtrant les adresses et en assurant les fonctions de commutation d'un tronçon vers un autre.
  • 53. 53 Interconnexion au niveau liaison • Commutateur - Switch Ethernet de niveau 2 – 10, 100, 1000 Mb/s TP ou FO – Fonction : multi-ponts, cœur d’étoile – Commute les trames Ethernet sur un port ou un autre – Permet : Ethernet Full duplex (TP ou FO) • Emission et réception en même temps : 2x10 ou 2x100 • « Auto-negotiation » possible (IEEE 802.3u) • Fonctions supplémentaires – Auto-sensing débit (IEEE 802.3u) – Affectation statique d’@ MAC et filtrage au niveau 2 – Spanning Tree : évite les boucles
  • 54. 54 Commutateur • Construction d’un arbre • A un instant : un seul chemin utilisé – Réseaux virtuels : VLAN – Port d’écoute qui reçoit tout le trafic des autres ports • Limitations d’un réseau de commutateurs – Théoriquement pas de distance maximum – Broadcast et multicast diffusés partout – 1 seul réseau IP possible • Très répandu : – Local : workgroup switch – Campus : complété par le routeur (plus « lent » et plus cher) – Remplacé par le commutateur-routeur (plus cher) quand besoin
  • 55. 55 Commutateur • Au démarrage, un switch va construire une table de correspondance adresse MAC - numéro de port de connexion. • Cette table est une mémoire interne du switch. • Ceci ne pose pas de problèmes pour un petit réseau mais bien pour de gros réseaux
  • 56. 56 Commutateur • Un Switch peut être stackable (empilable). • Dans ce cas, un connecteur spécial permet de relier plusieurs switch de même marque entre-eux. • Le nombre de switch empilés (du même modèle) est limité. • L'ensemble du groupe de switch est vu comme un seul switch. • Ceci permet d'augmenter le nombre de ports et de reprendre une table commune plus importante
  • 57. 57 Commutateur • Certains switch sont manageables. • Par une interface de type WEB reliée à l'adresse IP du switch ou par RS232 et l'utilisation de Telnet, afin de déterminer physiquement quel PC a accès à quel serveur. • Ceci permet également de déterminer des plages d'adresses sur des ports (cas où plusieurs switch - Hub sont chaînés) et ainsi d'augmenter la vitesse. • Le management se fait généralement en fonction des adresses MAC
  • 58. 58 Interconnexion au niveau réseau • Routeurs et passerelles, aussi appelés commutateur niveau 3 – Raccorde des réseaux • IP. • X25 • Apple Talk, ...
  • 59. 59 Routeur • Les hub et switch permettent de connecter des appareils faisant partie d'une même classe d'adresse en IP ou d'un même sous-réseau • Le routeur permet la communication entre machines de classes différentes. • De plus, comme les adresses des sites INTERNET peuvent être pratiquement dans toutes les plages d'adresses A et de classe B, le raccordement d'un réseau interne à INTERNET passe obligatoirement par un routeur
  • 60. 60 Routeur • Table de routage / @ IP destination • N’est pas transparent pour les stations – Chaque station doit connaître l’@ IP du coupleur du routeur pour « le traverser » • Pour le protocole Ethernet – C’est une station Ethernet – Chaque port possède une adresse Ethernet • Routage : ASIC – Un PC Linux avec 2 cartes Ethernet peut faire fonction de routeur
  • 61. 61 Routeur • Les routeurs sont paramétrables et permettent notamment de bloquer certaines connexions. • Mais ils n'assurent pas de sécurité au niveau des ports TCP ou UDP. • Ils sont utilisés pour interfacer différents groupes de PC en assurant un semblant de sécurité. • Les routeurs ne servent pas qu'à connecter des réseaux à Internet, ils permettent également de servir de pont pour se connecter à un réseau d'entreprise (ex: VPN via INTERNET)
  • 62. 62 Liaisons commutées • RTC : Réseau Téléphonique Commuté • Équipement : modem V90 56.6 Kbit/s (réception) – Émission à 33.6 Kbit/s • Connexion : interne, externe sur port série … • Liaison non permanente – Le PC ne peut pas être serveur • Toujours très utilisé – Réseau RTC disponible partout, ou presque • Données transformées en analogique
  • 63. 63 Liaisons commutées • RNIS (Réseau Numérique à Intégration de Service) ISDN (Integrated Services Digital Network) • 2 types de canaux de communication : – - Un canal de signalisation (canal D - Data Channel - couche 2 : Communtation de paquet : Protocole LAP-D) (16 kbit/s pour les accès de base ou à 64 kbit/s pour les accès primaires) – - Des canaux de transfert (canaux B - Bearer Channel - Couche 1 : Commutation de circuit : PPP, HDLC). Bien qu'ils soient transportés par les mêmes fils électriques, les canaux B sont distincts les uns des autres. (64 kbit/s chacun)
  • 64. Liaisons commutées • Ces canaux sont full duplex et les canaux B peuvent être utilisés séparément, ou réunis à plusieurs pour créer une liaison fonctionnant à un multiple de 64 kilobits/sec. • Réseau national de FT : Numéris • Accès de base (particulier-agence) : 144 Kb/s – 2 canaux B à 64 Kb/s : téléphone + Internet par exemple – 1 canal D à 14 Kb/s : signalisation – Utilisation liaison téléphonique classique 64
  • 65. 65 Liaisons longues distance : Technologie DSL (Digital Subscriber Line) • Regroupe l’ensemble des technologies mises en place pour un transport numérique de l’information sur une simple ligne de raccordement téléphonique • Les technologies xDSL sont divisées en deux grandes familles, celle utilisant une transmission symétrique et celle utilisant une transmission asymétrique.
  • 66. 66 Les solutions symétriques :HDSL (High bit rate DSL) • 1ère technique en 1990. • Débit de 2Mbps dans les 2 sens sur 3 paires torsadées et 1,5 Mbps dans les 2 sens sur 2 paires torsadées. Le débit diminue en fonction de la qualité de la ligne et de la distance de la ligne • La connexion peut être permanente mais il n’y a pas de canal de téléphonie disponible lors d’une connexion HDSL.
  • 67. 67 Les solutions symétriques • SDSL (Single pair DSL, ou symmetric DSL) est le précurseur de HDSL2 (Technologie dérivée de HDSL qui devrait offrir les mêmes perf sur 1 paire torsadée). • Technique conçue pour une plus courte distance qu’HDSL • Altitude Telecom,Magic Online, Nerim, Neuf Connect,Orange Business Internet • de 512kbit/s à 8Mbit/s symétrique • 1er prix de 100 à 200€
  • 68. 68 Les solutions asymétriques : ADSL (Asymmetric Digital Subscriber Line) • Une des seule technologie disponible qui offre le transport de la TV/vidéo sous forme numérique (MPEG1 ou MPEG 2) en utilisant un raccordement téléphonique • Le standard ADSL a été finalisé en 1995 et prévoit : – Un canal téléphonique avec raccordement analogique ou RNIS • ADSL 2+ – Un canal montant avec une capacité maximale de 1024 kbits/s – Un canal descendant avec un débit maximal de 22Mbits/s
  • 69. ADSL – fonctionnement • La téléphonie classique utilise une plage de fréquence basse (25 et 3500 Hz ) • ADSL utilise une fréquence supérieure • Transport de données numérique sur support analogique • ADSL Couche OSI 1 • Commutateur public / commutateur privé ou PABX 69
  • 70. 70 Les solutions asymétriques : RADSL (Rate Adaptive DSL) • La vitesse de transmission est fixée de manière automatique et dynamique en recherchant la vitesse maximale possible sur la ligne de raccordement et en la réadaptant en permanence et sans coupure. • RADSL permettrait des débits ascendants de 128kbps à 1Mbps et des débits descendants de 600kbps à 7Mbps, pour une longueur maximale de boucle locale de 5,4 km.
  • 71. 71 Les solutions asymétriques :VDSL (Very High Bit Rate DSL) • C’est la plus rapide des technologies DSL. Elle peut supporter, sur une simple paire torsadée, des débit de 13 à 55.2 Mbps en downstream et de 1,5 à 6 Mbps en upstream ou, si l’on veut en faire une connexion symétrique un débit de 34Mbps dans les 2 sens. Donc à noter que VDSL est utilisable en connexion asymétrique ou symétrique. • VDSL a principalement été développé pour le transport de l’ATM (Asynchronous Transfer Mode) à haut débit sur une courte distance • VDSL fonctionne avec F.O. • Déployé en France par Erenis
  • 72. 72 Équipements ADSL • Le DSLAM (DSL Access Multiplexer) interconnecte tous les modems ADSL reliés à ce central. • Cet élément peut aussi accueillir différents services DSL tels que ADSL, SDSL ou HDSL • Tous les services disponibles sur le réseau arrivent par broadband vers une station DSLAM pour être ensuite redistribués vers les utilisateurs. • La maintenance et la configuration du DSLAM est effectuée à distance.
  • 73. 73 Équipements ADSL • Le splitter : le splitter est un filtre d’aiguillage qui sépare la bande passante réservée au service téléphonique de la bande passante utilisée pour la transmission ADSL. Il assure un découplage suffisant pour éviter que les signaux émis sur l’une des bandes fréquences ne vienne perturber le fonctionnement de l’autre. A noter que l’installation du splitter est obligatoire pour avoir ADSL avec un connexion ISDN. • Le microfiltre : le microfiltre est un filtre passe-bas qui est installé sur les connexions analogiques. Il n y a donc pas besoin d’installer de splitter. • Rq: L’installation est obligatoire pour chaque téléphone
  • 75. Offres fibre optiques • Magic Online, Neuf ADSL, Orange Business Internet • Tarif : 700 € pour débit jusqu’à 10 Gbps 75
  • 76. 76 Liaisons longues distances : X25 • Réseau à commutation de paquets : – Couches 2-3 – Circuits virtuels – Adresses X25 • Opérateur historique : Transpac • Accès jusqu’à 64 Kb/s (ou guère plus) • Les serveurs vidéotex (minitel) ont une connexion X25 • Remplacé par IP sous toutes ses formes
  • 77. 77 Liaisons spécialisées FT • Transfix (nationales) – 2.4 K b/s à 34 Mb/s – STAS : Spécifications Techniques d’Accès au Service – 2.4 K à 19.2 K : interfaces : V24, V28 – 64 K à 34 M : interfaces : X24/V11 ou G703-G704 – Modems fournis par opérateur – Liaisons internationales : idem nationales mais plus difficiles à mettre en place de bout en bout : sur-mesure • Connexions : – Routeurs – Ponts (distants) – Commutateurs ATM – PABX Téléphoniques

Notes de l'éditeur

  1. http://www.myadsl.fr/myadsl/offres/adsl/index.php
  2. le DSLAM récupère le trafic de données, issu de l&amp;apos;utilisation des technologies DSL (internet haut débit, télévision par ADSL, VoIP …), transitant sur les lignes téléphoniques qui lui sont raccordées, après que ce trafic a été séparé du trafic de voix issu de la téléphonie classique, grâce à un filtre. Ensuite le DSLAM regroupe le trafic des différentes lignes qui lui sont raccordées (&amp;quot;petits tuyaux&amp;quot;) et le redirige vers le réseau de l&amp;apos;opérateur ou du fournisseur d&amp;apos;accès (&amp;quot;gros tuyau&amp;quot;) selon le principe du multiplexage temporel où les données sont transportées en IP ou en ATM.