SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez nos Conditions d’utilisation et notre Politique de confidentialité.
SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez notre Politique de confidentialité et nos Conditions d’utilisation pour en savoir plus.
Publié le
While we frequently talk about how to build interesting products on top of machine and event data, the reality is that collecting, organizing, providing access to, and managing this data is where most people get stuck. Many organizations understand the use cases around their data – fraud detection, quality of service and technical operations, user behavior analysis, for example – but are not necessarily data infrastructure experts. In this session, we’ll follow the flow of data through an end to end system built to handle tens of terabytes an hour of event-oriented data, providing real time streaming, in-memory, SQL, and batch access to this data. We’ll go into detail on how open source systems such as Hadoop, Kafka, Solr, and Impala/Hive are actually stitched together; describe how and where to perform data transformation and aggregation; provide a simple and pragmatic way of managing event metadata; and talk about how applications built on top of this platform get access to data and extend its functionality.
Attendees will leave this session knowing not just which open source projects go into a system such as this, but how they work together, what tradeoffs and decisions need to be addressed, and how to present a single general purpose data platform to multiple applications. This session should be attended by data infrastructure engineers and architects planning, building, or maintaining similar systems.
Il semblerait que vous ayez déjà ajouté cette diapositive à .
Identifiez-vous pour voir les commentaires