SlideShare a Scribd company logo
1 of 68
Download to read offline
Hydrological modeling of coupled surface-subsurface
flow and transport phenomena: the
CATchment-HYdrology Flow-Transport (CATHY_FT)
model
Workshop on coupled hydrological modeling
Carlotta Scudeler, Claudio Paniconi, Mario Putti
Padua, 23-09-2015
£
¢
 
¡INTRODUCTION CATHY_FT MODEL PERFORMANCE
Many challenges in improving and testing current state-of-the-art
models for integrated hydrological simulation
Not so many models address both flow and transport interactions
between the subsurface and surface
I am presenting the CATchment-HYdrology Flow-Transport
model and I am showing its performance under hillslope
drainage, seepage face, and runoff generation
C Scudeler Padua Workshop, Padua, 23-09-2015 2/17
II. CATchment HYdrology Flow
and Transport model
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
CATchment HYdrology (CATHY) model



Sw Ss
∂ψ
∂t
+ φ∂Sw
∂t
= − · q + qss
∂Q
∂t
+ ck
∂Q
∂s
= Dh
∂2
Q
∂s2 + ck qs



∂θc
∂t
= · [−qc + D c] + qtss
∂Qm
∂t
+ ct
∂Qm
∂s
= Dc
∂2
Qm
∂s2 + ct qts
C Scudeler Padua Workshop, Padua, 23-09-2015 4/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
CATHY Flow-Transport (CATHY_FT) model



Sw Ss
∂ψ
∂t
+ φ∂Sw
∂t
= − · q + qss
∂Q
∂t
+ ck
∂Q
∂s
= Dh
∂2
Q
∂s2 + ck qs



∂θc
∂t
= · [−qc + D c] + qtss
∂Qm
∂t
+ ct
∂Qm
∂s
= Dc
∂2
Qm
∂s2 + ct qts
C Scudeler Padua Workshop, Padua, 23-09-2015 5/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Numerical model
Richards’ equation (subsurface flow)



Sw Ss
∂ψ
∂t
+ φ∂Sw
∂t
= − · q + qss
∂Q
∂t
+ ck
∂Q
∂s
= Dh
∂2
Q
∂s2 + ck qs



∂θc
∂t
= · [−qc + D c] + qtss
∂Qm
∂t
+ ct
∂Qm
∂s
= Dc
∂2
Qm
∂s2 + ct qts
Numerics: P1 Galerkin finite element (FE) model in space and implicit finite difference
model in time
C Scudeler Padua Workshop, Padua, 23-09-2015 6/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Numerical model
Richards’ equation (subsurface flow)



Sw Ss
∂ψ
∂t
+ φ∂Sw
∂t
= − · q + qss
∂Q
∂t
+ ck
∂Q
∂s
= Dh
∂2
Q
∂s2 + ck qs



∂θc
∂t
= · [−qc + D c] + qtss
∂Qm
∂t
+ ct
∂Qm
∂s
= Dc
∂2
Qm
∂s2 + ct qts
Numerics: P1 Galerkin finite element (FE) model in space and implicit finite difference
model in time
1. Nodal solution for ψ → continuous and piecewise linear
C Scudeler Padua Workshop, Padua, 23-09-2015 6/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Numerical model
Richards’ equation (subsurface flow)



Sw Ss
∂ψ
∂t
+ φ∂Sw
∂t
= − · q + qss
∂Q
∂t
+ ck
∂Q
∂s
= Dh
∂2
Q
∂s2 + ck qs



∂θc
∂t
= · [−qc + D c] + qtss
∂Qm
∂t
+ ct
∂Qm
∂s
= Dc
∂2
Qm
∂s2 + ct qts
Numerics: P1 Galerkin finite element (FE) model in space and implicit finite difference
model in time
1. Nodal solution for ψ → continuous and piecewise linear
2. Elementwise post-computation of the velocity field q from direct application of
Darcy’s law → elementwise constant, normal flux discontinous and not
mass-conservative across every face
C Scudeler Padua Workshop, Padua, 23-09-2015 6/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Numerical model
Richards’ equation (subsurface flow)



Sw Ss
∂ψ
∂t
+ φ∂Sw
∂t
= − · q + qss
∂Q
∂t
+ ck
∂Q
∂s
= Dh
∂2
Q
∂s2 + ck qs



∂θc
∂t
= · [−qc + D c] + qtss
∂Qm
∂t
+ ct
∂Qm
∂s
= Dc
∂2
Qm
∂s2 + ct qts
Numerics: P1 Galerkin finite element (FE) model in space and implicit finite difference
model in time
1. Nodal solution for ψ → continuous and piecewise linear
2. Elementwise post-computation of the velocity field q from direct application of
Darcy’s law → elementwise constant, normal flux discontinous and not
mass-conservative across every face
3. Larson-Niklasson (LN) velocity field q reconstruction
C Scudeler Padua Workshop, Padua, 23-09-2015 6/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Numerical model
ADE equation (subsurface transport)



Sw Ss
∂ψ
∂t
+ φ∂Sw
∂t
= − · q + qss
∂Q
∂t
+ ck
∂Q
∂s
= Dh
∂2
Q
∂s2 + ck qs



∂θc
∂t
= · [−qc + D c] + qtss
∂Qm
∂t
+ ct
∂Qm
∂s
= Dc
∂2
Qm
∂s2 + ct qts
Numerics: High resolution finite volume (for - · qc advective step) and FE (for
· (D c) dispersive step) combined with a time-splitting technique
C Scudeler Padua Workshop, Padua, 23-09-2015 6/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Numerical model
ADE equation (subsurface transport)



Sw Ss
∂ψ
∂t
+ φ∂Sw
∂t
= − · q + qss
∂Q
∂t
+ ck
∂Q
∂s
= Dh
∂2
Q
∂s2 + ck qs



∂θc
∂t
= · [−qc + D c] + qtss
∂Qm
∂t
+ ct
∂Qm
∂s
= Dc
∂2
Qm
∂s2 + ct qts
Numerics: High resolution finite volume (for - · qc advective step) and FE (for
· (D c) dispersive step) combined with a time-splitting technique
1. Advective time-explicit step for the elementwise c
C Scudeler Padua Workshop, Padua, 23-09-2015 6/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Numerical model
ADE equation (subsurface transport)



Sw Ss
∂ψ
∂t
+ φ∂Sw
∂t
= − · q + qss
∂Q
∂t
+ ck
∂Q
∂s
= Dh
∂2
Q
∂s2 + ck qs



∂θc
∂t
= · [−qc + D c] + qtss
∂Qm
∂t
+ ct
∂Qm
∂s
= Dc
∂2
Qm
∂s2 + ct qts
Numerics: High resolution finite volume (for - · qc advective step) and FE (for
· (D c) dispersive step) combined with a time-splitting technique
1. Advective time-explicit step for the elementwise c
2. Mass-conservative element→node c reconstruction
C Scudeler Padua Workshop, Padua, 23-09-2015 6/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Numerical model
ADE equation (subsurface transport)



Sw Ss
∂ψ
∂t
+ φ∂Sw
∂t
= − · q + qss
∂Q
∂t
+ ck
∂Q
∂s
= Dh
∂2
Q
∂s2 + ck qs



∂θc
∂t
= · [−qc + D c] + qtss
∂Qm
∂t
+ ct
∂Qm
∂s
= Dc
∂2
Qm
∂s2 + ct qts
Numerics: High resolution finite volume (for - · qc advective step) and FE (for
· (D c) dispersive step) combined with a time-splitting technique
1. Advective time-explicit step for the elementwise c
2. Mass-conservative element→node c reconstruction
3. Dispersive time-implicit step for the nodal c
C Scudeler Padua Workshop, Padua, 23-09-2015 6/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Numerical model
ADE equation (subsurface transport)



Sw Ss
∂ψ
∂t
+ φ∂Sw
∂t
= − · q + qss
∂Q
∂t
+ ck
∂Q
∂s
= Dh
∂2
Q
∂s2 + ck qs



∂θc
∂t
= · [−qc + D c] + qtss
∂Qm
∂t
+ ct
∂Qm
∂s
= Dc
∂2
Qm
∂s2 + ct qts
Numerics: High resolution finite volume (for - · qc advective step) and FE (for
· (D c) dispersive step) combined with a time-splitting technique
1. Advective time-explicit step for the elementwise c
2. Mass-conservative element→node c reconstruction
3. Dispersive time-implicit step for the nodal c
4. Mass-conservative node→element c reconstruction
C Scudeler Padua Workshop, Padua, 23-09-2015 6/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Numerical model
Surface flow and transport equations



Sw Ss
∂ψ
∂t
+ φ∂Sw
∂t
= − · q + qss
∂Q
∂t
+ ck
∂Q
∂s
= Dh
∂2
Q
∂s2 + ck qs



∂θc
∂t
= · [−qc + D c] + qtss
∂Qm
∂t
+ ct
∂Qm
∂s
= Dc
∂2
Qm
∂s2 + ct qts
Numerics: Explicit finite difference scheme in space and time for both surface flow and
transport solution
C Scudeler Padua Workshop, Padua, 23-09-2015 6/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Coupling in CATHY_FT
1 Surface flow 2 Surface transport 3 Subsurface flow 4 Subsurface transport
qs
k
qts
k
Qk+1
,hk+1
Qm
k+1
,csurf
k+1
ψk+1
,qk+1
BC switching
ck+1
BC switchingqss
k+1
Atmospheric BCk+1
qss
k+1
qtss
k+1
qtss
k+1
qs
k+1
qts
k+1
C Scudeler Padua Workshop, Padua, 23-09-2015 7/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Coupling in CATHY_FT
1 Surface flow 2 Surface transport 3 Subsurface flow 4 Subsurface transport
qs
k
qts
k
Qk+1
,hk+1
Qm
k+1
,csurf
k+1
ψk+1
,qk+1
BC switching
Atmospheric BCk+1
ck+1
BC switchingqss
k+1
qss
k+1
qtss
k+1
qtss
k+1
qs
k+1
qts
k+1
C Scudeler Padua Workshop, Padua, 23-09-2015 7/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Coupling in CATHY_FT
1 Surface flow 2 Surface transport 3 Subsurface flow 4 Subsurface transport
qs
k
qts
k
Qk+1
,hk+1
Qm
k+1
,csurf
k+1
Atmospheric BCk+1
ψk+1
,qk+1
BC switching
ck+1
BC switchingqss
k+1
qss
k+1
qtss
k+1
qtss
k+1
qs
k+1
qts
k+1
C Scudeler Padua Workshop, Padua, 23-09-2015 7/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Coupling in CATHY_FT
1 Surface flow 2 Surface transport 3 Subsurface flow 4 Subsurface transport
qs
k
qts
k
Qk+1
,hk+1
Atmospheric BCk+1
Qm
k+1
,csurf
k+1
ψk+1
,qk+1
BC switching
ck+1
BC switchingqss
k+1
qss
k+1
qtss
k+1
qtss
k+1
qs
k+1
qts
k+1
C Scudeler Padua Workshop, Padua, 23-09-2015 7/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Coupling in CATHY_FT
1 Surface flow 2 Surface transport 3 Subsurface flow
Atmospheric BCk+1
4 Subsurface transport
qs
k
qts
k
Qk+1
,hk+1
Qm
k+1
,csurf
k+1
ψk+1
,qk+1
BC switching
ck+1
BC switchingqss
k+1
qss
k+1
qtss
k+1
qtss
k+1
qs
k+1
qts
k+1
C Scudeler Padua Workshop, Padua, 23-09-2015 7/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Model accuracy
Ability of the model to conserve mass
C Scudeler Padua Workshop, Padua, 23-09-2015 8/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Model accuracy
Ability of the model to conserve mass
Sw Ss
∂ψ
∂t
+ φ
∂Sw
∂t
= − · q + qss
→
Mass-conservative solution
achieved solving the equation in
its ψ − Sw mixed form [Celia et al.,
1990]
C Scudeler Padua Workshop, Padua, 23-09-2015 8/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Model accuracy
Ability of the model to conserve mass
∂θc
∂t
= · [−qc + D c] + qtss
→
HRFV mass-conservative solution
if q is mass-conservative.
C Scudeler Padua Workshop, Padua, 23-09-2015 8/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Model accuracy
Ability of the model to conserve mass
∂θc
∂t
= · [−qc + D c] + qtss
→
HRFV mass-conservative solution
if q is mass-conservative.
P1 Galerkin q is not
mass-conservative
C Scudeler Padua Workshop, Padua, 23-09-2015 8/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Model accuracy
Ability of the model to conserve mass
∂θc
∂t
= · [−qc + D c] + qtss
→
HRFV mass-conservative solution
if q is mass-conservative.
P1 Galerkin q is not
mass-conservative
To make q mass-conservative:
change the numerical scheme from FE =⇒ High computational cost
to Mixed Hybrid Finite Element (MHFE)
or
add mass-conservative velocity field =⇒ Low computational cost
reconstruction
C Scudeler Padua Workshop, Padua, 23-09-2015 8/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Model accuracy
Ability of the model to conserve mass
∂θc
∂t
= · [−qc + D c] + qtss
→
HRFV mass-conservative solution
if q is mass-conservative.
P1 Galerkin q is not
mass-conservative
To make q mass-conservative:
change the numerical scheme from FE =⇒ High computational cost
to Mixed Hybrid Finite Element (MHFE)
or
add mass-conservative velocity field =⇒ Low computational cost
reconstruction
In CATHY_FT: FE =⇒ FE+Larson-Niklasson (LN) post-processing technique
C Scudeler Padua Workshop, Padua, 23-09-2015 8/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Larson-Niklasson technique
Domain discretized by ne tetrahedral elements and n nodes
At each time step
C Scudeler Padua Workshop, Padua, 23-09-2015 9/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Larson-Niklasson technique
Domain discretized by ne tetrahedral elements and n nodes
At each time step
CATHY solution
· ψ nodal solution
· qe
non mass-conservative
where:
qe
is the non mass-conservative element velocity
C Scudeler Padua Workshop, Padua, 23-09-2015 9/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Larson-Niklasson technique
Domain discretized by ne tetrahedral elements and n nodes
At each time step
CATHY solution
· ψ nodal solution
· qe
non mass-conservative
· Re
i
· q·n
where:
qe
is the non mass-conservative element velocity
Re
i is the element residual associated to each node i
n is the vector normal to each element faces
C Scudeler Padua Workshop, Padua, 23-09-2015 9/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
Larson-Niklasson technique
Domain discretized by ne tetrahedral elements and n nodes
At each time step
CATHY solution
· ψ nodal solution
· qe
non mass-conservative
· Re
i
· q·n
Larson-Niklasson
· new qLN ·n
· new mass-conservative qe
LN
where:
qe
is the non mass-conservative element velocity
Re
i is the element residual associated to each node i
n is the vector normal to each element faces
qe
LN is the mass-conservative element velocity
C Scudeler Padua Workshop, Padua, 23-09-2015 9/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
LN velocity reconstruction results
1. Convergent streamlines towards an outlet
2. High streamline curvatures due to heterogeneity
C Scudeler Padua Workshop, Padua, 23-09-2015 10/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
LN velocity reconstruction results
1. Convergent streamlines towards an outlet
D=50 m
D=0 m
qN=0 m/s
cin =1
C Scudeler Padua Workshop, Padua, 23-09-2015 10/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
LN velocity reconstruction results
1. Convergent streamlines towards an outlet
0 1 2 3 4
Time (h)
25
50
75
100
Mass(%)
Mst
- P1 Mout
- P1 Err - P1
Mst → mass stored
Mout → cumulative mass flown out
Min → mass initially in the system
Err=Min − Mst − Mout
C Scudeler Padua Workshop, Padua, 23-09-2015 10/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
LN velocity reconstruction results
1. Convergent streamlines towards an outlet
0 1 2 3 4
Time (h)
25
50
75
100
Mass(%)
Mst
- P1 Mout
- P1 Err - P1
Mst → mass stored
Mout → cumulative mass flown out
Min → mass initially in the system
Err=Min − Mst − Mout
At the end Mout = Min ⇒ P1 Galerkin q exits from the 0 flux boundary
C Scudeler Padua Workshop, Padua, 23-09-2015 10/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
LN velocity reconstruction results
1. Convergent streamlines towards an outlet
0 1 2 3 4
Time (h)
25
50
75
100
Mass(%)
Mst
- LN Mout
- LN
C Scudeler Padua Workshop, Padua, 23-09-2015 10/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
LN velocity reconstruction results
1. Convergent streamlines towards an outlet
0 1 2 3 4
Time (h)
25
50
75
100
Mass(%)
Mst
- LN Mout
- LN
Velocities reconstructed with LN do not violate the 0 flux boundaries
C Scudeler Padua Workshop, Padua, 23-09-2015 10/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
LN velocity reconstruction results
1. Convergent streamlines towards an outlet
2. High streamline curvatures due to heterogeneity
D=50 m
D=0 m
qN=0 m/s
cin =1
Ks (m/s)
2x10-4
2x10-12
C Scudeler Padua Workshop, Padua, 23-09-2015 11/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
LN velocity reconstruction results
1. Convergent streamlines towards an outlet
2. High streamline curvatures due to heterogeneity
0 2 4 6 8 10
Time (h)
Mst
- LN Mstf
- LN
0 2 4 6 8
Time (h)
25
50
75
100
Mass(%)
Mst
- P1 Mstf
- P1
Mstf
→ mass stored in the unpermeable soil Mst → mass stored
C Scudeler Padua Workshop, Padua, 23-09-2015 11/17
INTRODUCTION
£
¢
 
¡CATHY_FT MODEL PERFORMANCE
LN velocity reconstruction results
1. Convergent streamlines towards an outlet
2. High streamline curvatures due to heterogeneity
0 2 4 6 8 10
Time (h)
Mst
- LN Mstf
- LN
0 2 4 6 8
Time (h)
25
50
75
100
Mass(%)
Mst
- P1 Mstf
- P1
Mstf
→ mass stored in the unpermeable soil Mst → mass stored
At the end for P1 Mstf
= Mst =0 ⇒ Solute mass get trapped in the unpermeable soil
At the end for LN Mstf
= Mst =0 ⇒ Solute mass slightly crosses the unpermeable soil
C Scudeler Padua Workshop, Padua, 23-09-2015 11/17
III. Testing CATHY_FT at the
Landscape Evolution
Observatory (LEO)
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
The Landscape Evolution Observatory (LEO)
LEO, Biosphere 2, Oracle,
Arizona, U.S.A.
3 convergent landscapes
30 m long, 11.5 m wide
dense sensor and sampler
network
rainfall simulator (3-45
mm/h)
C Scudeler Padua Workshop, Padua, 23-09-2015 13/17
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
The Landscape Evolution Observatory (LEO)
LEO, Biosphere 2, Oracle,
Arizona, U.S.A.
3 convergent landscapes
30 m long, 11.5 m wide
dense sensor and sampler
network
rainfall simulator (3-45
mm/h)
In Figure:
View of one of the three
hillslopes from top
C Scudeler Padua Workshop, Padua, 23-09-2015 13/17
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
The Landscape Evolution Observatory (LEO)
LEO, Biosphere 2, Oracle,
Arizona, U.S.A.
3 convergent landscapes
30 m long, 11.5 m wide
dense sensor and sampler
network
rainfall simulator (3-45
mm/h)
In Figure:
View of one of the three
hillslopes from top
Tipping bucket for low seepage
face flow
C Scudeler Padua Workshop, Padua, 23-09-2015 13/17
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
The Landscape Evolution Observatory (LEO)
LEO, Biosphere 2, Oracle,
Arizona, U.S.A.
3 convergent landscapes
30 m long, 11.5 m wide
dense sensor and sampler
network
rainfall simulator (3-45
mm/h)
In Figure:
View of one of the three
hillslopes from top
Tipping bucket for low seepage
face flow
Rainfall simulator
C Scudeler Padua Workshop, Padua, 23-09-2015 13/17
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
Test case
Computational domain
60 x 22 grid cells
30 layers; more refined close to the
surface and at bottom
C Scudeler Padua Workshop, Padua, 23-09-2015 14/17
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
Test case
Computational domain
60 x 22 grid cells
30 layers; more refined close to the
surface and at bottom
Material model:
homogeneity with Ks=1×10−4
m/s
and φ=0.39
Van Genuchten parameters
nVG=2.26, θres=0.002, ψsat =-0.6 m
C Scudeler Padua Workshop, Padua, 23-09-2015 14/17
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
Test case
Computational domain
60 x 22 grid cells
30 layers; more refined close to the
surface and at bottom
Material model:
homogeneity with Ks=1×10−4
m/s
and φ=0.39
Van Genuchten parameters
nVG=2.26, θres=0.002, ψsat =-0.6 m
Model performance for Subsurface-Surface flow and transport
C Scudeler Padua Workshop, Padua, 23-09-2015 14/17
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
Test case
Computational domain
60 x 22 grid cells
30 layers; more refined close to the
surface and at bottom
Material model:
homogeneity with Ks=1×10−4
m/s
and φ=0.39
Van Genuchten parameters
nVG=2.26, θres=0.002, ψsat =-0.6 m
Model performance for Subsurface-Surface flow and transport
1) Rainfall
C Scudeler Padua Workshop, Padua, 23-09-2015 14/17
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
Test case
Computational domain
60 x 22 grid cells
30 layers; more refined close to the
surface and at bottom
Material model:
homogeneity with Ks=1×10−4
m/s
and φ=0.39
Van Genuchten parameters
nVG=2.26, θres=0.002, ψsat =-0.6 m
Model performance for Subsurface-Surface flow and transport
1) Rainfall
2) Seepage face flow
C Scudeler Padua Workshop, Padua, 23-09-2015 14/17
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
Test case
Computational domain
60 x 22 grid cells
30 layers; more refined close to the
surface and at bottom
Material model:
homogeneity with Ks=1×10−4
m/s
and φ=0.39
Van Genuchten parameters
nVG=2.26, θres=0.002, ψsat =-0.6 m
Model performance for Subsurface-Surface flow and transport
1) Rainfall
2) Seepage face flow
3) Drainage under variably saturated conditions
C Scudeler Padua Workshop, Padua, 23-09-2015 14/17
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
Test case
Computational domain
60 x 22 grid cells
30 layers; more refined close to the
surface and at bottom
Material model:
homogeneity with Ks=1×10−4
m/s
and φ=0.39
Van Genuchten parameters
nVG=2.26, θres=0.002, ψsat =-0.6 m
Model performance for Subsurface-Surface flow and transport
1) Rainfall
2) Seepage face flow
3) Drainage under variably saturated conditions
4) Surface flow
C Scudeler Padua Workshop, Padua, 23-09-2015 14/17
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
Test case
Seepage Face
Outlet
Computational domain
60 x 22 grid cells
30 layers; more refined close to the
surface and at bottom
Material model:
homogeneity with Ks=1×10−4
m/s
and φ=0.39
Van Genuchten parameters
nVG=2.26, θres=0.002, ψsat =-0.6 m
Model performance for Subsurface-Surface flow and transport
1) Rainfall
2) Seepage face flow
3) Drainage under variably saturated conditions
4) Surface flow
C Scudeler Padua Workshop, Padua, 23-09-2015 14/17
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
Input
Water and solute mass inflow Cumulative volume and mass
0.005
0.01
0.015
Qr
(m
3
/s)
0 6 12 18 24 30 36 42 48
Time (h)
0.005
0.01
0.015
Qm
(mg/s)
15
30
45
60
Vr
(m
3
)
0 6 12 18 24 30 36 42 48
Time (h)
15
30
45
60
Min
(mg)
Initial conditions: 119 m3
of water initially present in the system (water table set at 0.4 m
from bottom) and 0 solute mass
C Scudeler Padua Workshop, Padua, 23-09-2015 15/17
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
Input
Water and solute mass inflow Cumulative volume and mass
0.005
0.01
0.015
Qr
(m
3
/s)
0 6 12 18 24 30 36 42 48
Time (h)
0.005
0.01
0.015
Qm
(mg/s)
Qr=0.012 m3
/s
15
30
45
60
Vr
(m
3
)
0 6 12 18 24 30 36 42 48
Time (h)
15
30
45
60
Min
(mg)
Vr=40.4 m3
Initial conditions: 119 m3
of water initially present in the system (water table set at 0.4 m
from bottom) and 0 solute mass
Flow input: pulse of homogenous rain Qr =0.012 m3
/s for 1 h→ cumulative volume
injected Vr =40.4 m3
C Scudeler Padua Workshop, Padua, 23-09-2015 15/17
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
Input
Water and solute mass inflow Cumulative volume and mass
0.005
0.01
0.015
Qr
(m
3
/s)
0 6 12 18 24 30 36 42 48
Time (h)
0.005
0.01
0.015
Qm
(mg/s)
Qm=0.012 mg/s
15
30
45
60
Vr
(m
3
)
0 6 12 18 24 30 36 42 48
Time (h)
15
30
45
60
Min
(mg)
Min=40.4 mg
Initial conditions: 119 m3
of water initially present in the system (water table set at 0.4 m
from bottom) and 0 solute mass
Flow input: pulse of homogenous rain Qr =0.012 m3
/s for 1 h→ cumulative volume
injected Vr =40.4 m3
Transport input: solute injection with c=1 mg/m3
of rain pulse→ mass inflow Qm=0.012
mg/s and cumulative mass injected Min=40.4 mg
C Scudeler Padua Workshop, Padua, 23-09-2015 15/17
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
Results
Water balance
40
80
Vr
(%)
-40
0
40
80
∆Vst
(%)
40
80
Vsf
(%)
0 6 12 18 24 30 36 42 48
Time (h)
40
80
Vout
(%)
40
80
Min
(%)
10
20
30
40
∆Mst
(%)
5
10
Msf
(%)
0 6 12 18 24 30 36 42 48
Time (h)
30
60
90
Mout
(%)
Vr − ∆Vst − Vsf − Vout = Flow Error
Min − ∆Mst − Msf − Mout = Transport Error
C Scudeler Padua Workshop, Padua, 23-09-2015 16/17
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
Results
Water balance
40
80
Vr
(%)
-40
0
40
80
∆Vst
(%)
40
80
Vsf
(%)
0 6 12 18 24 30 36 42 48
Time (h)
40
80
Vout
(%)
Vr=100%
40
80
Min
(%)
10
20
30
40
∆Mst
(%)
5
10
Msf
(%)
0 6 12 18 24 30 36 42 48
Time (h)
30
60
90
Mout
(%)
Vr − ∆Vst − Vsf − Vout ⇒100
Min − ∆Mst − Msf − Mout = Transport Error
C Scudeler Padua Workshop, Padua, 23-09-2015 16/17
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
Results
Water balance
40
80
Vr
(%)
-40
0
40
80
∆Vst
(%)
40
80
Vsf
(%)
0 6 12 18 24 30 36 42 48
Time (h)
40
80
Vout
(%)
-48.17%∆Vst=
40
80
Min
(%)
10
20
30
40
∆Mst
(%)
5
10
Msf
(%)
0 6 12 18 24 30 36 42 48
Time (h)
30
60
90
Mout
(%)
Vr − ∆Vst − Vsf − Vout ⇒100+48.17
Min − ∆Mst − Msf − Mout = Transport Error
C Scudeler Padua Workshop, Padua, 23-09-2015 16/17
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
Results
Water balance
40
80
Vr
(%)
-40
0
40
80
∆Vst
(%)
40
80
Vsf
(%)
0 6 12 18 24 30 36 42 48
Time (h)
40
80
Vout
(%)
Vsf=77.62%
40
80
Min
(%)
10
20
30
40
∆Mst
(%)
5
10
Msf
(%)
0 6 12 18 24 30 36 42 48
Time (h)
30
60
90
Mout
(%)
Vr − ∆Vst − Vsf − Vout ⇒100+48.17-77.62
Min − ∆Mst − Msf − Mout = Transport Error
C Scudeler Padua Workshop, Padua, 23-09-2015 16/17
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
Results
Water balance
40
80
Vr
(%)
-40
0
40
80
∆Vst
(%)
40
80
Vsf
(%)
0 6 12 18 24 30 36 42 48
Time (h)
40
80
Vout
(%)
Vout=70.58%
40
80
Min
(%)
10
20
30
40
∆Mst
(%)
5
10
Msf
(%)
0 6 12 18 24 30 36 42 48
Time (h)
30
60
90
Mout
(%)
Vr − ∆Vst − Vsf − Vout ⇒100+48.17-77.62-70.58=o(0.01)%
Min − ∆Mst − Msf − Mout = Transport Error
C Scudeler Padua Workshop, Padua, 23-09-2015 16/17
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
Results
Mass balance
40
80
Vr
(%)
-40
0
40
80
∆Vst
(%)
40
80
Vsf
(%)
0 6 12 18 24 30 36 42 48
Time (h)
40
80
Vout
(%)
40
80
Min
(%)
10
20
30
40
∆Mst
(%)
5
10
Msf
(%)
0 6 12 18 24 30 36 42 48
Time (h)
30
60
90
Mout
(%)
Min=100%
Vr − ∆Vst − Vsf − Vout ⇒100+48.17-77.62-70.58=o(0.01)%
Min − ∆Mst − Msf − Mout ⇒100
C Scudeler Padua Workshop, Padua, 23-09-2015 16/17
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
Results
Mass balance
40
80
Vr
(%)
-40
0
40
80
∆Vst
(%)
40
80
Vsf
(%)
0 6 12 18 24 30 36 42 48
Time (h)
40
80
Vout
(%)
40
80
Min
(%)
10
20
30
40
∆Mst
(%)
5
10
Msf
(%)
0 6 12 18 24 30 36 42 48
Time (h)
30
60
90
Mout
(%)
∆Mst=28.62%
Vr − ∆Vst − Vsf − Vout ⇒100+48.17-77.62-70.58=o(0.01)%
Min − ∆Mst − Msf − Mout ⇒100-28.62
C Scudeler Padua Workshop, Padua, 23-09-2015 16/17
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
Results
Mass balance
40
80
Vr
(%)
-40
0
40
80
∆Vst
(%)
40
80
Vsf
(%)
0 6 12 18 24 30 36 42 48
Time (h)
40
80
Vout
(%)
40
80
Min
(%)
10
20
30
40
∆Mst
(%)
5
10
Msf
(%)
0 6 12 18 24 30 36 42 48
Time (h)
30
60
90
Mout
(%)
Msf=6.86%
Vr − ∆Vst − Vsf − Vout ⇒100+48.17-77.62-70.58=o(0.01)%
Min − ∆Mst − Msf − Mout ⇒100-28.62-6.86
C Scudeler Padua Workshop, Padua, 23-09-2015 16/17
INTRODUCTION CATHY_FT
£
¢
 
¡MODEL PERFORMANCE
Results
Mass balance
40
80
Vr
(%)
-40
0
40
80
∆Vst
(%)
40
80
Vsf
(%)
0 6 12 18 24 30 36 42 48
Time (h)
40
80
Vout
(%)
40
80
Min
(%)
10
20
30
40
∆Mst
(%)
5
10
Msf
(%)
0 6 12 18 24 30 36 42 48
Time (h)
30
60
90
Mout
(%)
Mout=64.42%
Vr − ∆Vst − Vsf − Vout ⇒100+48.17-77.62-70.58=o(0.01)%
Min − ∆Mst − Msf − Mout ⇒100-28.62-6.86-64.42=o(0.1)%
C Scudeler Padua Workshop, Padua, 23-09-2015 16/17
INTRODUCTION CATHY_FT MODEL PERFORMANCE
Conclusions
1. P1 Galerkin solution is mass-conservative while the velocities are
not; this causes problems for transport simulations. This requires a
post-processing technique to ensure mass-conservation
C Scudeler Padua Workshop, Padua, 23-09-2015 17/17
INTRODUCTION CATHY_FT MODEL PERFORMANCE
Conclusions
1. P1 Galerkin solution is mass-conservative while the velocities are
not; this causes problems for transport simulations. This requires a
post-processing technique to ensure mass-conservation
2. Results so far indicate that LN reconstructed velocities are as
accurate as MHFE velocities and achieve much better computational
efficiency
C Scudeler Padua Workshop, Padua, 23-09-2015 17/17
INTRODUCTION CATHY_FT MODEL PERFORMANCE
Conclusions
1. P1 Galerkin solution is mass-conservative while the velocities are
not; this causes problems for transport simulations. This requires a
post-processing technique to ensure mass-conservation
2. Results so far indicate that LN reconstructed velocities are as
accurate as MHFE velocities and achieve much better computational
efficiency
3. Exchange processes in integrated surface-subsurface models are
highly complex and need to be carefully formulated and resolved
C Scudeler Padua Workshop, Padua, 23-09-2015 17/17
Thanks for your attention

More Related Content

What's hot

Morphological model of the river rhine branches from the concept to the opera...
Morphological model of the river rhine branches from the concept to the opera...Morphological model of the river rhine branches from the concept to the opera...
Morphological model of the river rhine branches from the concept to the opera...Deltares
 
Webinar presentation ocean modelling and early-warning system for the gulf ...
Webinar presentation   ocean modelling and early-warning system for the gulf ...Webinar presentation   ocean modelling and early-warning system for the gulf ...
Webinar presentation ocean modelling and early-warning system for the gulf ...Deltares
 
Question and answers webinar hydrodynamic modeling on the northwest european ...
Question and answers webinar hydrodynamic modeling on the northwest european ...Question and answers webinar hydrodynamic modeling on the northwest european ...
Question and answers webinar hydrodynamic modeling on the northwest european ...Deltares
 
SImulating Past Flood Event using Nays 2D Flood
SImulating Past Flood Event using Nays 2D FloodSImulating Past Flood Event using Nays 2D Flood
SImulating Past Flood Event using Nays 2D FloodPutika Ashfar Khoiri
 
Simulating several flood events using Nays 2D Flood
Simulating several flood events using Nays 2D FloodSimulating several flood events using Nays 2D Flood
Simulating several flood events using Nays 2D FloodPutika Ashfar Khoiri
 
DSD-INT 2014 - OpenMI Symposium - An operational forecasting system for subsu...
DSD-INT 2014 - OpenMI Symposium - An operational forecasting system for subsu...DSD-INT 2014 - OpenMI Symposium - An operational forecasting system for subsu...
DSD-INT 2014 - OpenMI Symposium - An operational forecasting system for subsu...Deltares
 
Benettin ph.d. days presentation
Benettin ph.d. days presentationBenettin ph.d. days presentation
Benettin ph.d. days presentationRiccardo Rigon
 
Webinar deltares hydrodynamic modeling on the northwest european shelf and no...
Webinar deltares hydrodynamic modeling on the northwest european shelf and no...Webinar deltares hydrodynamic modeling on the northwest european shelf and no...
Webinar deltares hydrodynamic modeling on the northwest european shelf and no...Deltares
 
DSD-INT 2019 Implementation and application of the SANTOSS sand transport for...
DSD-INT 2019 Implementation and application of the SANTOSS sand transport for...DSD-INT 2019 Implementation and application of the SANTOSS sand transport for...
DSD-INT 2019 Implementation and application of the SANTOSS sand transport for...Deltares
 
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical InvestigationAerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigationdrboon
 
Fluid Dynamics
Fluid DynamicsFluid Dynamics
Fluid DynamicsOm Kumar
 
Analysis of stochastic models in fluids by simulations
Analysis of stochastic models in fluids by simulationsAnalysis of stochastic models in fluids by simulations
Analysis of stochastic models in fluids by simulationsDmitri Azarnyh
 
05 modello idrologico_bacini_rocciosi_di_testata_en
05 modello idrologico_bacini_rocciosi_di_testata_en05 modello idrologico_bacini_rocciosi_di_testata_en
05 modello idrologico_bacini_rocciosi_di_testata_enCIAT
 
Lattice Boltzmann methhod slides
Lattice Boltzmann methhod slidesLattice Boltzmann methhod slides
Lattice Boltzmann methhod slidesKrunal Gangawane
 

What's hot (20)

Paolo Benettin
Paolo BenettinPaolo Benettin
Paolo Benettin
 
Morphological model of the river rhine branches from the concept to the opera...
Morphological model of the river rhine branches from the concept to the opera...Morphological model of the river rhine branches from the concept to the opera...
Morphological model of the river rhine branches from the concept to the opera...
 
Aldo Fiori
Aldo FioriAldo Fiori
Aldo Fiori
 
Webinar presentation ocean modelling and early-warning system for the gulf ...
Webinar presentation   ocean modelling and early-warning system for the gulf ...Webinar presentation   ocean modelling and early-warning system for the gulf ...
Webinar presentation ocean modelling and early-warning system for the gulf ...
 
Gabriele Baroni
Gabriele BaroniGabriele Baroni
Gabriele Baroni
 
Question and answers webinar hydrodynamic modeling on the northwest european ...
Question and answers webinar hydrodynamic modeling on the northwest european ...Question and answers webinar hydrodynamic modeling on the northwest european ...
Question and answers webinar hydrodynamic modeling on the northwest european ...
 
SImulating Past Flood Event using Nays 2D Flood
SImulating Past Flood Event using Nays 2D FloodSImulating Past Flood Event using Nays 2D Flood
SImulating Past Flood Event using Nays 2D Flood
 
Simulating several flood events using Nays 2D Flood
Simulating several flood events using Nays 2D FloodSimulating several flood events using Nays 2D Flood
Simulating several flood events using Nays 2D Flood
 
DSD-INT 2014 - OpenMI Symposium - An operational forecasting system for subsu...
DSD-INT 2014 - OpenMI Symposium - An operational forecasting system for subsu...DSD-INT 2014 - OpenMI Symposium - An operational forecasting system for subsu...
DSD-INT 2014 - OpenMI Symposium - An operational forecasting system for subsu...
 
Marcello Fiorentini
Marcello FiorentiniMarcello Fiorentini
Marcello Fiorentini
 
Benettin ph.d. days presentation
Benettin ph.d. days presentationBenettin ph.d. days presentation
Benettin ph.d. days presentation
 
Webinar deltares hydrodynamic modeling on the northwest european shelf and no...
Webinar deltares hydrodynamic modeling on the northwest european shelf and no...Webinar deltares hydrodynamic modeling on the northwest european shelf and no...
Webinar deltares hydrodynamic modeling on the northwest european shelf and no...
 
DSD-INT 2019 Implementation and application of the SANTOSS sand transport for...
DSD-INT 2019 Implementation and application of the SANTOSS sand transport for...DSD-INT 2019 Implementation and application of the SANTOSS sand transport for...
DSD-INT 2019 Implementation and application of the SANTOSS sand transport for...
 
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical InvestigationAerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
 
Fluid Dynamics
Fluid DynamicsFluid Dynamics
Fluid Dynamics
 
APS-DFD Conference Final
APS-DFD Conference FinalAPS-DFD Conference Final
APS-DFD Conference Final
 
Climate Extremes Workshop - Extreme Values of Vertical Wind Speed in Doppler ...
Climate Extremes Workshop - Extreme Values of Vertical Wind Speed in Doppler ...Climate Extremes Workshop - Extreme Values of Vertical Wind Speed in Doppler ...
Climate Extremes Workshop - Extreme Values of Vertical Wind Speed in Doppler ...
 
Analysis of stochastic models in fluids by simulations
Analysis of stochastic models in fluids by simulationsAnalysis of stochastic models in fluids by simulations
Analysis of stochastic models in fluids by simulations
 
05 modello idrologico_bacini_rocciosi_di_testata_en
05 modello idrologico_bacini_rocciosi_di_testata_en05 modello idrologico_bacini_rocciosi_di_testata_en
05 modello idrologico_bacini_rocciosi_di_testata_en
 
Lattice Boltzmann methhod slides
Lattice Boltzmann methhod slidesLattice Boltzmann methhod slides
Lattice Boltzmann methhod slides
 

Similar to Modeling coupled surface-subsurface hydrological processes with CATHY_FT

Prediction of Unsteady Sheet Cavitation on Marine Current Turbines With a Bou...
Prediction of Unsteady Sheet Cavitation on Marine Current Turbines With a Bou...Prediction of Unsteady Sheet Cavitation on Marine Current Turbines With a Bou...
Prediction of Unsteady Sheet Cavitation on Marine Current Turbines With a Bou...João Baltazar
 
PROPAN - Propeller Panel Code
PROPAN - Propeller Panel CodePROPAN - Propeller Panel Code
PROPAN - Propeller Panel CodeJoão Baltazar
 
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...João Baltazar
 
Probabilistic Control of Uncertain Linear Systems Using Stochastic Reachability
Probabilistic Control of Uncertain Linear Systems Using Stochastic ReachabilityProbabilistic Control of Uncertain Linear Systems Using Stochastic Reachability
Probabilistic Control of Uncertain Linear Systems Using Stochastic ReachabilityLeo Asselborn
 
CFD Cornell Energy Workshop - M.F. Campuzano Ochoa
CFD Cornell Energy Workshop - M.F. Campuzano OchoaCFD Cornell Energy Workshop - M.F. Campuzano Ochoa
CFD Cornell Energy Workshop - M.F. Campuzano OchoaMario Felipe Campuzano Ochoa
 
Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...
Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...
Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...Kellen Betts
 
1.1 grlweap - gray
1.1   grlweap - gray1.1   grlweap - gray
1.1 grlweap - graycfpbolivia
 
Grlweap frank rausche
Grlweap  frank rauscheGrlweap  frank rausche
Grlweap frank rauschecfpbolivia
 
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdfreservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdfRTEFGDFGJU
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsVjekoslavKovac1
 
Ejercicio Redes Malladas
Ejercicio Redes MalladasEjercicio Redes Malladas
Ejercicio Redes MalladasUbaldoJGarca
 
Modelling of Laminar-to-Turbulent Flow Transition on a Marine Propeller Using...
Modelling of Laminar-to-Turbulent Flow Transition on a Marine Propeller Using...Modelling of Laminar-to-Turbulent Flow Transition on a Marine Propeller Using...
Modelling of Laminar-to-Turbulent Flow Transition on a Marine Propeller Using...João Baltazar
 
Computer applications in civil engineering lab
Computer applications in civil engineering labComputer applications in civil engineering lab
Computer applications in civil engineering labVivek Kumar Sinha
 
2.5 pda-capwap - gray
2.5   pda-capwap - gray2.5   pda-capwap - gray
2.5 pda-capwap - graycfpbolivia
 
Pda capwap - frank rausche
Pda capwap - frank rauschePda capwap - frank rausche
Pda capwap - frank rauschecfpbolivia
 
DSD-INT 2015 - Opportunities for next generation river modelling - Herman Ker...
DSD-INT 2015 - Opportunities for next generation river modelling - Herman Ker...DSD-INT 2015 - Opportunities for next generation river modelling - Herman Ker...
DSD-INT 2015 - Opportunities for next generation river modelling - Herman Ker...Deltares
 

Similar to Modeling coupled surface-subsurface hydrological processes with CATHY_FT (20)

Prediction of Unsteady Sheet Cavitation on Marine Current Turbines With a Bou...
Prediction of Unsteady Sheet Cavitation on Marine Current Turbines With a Bou...Prediction of Unsteady Sheet Cavitation on Marine Current Turbines With a Bou...
Prediction of Unsteady Sheet Cavitation on Marine Current Turbines With a Bou...
 
PROPAN - Propeller Panel Code
PROPAN - Propeller Panel CodePROPAN - Propeller Panel Code
PROPAN - Propeller Panel Code
 
Ilhabela
IlhabelaIlhabela
Ilhabela
 
Simple & Fast Fluids
Simple & Fast FluidsSimple & Fast Fluids
Simple & Fast Fluids
 
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
 
rgDefense
rgDefensergDefense
rgDefense
 
Probabilistic Control of Uncertain Linear Systems Using Stochastic Reachability
Probabilistic Control of Uncertain Linear Systems Using Stochastic ReachabilityProbabilistic Control of Uncertain Linear Systems Using Stochastic Reachability
Probabilistic Control of Uncertain Linear Systems Using Stochastic Reachability
 
CFD Cornell Energy Workshop - M.F. Campuzano Ochoa
CFD Cornell Energy Workshop - M.F. Campuzano OchoaCFD Cornell Energy Workshop - M.F. Campuzano Ochoa
CFD Cornell Energy Workshop - M.F. Campuzano Ochoa
 
Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...
Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...
Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...
 
1.1 grlweap - gray
1.1   grlweap - gray1.1   grlweap - gray
1.1 grlweap - gray
 
Grlweap frank rausche
Grlweap  frank rauscheGrlweap  frank rausche
Grlweap frank rausche
 
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdfreservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
reservoir-modeling-using-matlab-the-matalb-reservoir-simulation-toolbox-mrst.pdf
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
 
Ejercicio Redes Malladas
Ejercicio Redes MalladasEjercicio Redes Malladas
Ejercicio Redes Malladas
 
Modelling of Laminar-to-Turbulent Flow Transition on a Marine Propeller Using...
Modelling of Laminar-to-Turbulent Flow Transition on a Marine Propeller Using...Modelling of Laminar-to-Turbulent Flow Transition on a Marine Propeller Using...
Modelling of Laminar-to-Turbulent Flow Transition on a Marine Propeller Using...
 
Computer applications in civil engineering lab
Computer applications in civil engineering labComputer applications in civil engineering lab
Computer applications in civil engineering lab
 
Alfonso Senatore
Alfonso SenatoreAlfonso Senatore
Alfonso Senatore
 
2.5 pda-capwap - gray
2.5   pda-capwap - gray2.5   pda-capwap - gray
2.5 pda-capwap - gray
 
Pda capwap - frank rausche
Pda capwap - frank rauschePda capwap - frank rausche
Pda capwap - frank rausche
 
DSD-INT 2015 - Opportunities for next generation river modelling - Herman Ker...
DSD-INT 2015 - Opportunities for next generation river modelling - Herman Ker...DSD-INT 2015 - Opportunities for next generation river modelling - Herman Ker...
DSD-INT 2015 - Opportunities for next generation river modelling - Herman Ker...
 

More from CoupledHydrologicalModeling (6)

Alfonso Senatore
Alfonso SenatoreAlfonso Senatore
Alfonso Senatore
 
Mauro Sulis
Mauro SulisMauro Sulis
Mauro Sulis
 
Simone Fatichi
Simone FatichiSimone Fatichi
Simone Fatichi
 
Reed Maxwell
Reed MaxwellReed Maxwell
Reed Maxwell
 
Giorgio Cassiani
Giorgio CassianiGiorgio Cassiani
Giorgio Cassiani
 
Alberto Bellin
Alberto BellinAlberto Bellin
Alberto Bellin
 

Recently uploaded

Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxjana861314
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptMAESTRELLAMesa2
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 

Recently uploaded (20)

Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.ppt
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 

Modeling coupled surface-subsurface hydrological processes with CATHY_FT

  • 1. Hydrological modeling of coupled surface-subsurface flow and transport phenomena: the CATchment-HYdrology Flow-Transport (CATHY_FT) model Workshop on coupled hydrological modeling Carlotta Scudeler, Claudio Paniconi, Mario Putti Padua, 23-09-2015
  • 2. £ ¢   ¡INTRODUCTION CATHY_FT MODEL PERFORMANCE Many challenges in improving and testing current state-of-the-art models for integrated hydrological simulation Not so many models address both flow and transport interactions between the subsurface and surface I am presenting the CATchment-HYdrology Flow-Transport model and I am showing its performance under hillslope drainage, seepage face, and runoff generation C Scudeler Padua Workshop, Padua, 23-09-2015 2/17
  • 3. II. CATchment HYdrology Flow and Transport model
  • 4. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE CATchment HYdrology (CATHY) model    Sw Ss ∂ψ ∂t + φ∂Sw ∂t = − · q + qss ∂Q ∂t + ck ∂Q ∂s = Dh ∂2 Q ∂s2 + ck qs    ∂θc ∂t = · [−qc + D c] + qtss ∂Qm ∂t + ct ∂Qm ∂s = Dc ∂2 Qm ∂s2 + ct qts C Scudeler Padua Workshop, Padua, 23-09-2015 4/17
  • 5. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE CATHY Flow-Transport (CATHY_FT) model    Sw Ss ∂ψ ∂t + φ∂Sw ∂t = − · q + qss ∂Q ∂t + ck ∂Q ∂s = Dh ∂2 Q ∂s2 + ck qs    ∂θc ∂t = · [−qc + D c] + qtss ∂Qm ∂t + ct ∂Qm ∂s = Dc ∂2 Qm ∂s2 + ct qts C Scudeler Padua Workshop, Padua, 23-09-2015 5/17
  • 6. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Numerical model Richards’ equation (subsurface flow)    Sw Ss ∂ψ ∂t + φ∂Sw ∂t = − · q + qss ∂Q ∂t + ck ∂Q ∂s = Dh ∂2 Q ∂s2 + ck qs    ∂θc ∂t = · [−qc + D c] + qtss ∂Qm ∂t + ct ∂Qm ∂s = Dc ∂2 Qm ∂s2 + ct qts Numerics: P1 Galerkin finite element (FE) model in space and implicit finite difference model in time C Scudeler Padua Workshop, Padua, 23-09-2015 6/17
  • 7. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Numerical model Richards’ equation (subsurface flow)    Sw Ss ∂ψ ∂t + φ∂Sw ∂t = − · q + qss ∂Q ∂t + ck ∂Q ∂s = Dh ∂2 Q ∂s2 + ck qs    ∂θc ∂t = · [−qc + D c] + qtss ∂Qm ∂t + ct ∂Qm ∂s = Dc ∂2 Qm ∂s2 + ct qts Numerics: P1 Galerkin finite element (FE) model in space and implicit finite difference model in time 1. Nodal solution for ψ → continuous and piecewise linear C Scudeler Padua Workshop, Padua, 23-09-2015 6/17
  • 8. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Numerical model Richards’ equation (subsurface flow)    Sw Ss ∂ψ ∂t + φ∂Sw ∂t = − · q + qss ∂Q ∂t + ck ∂Q ∂s = Dh ∂2 Q ∂s2 + ck qs    ∂θc ∂t = · [−qc + D c] + qtss ∂Qm ∂t + ct ∂Qm ∂s = Dc ∂2 Qm ∂s2 + ct qts Numerics: P1 Galerkin finite element (FE) model in space and implicit finite difference model in time 1. Nodal solution for ψ → continuous and piecewise linear 2. Elementwise post-computation of the velocity field q from direct application of Darcy’s law → elementwise constant, normal flux discontinous and not mass-conservative across every face C Scudeler Padua Workshop, Padua, 23-09-2015 6/17
  • 9. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Numerical model Richards’ equation (subsurface flow)    Sw Ss ∂ψ ∂t + φ∂Sw ∂t = − · q + qss ∂Q ∂t + ck ∂Q ∂s = Dh ∂2 Q ∂s2 + ck qs    ∂θc ∂t = · [−qc + D c] + qtss ∂Qm ∂t + ct ∂Qm ∂s = Dc ∂2 Qm ∂s2 + ct qts Numerics: P1 Galerkin finite element (FE) model in space and implicit finite difference model in time 1. Nodal solution for ψ → continuous and piecewise linear 2. Elementwise post-computation of the velocity field q from direct application of Darcy’s law → elementwise constant, normal flux discontinous and not mass-conservative across every face 3. Larson-Niklasson (LN) velocity field q reconstruction C Scudeler Padua Workshop, Padua, 23-09-2015 6/17
  • 10. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Numerical model ADE equation (subsurface transport)    Sw Ss ∂ψ ∂t + φ∂Sw ∂t = − · q + qss ∂Q ∂t + ck ∂Q ∂s = Dh ∂2 Q ∂s2 + ck qs    ∂θc ∂t = · [−qc + D c] + qtss ∂Qm ∂t + ct ∂Qm ∂s = Dc ∂2 Qm ∂s2 + ct qts Numerics: High resolution finite volume (for - · qc advective step) and FE (for · (D c) dispersive step) combined with a time-splitting technique C Scudeler Padua Workshop, Padua, 23-09-2015 6/17
  • 11. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Numerical model ADE equation (subsurface transport)    Sw Ss ∂ψ ∂t + φ∂Sw ∂t = − · q + qss ∂Q ∂t + ck ∂Q ∂s = Dh ∂2 Q ∂s2 + ck qs    ∂θc ∂t = · [−qc + D c] + qtss ∂Qm ∂t + ct ∂Qm ∂s = Dc ∂2 Qm ∂s2 + ct qts Numerics: High resolution finite volume (for - · qc advective step) and FE (for · (D c) dispersive step) combined with a time-splitting technique 1. Advective time-explicit step for the elementwise c C Scudeler Padua Workshop, Padua, 23-09-2015 6/17
  • 12. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Numerical model ADE equation (subsurface transport)    Sw Ss ∂ψ ∂t + φ∂Sw ∂t = − · q + qss ∂Q ∂t + ck ∂Q ∂s = Dh ∂2 Q ∂s2 + ck qs    ∂θc ∂t = · [−qc + D c] + qtss ∂Qm ∂t + ct ∂Qm ∂s = Dc ∂2 Qm ∂s2 + ct qts Numerics: High resolution finite volume (for - · qc advective step) and FE (for · (D c) dispersive step) combined with a time-splitting technique 1. Advective time-explicit step for the elementwise c 2. Mass-conservative element→node c reconstruction C Scudeler Padua Workshop, Padua, 23-09-2015 6/17
  • 13. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Numerical model ADE equation (subsurface transport)    Sw Ss ∂ψ ∂t + φ∂Sw ∂t = − · q + qss ∂Q ∂t + ck ∂Q ∂s = Dh ∂2 Q ∂s2 + ck qs    ∂θc ∂t = · [−qc + D c] + qtss ∂Qm ∂t + ct ∂Qm ∂s = Dc ∂2 Qm ∂s2 + ct qts Numerics: High resolution finite volume (for - · qc advective step) and FE (for · (D c) dispersive step) combined with a time-splitting technique 1. Advective time-explicit step for the elementwise c 2. Mass-conservative element→node c reconstruction 3. Dispersive time-implicit step for the nodal c C Scudeler Padua Workshop, Padua, 23-09-2015 6/17
  • 14. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Numerical model ADE equation (subsurface transport)    Sw Ss ∂ψ ∂t + φ∂Sw ∂t = − · q + qss ∂Q ∂t + ck ∂Q ∂s = Dh ∂2 Q ∂s2 + ck qs    ∂θc ∂t = · [−qc + D c] + qtss ∂Qm ∂t + ct ∂Qm ∂s = Dc ∂2 Qm ∂s2 + ct qts Numerics: High resolution finite volume (for - · qc advective step) and FE (for · (D c) dispersive step) combined with a time-splitting technique 1. Advective time-explicit step for the elementwise c 2. Mass-conservative element→node c reconstruction 3. Dispersive time-implicit step for the nodal c 4. Mass-conservative node→element c reconstruction C Scudeler Padua Workshop, Padua, 23-09-2015 6/17
  • 15. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Numerical model Surface flow and transport equations    Sw Ss ∂ψ ∂t + φ∂Sw ∂t = − · q + qss ∂Q ∂t + ck ∂Q ∂s = Dh ∂2 Q ∂s2 + ck qs    ∂θc ∂t = · [−qc + D c] + qtss ∂Qm ∂t + ct ∂Qm ∂s = Dc ∂2 Qm ∂s2 + ct qts Numerics: Explicit finite difference scheme in space and time for both surface flow and transport solution C Scudeler Padua Workshop, Padua, 23-09-2015 6/17
  • 16. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Coupling in CATHY_FT 1 Surface flow 2 Surface transport 3 Subsurface flow 4 Subsurface transport qs k qts k Qk+1 ,hk+1 Qm k+1 ,csurf k+1 ψk+1 ,qk+1 BC switching ck+1 BC switchingqss k+1 Atmospheric BCk+1 qss k+1 qtss k+1 qtss k+1 qs k+1 qts k+1 C Scudeler Padua Workshop, Padua, 23-09-2015 7/17
  • 17. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Coupling in CATHY_FT 1 Surface flow 2 Surface transport 3 Subsurface flow 4 Subsurface transport qs k qts k Qk+1 ,hk+1 Qm k+1 ,csurf k+1 ψk+1 ,qk+1 BC switching Atmospheric BCk+1 ck+1 BC switchingqss k+1 qss k+1 qtss k+1 qtss k+1 qs k+1 qts k+1 C Scudeler Padua Workshop, Padua, 23-09-2015 7/17
  • 18. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Coupling in CATHY_FT 1 Surface flow 2 Surface transport 3 Subsurface flow 4 Subsurface transport qs k qts k Qk+1 ,hk+1 Qm k+1 ,csurf k+1 Atmospheric BCk+1 ψk+1 ,qk+1 BC switching ck+1 BC switchingqss k+1 qss k+1 qtss k+1 qtss k+1 qs k+1 qts k+1 C Scudeler Padua Workshop, Padua, 23-09-2015 7/17
  • 19. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Coupling in CATHY_FT 1 Surface flow 2 Surface transport 3 Subsurface flow 4 Subsurface transport qs k qts k Qk+1 ,hk+1 Atmospheric BCk+1 Qm k+1 ,csurf k+1 ψk+1 ,qk+1 BC switching ck+1 BC switchingqss k+1 qss k+1 qtss k+1 qtss k+1 qs k+1 qts k+1 C Scudeler Padua Workshop, Padua, 23-09-2015 7/17
  • 20. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Coupling in CATHY_FT 1 Surface flow 2 Surface transport 3 Subsurface flow Atmospheric BCk+1 4 Subsurface transport qs k qts k Qk+1 ,hk+1 Qm k+1 ,csurf k+1 ψk+1 ,qk+1 BC switching ck+1 BC switchingqss k+1 qss k+1 qtss k+1 qtss k+1 qs k+1 qts k+1 C Scudeler Padua Workshop, Padua, 23-09-2015 7/17
  • 21. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Model accuracy Ability of the model to conserve mass C Scudeler Padua Workshop, Padua, 23-09-2015 8/17
  • 22. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Model accuracy Ability of the model to conserve mass Sw Ss ∂ψ ∂t + φ ∂Sw ∂t = − · q + qss → Mass-conservative solution achieved solving the equation in its ψ − Sw mixed form [Celia et al., 1990] C Scudeler Padua Workshop, Padua, 23-09-2015 8/17
  • 23. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Model accuracy Ability of the model to conserve mass ∂θc ∂t = · [−qc + D c] + qtss → HRFV mass-conservative solution if q is mass-conservative. C Scudeler Padua Workshop, Padua, 23-09-2015 8/17
  • 24. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Model accuracy Ability of the model to conserve mass ∂θc ∂t = · [−qc + D c] + qtss → HRFV mass-conservative solution if q is mass-conservative. P1 Galerkin q is not mass-conservative C Scudeler Padua Workshop, Padua, 23-09-2015 8/17
  • 25. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Model accuracy Ability of the model to conserve mass ∂θc ∂t = · [−qc + D c] + qtss → HRFV mass-conservative solution if q is mass-conservative. P1 Galerkin q is not mass-conservative To make q mass-conservative: change the numerical scheme from FE =⇒ High computational cost to Mixed Hybrid Finite Element (MHFE) or add mass-conservative velocity field =⇒ Low computational cost reconstruction C Scudeler Padua Workshop, Padua, 23-09-2015 8/17
  • 26. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Model accuracy Ability of the model to conserve mass ∂θc ∂t = · [−qc + D c] + qtss → HRFV mass-conservative solution if q is mass-conservative. P1 Galerkin q is not mass-conservative To make q mass-conservative: change the numerical scheme from FE =⇒ High computational cost to Mixed Hybrid Finite Element (MHFE) or add mass-conservative velocity field =⇒ Low computational cost reconstruction In CATHY_FT: FE =⇒ FE+Larson-Niklasson (LN) post-processing technique C Scudeler Padua Workshop, Padua, 23-09-2015 8/17
  • 27. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Larson-Niklasson technique Domain discretized by ne tetrahedral elements and n nodes At each time step C Scudeler Padua Workshop, Padua, 23-09-2015 9/17
  • 28. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Larson-Niklasson technique Domain discretized by ne tetrahedral elements and n nodes At each time step CATHY solution · ψ nodal solution · qe non mass-conservative where: qe is the non mass-conservative element velocity C Scudeler Padua Workshop, Padua, 23-09-2015 9/17
  • 29. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Larson-Niklasson technique Domain discretized by ne tetrahedral elements and n nodes At each time step CATHY solution · ψ nodal solution · qe non mass-conservative · Re i · q·n where: qe is the non mass-conservative element velocity Re i is the element residual associated to each node i n is the vector normal to each element faces C Scudeler Padua Workshop, Padua, 23-09-2015 9/17
  • 30. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE Larson-Niklasson technique Domain discretized by ne tetrahedral elements and n nodes At each time step CATHY solution · ψ nodal solution · qe non mass-conservative · Re i · q·n Larson-Niklasson · new qLN ·n · new mass-conservative qe LN where: qe is the non mass-conservative element velocity Re i is the element residual associated to each node i n is the vector normal to each element faces qe LN is the mass-conservative element velocity C Scudeler Padua Workshop, Padua, 23-09-2015 9/17
  • 31. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE LN velocity reconstruction results 1. Convergent streamlines towards an outlet 2. High streamline curvatures due to heterogeneity C Scudeler Padua Workshop, Padua, 23-09-2015 10/17
  • 32. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE LN velocity reconstruction results 1. Convergent streamlines towards an outlet D=50 m D=0 m qN=0 m/s cin =1 C Scudeler Padua Workshop, Padua, 23-09-2015 10/17
  • 33. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE LN velocity reconstruction results 1. Convergent streamlines towards an outlet 0 1 2 3 4 Time (h) 25 50 75 100 Mass(%) Mst - P1 Mout - P1 Err - P1 Mst → mass stored Mout → cumulative mass flown out Min → mass initially in the system Err=Min − Mst − Mout C Scudeler Padua Workshop, Padua, 23-09-2015 10/17
  • 34. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE LN velocity reconstruction results 1. Convergent streamlines towards an outlet 0 1 2 3 4 Time (h) 25 50 75 100 Mass(%) Mst - P1 Mout - P1 Err - P1 Mst → mass stored Mout → cumulative mass flown out Min → mass initially in the system Err=Min − Mst − Mout At the end Mout = Min ⇒ P1 Galerkin q exits from the 0 flux boundary C Scudeler Padua Workshop, Padua, 23-09-2015 10/17
  • 35. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE LN velocity reconstruction results 1. Convergent streamlines towards an outlet 0 1 2 3 4 Time (h) 25 50 75 100 Mass(%) Mst - LN Mout - LN C Scudeler Padua Workshop, Padua, 23-09-2015 10/17
  • 36. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE LN velocity reconstruction results 1. Convergent streamlines towards an outlet 0 1 2 3 4 Time (h) 25 50 75 100 Mass(%) Mst - LN Mout - LN Velocities reconstructed with LN do not violate the 0 flux boundaries C Scudeler Padua Workshop, Padua, 23-09-2015 10/17
  • 37. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE LN velocity reconstruction results 1. Convergent streamlines towards an outlet 2. High streamline curvatures due to heterogeneity D=50 m D=0 m qN=0 m/s cin =1 Ks (m/s) 2x10-4 2x10-12 C Scudeler Padua Workshop, Padua, 23-09-2015 11/17
  • 38. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE LN velocity reconstruction results 1. Convergent streamlines towards an outlet 2. High streamline curvatures due to heterogeneity 0 2 4 6 8 10 Time (h) Mst - LN Mstf - LN 0 2 4 6 8 Time (h) 25 50 75 100 Mass(%) Mst - P1 Mstf - P1 Mstf → mass stored in the unpermeable soil Mst → mass stored C Scudeler Padua Workshop, Padua, 23-09-2015 11/17
  • 39. INTRODUCTION £ ¢   ¡CATHY_FT MODEL PERFORMANCE LN velocity reconstruction results 1. Convergent streamlines towards an outlet 2. High streamline curvatures due to heterogeneity 0 2 4 6 8 10 Time (h) Mst - LN Mstf - LN 0 2 4 6 8 Time (h) 25 50 75 100 Mass(%) Mst - P1 Mstf - P1 Mstf → mass stored in the unpermeable soil Mst → mass stored At the end for P1 Mstf = Mst =0 ⇒ Solute mass get trapped in the unpermeable soil At the end for LN Mstf = Mst =0 ⇒ Solute mass slightly crosses the unpermeable soil C Scudeler Padua Workshop, Padua, 23-09-2015 11/17
  • 40. III. Testing CATHY_FT at the Landscape Evolution Observatory (LEO)
  • 41. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE The Landscape Evolution Observatory (LEO) LEO, Biosphere 2, Oracle, Arizona, U.S.A. 3 convergent landscapes 30 m long, 11.5 m wide dense sensor and sampler network rainfall simulator (3-45 mm/h) C Scudeler Padua Workshop, Padua, 23-09-2015 13/17
  • 42. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE The Landscape Evolution Observatory (LEO) LEO, Biosphere 2, Oracle, Arizona, U.S.A. 3 convergent landscapes 30 m long, 11.5 m wide dense sensor and sampler network rainfall simulator (3-45 mm/h) In Figure: View of one of the three hillslopes from top C Scudeler Padua Workshop, Padua, 23-09-2015 13/17
  • 43. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE The Landscape Evolution Observatory (LEO) LEO, Biosphere 2, Oracle, Arizona, U.S.A. 3 convergent landscapes 30 m long, 11.5 m wide dense sensor and sampler network rainfall simulator (3-45 mm/h) In Figure: View of one of the three hillslopes from top Tipping bucket for low seepage face flow C Scudeler Padua Workshop, Padua, 23-09-2015 13/17
  • 44. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE The Landscape Evolution Observatory (LEO) LEO, Biosphere 2, Oracle, Arizona, U.S.A. 3 convergent landscapes 30 m long, 11.5 m wide dense sensor and sampler network rainfall simulator (3-45 mm/h) In Figure: View of one of the three hillslopes from top Tipping bucket for low seepage face flow Rainfall simulator C Scudeler Padua Workshop, Padua, 23-09-2015 13/17
  • 45. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE Test case Computational domain 60 x 22 grid cells 30 layers; more refined close to the surface and at bottom C Scudeler Padua Workshop, Padua, 23-09-2015 14/17
  • 46. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE Test case Computational domain 60 x 22 grid cells 30 layers; more refined close to the surface and at bottom Material model: homogeneity with Ks=1×10−4 m/s and φ=0.39 Van Genuchten parameters nVG=2.26, θres=0.002, ψsat =-0.6 m C Scudeler Padua Workshop, Padua, 23-09-2015 14/17
  • 47. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE Test case Computational domain 60 x 22 grid cells 30 layers; more refined close to the surface and at bottom Material model: homogeneity with Ks=1×10−4 m/s and φ=0.39 Van Genuchten parameters nVG=2.26, θres=0.002, ψsat =-0.6 m Model performance for Subsurface-Surface flow and transport C Scudeler Padua Workshop, Padua, 23-09-2015 14/17
  • 48. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE Test case Computational domain 60 x 22 grid cells 30 layers; more refined close to the surface and at bottom Material model: homogeneity with Ks=1×10−4 m/s and φ=0.39 Van Genuchten parameters nVG=2.26, θres=0.002, ψsat =-0.6 m Model performance for Subsurface-Surface flow and transport 1) Rainfall C Scudeler Padua Workshop, Padua, 23-09-2015 14/17
  • 49. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE Test case Computational domain 60 x 22 grid cells 30 layers; more refined close to the surface and at bottom Material model: homogeneity with Ks=1×10−4 m/s and φ=0.39 Van Genuchten parameters nVG=2.26, θres=0.002, ψsat =-0.6 m Model performance for Subsurface-Surface flow and transport 1) Rainfall 2) Seepage face flow C Scudeler Padua Workshop, Padua, 23-09-2015 14/17
  • 50. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE Test case Computational domain 60 x 22 grid cells 30 layers; more refined close to the surface and at bottom Material model: homogeneity with Ks=1×10−4 m/s and φ=0.39 Van Genuchten parameters nVG=2.26, θres=0.002, ψsat =-0.6 m Model performance for Subsurface-Surface flow and transport 1) Rainfall 2) Seepage face flow 3) Drainage under variably saturated conditions C Scudeler Padua Workshop, Padua, 23-09-2015 14/17
  • 51. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE Test case Computational domain 60 x 22 grid cells 30 layers; more refined close to the surface and at bottom Material model: homogeneity with Ks=1×10−4 m/s and φ=0.39 Van Genuchten parameters nVG=2.26, θres=0.002, ψsat =-0.6 m Model performance for Subsurface-Surface flow and transport 1) Rainfall 2) Seepage face flow 3) Drainage under variably saturated conditions 4) Surface flow C Scudeler Padua Workshop, Padua, 23-09-2015 14/17
  • 52. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE Test case Seepage Face Outlet Computational domain 60 x 22 grid cells 30 layers; more refined close to the surface and at bottom Material model: homogeneity with Ks=1×10−4 m/s and φ=0.39 Van Genuchten parameters nVG=2.26, θres=0.002, ψsat =-0.6 m Model performance for Subsurface-Surface flow and transport 1) Rainfall 2) Seepage face flow 3) Drainage under variably saturated conditions 4) Surface flow C Scudeler Padua Workshop, Padua, 23-09-2015 14/17
  • 53. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE Input Water and solute mass inflow Cumulative volume and mass 0.005 0.01 0.015 Qr (m 3 /s) 0 6 12 18 24 30 36 42 48 Time (h) 0.005 0.01 0.015 Qm (mg/s) 15 30 45 60 Vr (m 3 ) 0 6 12 18 24 30 36 42 48 Time (h) 15 30 45 60 Min (mg) Initial conditions: 119 m3 of water initially present in the system (water table set at 0.4 m from bottom) and 0 solute mass C Scudeler Padua Workshop, Padua, 23-09-2015 15/17
  • 54. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE Input Water and solute mass inflow Cumulative volume and mass 0.005 0.01 0.015 Qr (m 3 /s) 0 6 12 18 24 30 36 42 48 Time (h) 0.005 0.01 0.015 Qm (mg/s) Qr=0.012 m3 /s 15 30 45 60 Vr (m 3 ) 0 6 12 18 24 30 36 42 48 Time (h) 15 30 45 60 Min (mg) Vr=40.4 m3 Initial conditions: 119 m3 of water initially present in the system (water table set at 0.4 m from bottom) and 0 solute mass Flow input: pulse of homogenous rain Qr =0.012 m3 /s for 1 h→ cumulative volume injected Vr =40.4 m3 C Scudeler Padua Workshop, Padua, 23-09-2015 15/17
  • 55. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE Input Water and solute mass inflow Cumulative volume and mass 0.005 0.01 0.015 Qr (m 3 /s) 0 6 12 18 24 30 36 42 48 Time (h) 0.005 0.01 0.015 Qm (mg/s) Qm=0.012 mg/s 15 30 45 60 Vr (m 3 ) 0 6 12 18 24 30 36 42 48 Time (h) 15 30 45 60 Min (mg) Min=40.4 mg Initial conditions: 119 m3 of water initially present in the system (water table set at 0.4 m from bottom) and 0 solute mass Flow input: pulse of homogenous rain Qr =0.012 m3 /s for 1 h→ cumulative volume injected Vr =40.4 m3 Transport input: solute injection with c=1 mg/m3 of rain pulse→ mass inflow Qm=0.012 mg/s and cumulative mass injected Min=40.4 mg C Scudeler Padua Workshop, Padua, 23-09-2015 15/17
  • 56. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE Results Water balance 40 80 Vr (%) -40 0 40 80 ∆Vst (%) 40 80 Vsf (%) 0 6 12 18 24 30 36 42 48 Time (h) 40 80 Vout (%) 40 80 Min (%) 10 20 30 40 ∆Mst (%) 5 10 Msf (%) 0 6 12 18 24 30 36 42 48 Time (h) 30 60 90 Mout (%) Vr − ∆Vst − Vsf − Vout = Flow Error Min − ∆Mst − Msf − Mout = Transport Error C Scudeler Padua Workshop, Padua, 23-09-2015 16/17
  • 57. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE Results Water balance 40 80 Vr (%) -40 0 40 80 ∆Vst (%) 40 80 Vsf (%) 0 6 12 18 24 30 36 42 48 Time (h) 40 80 Vout (%) Vr=100% 40 80 Min (%) 10 20 30 40 ∆Mst (%) 5 10 Msf (%) 0 6 12 18 24 30 36 42 48 Time (h) 30 60 90 Mout (%) Vr − ∆Vst − Vsf − Vout ⇒100 Min − ∆Mst − Msf − Mout = Transport Error C Scudeler Padua Workshop, Padua, 23-09-2015 16/17
  • 58. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE Results Water balance 40 80 Vr (%) -40 0 40 80 ∆Vst (%) 40 80 Vsf (%) 0 6 12 18 24 30 36 42 48 Time (h) 40 80 Vout (%) -48.17%∆Vst= 40 80 Min (%) 10 20 30 40 ∆Mst (%) 5 10 Msf (%) 0 6 12 18 24 30 36 42 48 Time (h) 30 60 90 Mout (%) Vr − ∆Vst − Vsf − Vout ⇒100+48.17 Min − ∆Mst − Msf − Mout = Transport Error C Scudeler Padua Workshop, Padua, 23-09-2015 16/17
  • 59. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE Results Water balance 40 80 Vr (%) -40 0 40 80 ∆Vst (%) 40 80 Vsf (%) 0 6 12 18 24 30 36 42 48 Time (h) 40 80 Vout (%) Vsf=77.62% 40 80 Min (%) 10 20 30 40 ∆Mst (%) 5 10 Msf (%) 0 6 12 18 24 30 36 42 48 Time (h) 30 60 90 Mout (%) Vr − ∆Vst − Vsf − Vout ⇒100+48.17-77.62 Min − ∆Mst − Msf − Mout = Transport Error C Scudeler Padua Workshop, Padua, 23-09-2015 16/17
  • 60. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE Results Water balance 40 80 Vr (%) -40 0 40 80 ∆Vst (%) 40 80 Vsf (%) 0 6 12 18 24 30 36 42 48 Time (h) 40 80 Vout (%) Vout=70.58% 40 80 Min (%) 10 20 30 40 ∆Mst (%) 5 10 Msf (%) 0 6 12 18 24 30 36 42 48 Time (h) 30 60 90 Mout (%) Vr − ∆Vst − Vsf − Vout ⇒100+48.17-77.62-70.58=o(0.01)% Min − ∆Mst − Msf − Mout = Transport Error C Scudeler Padua Workshop, Padua, 23-09-2015 16/17
  • 61. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE Results Mass balance 40 80 Vr (%) -40 0 40 80 ∆Vst (%) 40 80 Vsf (%) 0 6 12 18 24 30 36 42 48 Time (h) 40 80 Vout (%) 40 80 Min (%) 10 20 30 40 ∆Mst (%) 5 10 Msf (%) 0 6 12 18 24 30 36 42 48 Time (h) 30 60 90 Mout (%) Min=100% Vr − ∆Vst − Vsf − Vout ⇒100+48.17-77.62-70.58=o(0.01)% Min − ∆Mst − Msf − Mout ⇒100 C Scudeler Padua Workshop, Padua, 23-09-2015 16/17
  • 62. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE Results Mass balance 40 80 Vr (%) -40 0 40 80 ∆Vst (%) 40 80 Vsf (%) 0 6 12 18 24 30 36 42 48 Time (h) 40 80 Vout (%) 40 80 Min (%) 10 20 30 40 ∆Mst (%) 5 10 Msf (%) 0 6 12 18 24 30 36 42 48 Time (h) 30 60 90 Mout (%) ∆Mst=28.62% Vr − ∆Vst − Vsf − Vout ⇒100+48.17-77.62-70.58=o(0.01)% Min − ∆Mst − Msf − Mout ⇒100-28.62 C Scudeler Padua Workshop, Padua, 23-09-2015 16/17
  • 63. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE Results Mass balance 40 80 Vr (%) -40 0 40 80 ∆Vst (%) 40 80 Vsf (%) 0 6 12 18 24 30 36 42 48 Time (h) 40 80 Vout (%) 40 80 Min (%) 10 20 30 40 ∆Mst (%) 5 10 Msf (%) 0 6 12 18 24 30 36 42 48 Time (h) 30 60 90 Mout (%) Msf=6.86% Vr − ∆Vst − Vsf − Vout ⇒100+48.17-77.62-70.58=o(0.01)% Min − ∆Mst − Msf − Mout ⇒100-28.62-6.86 C Scudeler Padua Workshop, Padua, 23-09-2015 16/17
  • 64. INTRODUCTION CATHY_FT £ ¢   ¡MODEL PERFORMANCE Results Mass balance 40 80 Vr (%) -40 0 40 80 ∆Vst (%) 40 80 Vsf (%) 0 6 12 18 24 30 36 42 48 Time (h) 40 80 Vout (%) 40 80 Min (%) 10 20 30 40 ∆Mst (%) 5 10 Msf (%) 0 6 12 18 24 30 36 42 48 Time (h) 30 60 90 Mout (%) Mout=64.42% Vr − ∆Vst − Vsf − Vout ⇒100+48.17-77.62-70.58=o(0.01)% Min − ∆Mst − Msf − Mout ⇒100-28.62-6.86-64.42=o(0.1)% C Scudeler Padua Workshop, Padua, 23-09-2015 16/17
  • 65. INTRODUCTION CATHY_FT MODEL PERFORMANCE Conclusions 1. P1 Galerkin solution is mass-conservative while the velocities are not; this causes problems for transport simulations. This requires a post-processing technique to ensure mass-conservation C Scudeler Padua Workshop, Padua, 23-09-2015 17/17
  • 66. INTRODUCTION CATHY_FT MODEL PERFORMANCE Conclusions 1. P1 Galerkin solution is mass-conservative while the velocities are not; this causes problems for transport simulations. This requires a post-processing technique to ensure mass-conservation 2. Results so far indicate that LN reconstructed velocities are as accurate as MHFE velocities and achieve much better computational efficiency C Scudeler Padua Workshop, Padua, 23-09-2015 17/17
  • 67. INTRODUCTION CATHY_FT MODEL PERFORMANCE Conclusions 1. P1 Galerkin solution is mass-conservative while the velocities are not; this causes problems for transport simulations. This requires a post-processing technique to ensure mass-conservation 2. Results so far indicate that LN reconstructed velocities are as accurate as MHFE velocities and achieve much better computational efficiency 3. Exchange processes in integrated surface-subsurface models are highly complex and need to be carefully formulated and resolved C Scudeler Padua Workshop, Padua, 23-09-2015 17/17
  • 68. Thanks for your attention