SlideShare a Scribd company logo
1 of 37
Download to read offline
Price	
  Models	
  
Learning	
  Objec-ves	
  	
  	
  
¨  Models	
  	
  
¤  A	
  mathema-cal	
  or	
  physical	
  representa-on	
  of	
  a	
  hypothesis,	
  theory,	
  
or	
  law	
  
¤  Simplifica-on	
  of	
  reality	
  for	
  decision	
  making	
  and	
  design	
  
	
  
¨  Models	
  for	
  dynamical	
  systems	
  	
  
n  Determinis-c,	
  Stochas(c,	
  Complex	
  
	
  
¨  Security	
  price	
  and	
  return	
  rate	
  models	
  
	
  
¨  Review	
  of	
  probability	
  and	
  sta-s-cs	
  
	
  
	
  
2	
  
A	
  Financial	
  Game	
  	
  
¨  Would	
  you	
  play	
  a	
  financial	
  game	
  with	
  	
  
¤  a	
  90%	
  probability	
  of	
  gaining	
  $200	
  and	
  	
  
¤  a	
  10%	
  probability	
  of	
  losing	
  	
  $100	
  ?	
  
	
  
¨  Alterna-vely,	
  would	
  you	
  take	
  $20	
  with	
  certainty	
  ?	
  	
  
	
  
¨  In	
  probability	
  and	
  sta(s(cs,	
  you	
  studied	
  decision	
  making	
  with	
  uncertainty	
  	
  
¤  But	
  it	
  was	
  actually	
  decision	
  making	
  with	
  risk	
  !	
  	
  
	
  
¤  Expected	
  value:	
  	
  	
  $200	
  ·∙	
  .90	
  -­‐	
  $100	
  ·∙	
  .1	
  =	
  $170	
  
	
  
¤  What	
  does	
  that	
  calcula-on	
  really	
  mean?	
  	
  Is	
  it	
  ra-onal	
  to	
  play	
  this	
  financial	
  
game?	
  	
  
	
  
¤  I	
  would	
  guess	
  that	
  most	
  of	
  you	
  would	
  take	
  the	
  $20	
  ,	
  why	
  ?	
  
3	
  
Ques-ons	
  
¨  Your	
  common	
  sense	
  likely	
  tells	
  you	
  that	
  too	
  much	
  uncertainty	
  and	
  risk	
  
remain	
  in	
  the	
  game	
  	
  
¤  How	
  many	
  -mes	
  can	
  I	
  play	
  the	
  game?	
  	
  
¤  What’s	
  the	
  dura-on	
  of	
  the	
  game?	
  	
  
¤  Are	
  there	
  any	
  other	
  alterna-ve	
  games?	
  
¤  Any	
  opportunity	
  cost	
  ?	
  	
  
¤  How	
  much	
  money	
  do	
  I	
  have?	
  	
  
¤  Is	
  there	
  any	
  risk	
  of	
  not	
  geng	
  paid?	
  
¤  Does	
  ‘probability’	
  (expected	
  	
  value)	
  even	
  apply	
  to	
  a	
  single	
  game?	
  	
  	
  	
  
¤  Other	
  ?	
  	
  
	
  
¨  Actually	
  there’s	
  a	
  difference	
  between	
  risk	
  and	
  uncertainty,	
  but	
  we’ll	
  
explore	
  that	
  in	
  a	
  later	
  chapter	
  	
  
4	
  
Review	
  Of	
  Probability	
  
¨  Random	
  Variable	
  	
  
¤  Can	
  take	
  on	
  different	
  values	
  unlike	
  determinis(c	
  variables	
  
¤  Values	
  come	
  from	
  experiments,	
  measurements,	
  random	
  processes	
  	
  
n  Say	
  x	
  is	
  a	
  random	
  variable	
  with	
  a	
  -me	
  sequence	
  of	
  values	
  xi	
  produced	
  
by	
  a	
  random	
  process,	
  X	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
¤  Random	
  does	
  not	
  necessarily	
  mean	
  that	
  there	
  is	
  no	
  underlying	
  structure	
  
n  The	
  structure	
  is	
  defined	
  by	
  a	
  probability	
  distribu-on	
  characterized	
  by	
  
parameters	
  and	
  sta(s(cs	
  
	
  
	
  
	
  
5	
  
Random	
  
process	
  
X	
  
Random	
  
variable	
  
x	
  
Random	
  
sequence	
  
xi	
  	
  	
  	
  
Review	
  Of	
  Probability	
  
¨  Expected	
  Value	
  	
  
¤  The	
  expected	
  value	
  of	
  a	
  random	
  variable,	
  x,	
  is	
  the	
  weighted	
  value	
  of	
  m	
  
possible	
  values	
  or	
  outcomes	
  	
  
	
  
	
  
	
  
¤  Example	
  
	
  
	
  
	
  
	
  
¤  This	
  calculate	
  implies	
  that	
  each	
  outcome,	
  xi,	
  is	
  independent	
  of	
  the	
  other	
  m-­‐1	
  
outcomes	
  	
  
n  Thus	
  no	
  condi-onal	
  dependencies	
  between	
  the	
  m	
  outcomes	
  
n  How	
  do	
  we	
  determine	
  Pr[xi]	
  	
  ?	
  	
  
6	
  
[ ] [ ] i
m
1i
i xxPrxE ⋅= ∑=
[ ] [ ] 170$100$1.200$90.xxPrxE i
2
1i
i =⋅−⋅=⋅= ∑=
7	
  
Review	
  Of	
  Probability	
  
¨  Law	
  of	
  Large	
  Numbers	
  (LLN)	
  
¤  If	
  x	
  is	
  an	
  independent	
  and	
  iden-cally	
  distributed	
  random	
  variable	
  (IID),	
  the	
  sum	
  sn/n	
  
converges	
  to	
  the	
  expected	
  value	
  of	
  x,	
  A,	
  as	
  n	
  approaches	
  infinity	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
¨  Variance:	
  	
  Average	
  squared	
  error	
  from	
  the	
  mean	
  	
  
	
  
	
  
¨  Standard	
  Devia-on	
  
	
  
	
  
	
  
	
  
	
  
8	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  x
n
1
n
s
	
  	
  	
  	
  
	
  	
  x...xxxs
n
1i
i
n
n21
n
1i
in
∑
∑
=
=
⋅=
+++=≡
[ ] [ ] [ ]( ) 222
BxExExVar ≡−=
[ ] AnsE
A
n
s
E
	
  	
  	
  	
  n	
  	
  	
  As
n
n
⋅→
→⎥⎦
⎤
⎢⎣
⎡
∞→
[ ] [ ] BxVarxSD ≡=
Review	
  Of	
  Probability	
  
¨  Independent	
  random	
  variables:	
  No	
  condi-onal	
  dependence	
  	
  
	
  
	
  
¨  If	
  y	
  is	
  a	
  lagged	
  sequence	
  of	
  x,	
  then	
  
	
  
	
  
¨  Linear	
  (Pearson)	
  correla-on,	
  ρ,	
  	
  is	
  a	
  measure	
  of	
  linear	
  dependence	
  and	
  is	
  
commonly	
  used	
  for	
  ellip(cally	
  distributed	
  	
  
random	
  variables,	
  x	
  and	
  y	
  	
  
	
  
¨  Ellip-cally	
  distributed	
  random	
  variables	
  include	
  Gaussian,	
  	
  t-­‐distribu-on,	
  Cauchy,	
  
Laplace,	
  Logis-cs,	
  	
  etc.	
  
¨  Otherwise	
  non-­‐correla-on	
  does	
  not	
  imply	
  independence	
  	
  
¨  Checks	
  for	
  independence	
  of	
  an	
  ellip-c	
  random	
  variable	
  x	
  start	
  with	
  checking	
  	
  
auto-­‐correla-on	
  of	
  x,	
  and	
  its	
  square,	
  x2,	
  or	
  its	
  de-­‐trended	
  square	
  (x-­‐E(x))2	
  
	
  
	
  
	
  
	
  
9	
  
]Pr[x]x,...,x,x|Pr[x i02i-­‐1i-­‐i =
[ ] [ ]( ) [ ]( )[ ]
yx DSDS
yEyxExE
yx,ρ
⋅
−⋅−
=
Pr[x]y]|Pr[x =
Game	
  Model	
  	
  
¨  Let’s	
  develop	
  a	
  ‘stochas-c	
  model’	
  for	
  the	
  financial	
  game	
  	
  
¨  Say	
  that	
  your	
  wealth	
  at	
  -me	
  i	
  or	
  ti	
  is	
  Si	
  
¤  Integer	
  periods,	
  i,	
  and	
  discrete	
  -me,	
  ti	
  
¨  You	
  play	
  the	
  game	
  between	
  -me	
  i-­‐1	
  and	
  -me	
  i	
  over	
  -me	
  Δt	
  =	
  ti	
  –	
  ti-­‐1	
  
¨  Your	
  gain	
  or	
  loss	
  	
  (return	
  or	
  change	
  in	
  wealth)	
  is	
  ΔSi	
  for	
  that	
  ith	
  game	
  	
  
	
  
	
  
¨  Your	
  ini-al	
  wealth	
  is	
  S0	
  at	
  -me	
  i	
  =	
  0	
  	
  or	
  t0=0.0	
  
	
  
¨  The	
  implica-on	
  is	
  that	
  the	
  original	
  game	
  is	
  played	
  	
  
only	
  once	
  	
  
10	
  
	
  ΔS	
  SS i1i-­‐i +=
101 S	
  SS Δ+=
i-­‐1	
  
ti-­‐1	
  
Si-­‐1	
  
ΔSi	
  
i	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
ti	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Si	
  	
  
Game	
  Model	
  	
  	
  
¨  You	
  can	
  also	
  compute	
  the	
  variance,	
  Var,	
  and	
  standard	
  devia-on,	
  SD,	
  of	
  
the	
  game	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
11	
  
[ ] [ ] [ ]( )
[ ] $908,100	
  	
  	
  ΔSSD
$	
  8,10028,900-­‐	
  1,00036,000	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
$1700.10$100)(0.90$200	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
ΔSEΔSEΔSVar
2
222
22
==
=+=
−⋅−+⋅=
−=
-­‐100	
  	
  	
  	
  200	
  	
  
Outcome	
  	
  
Frequency	
  
Game	
  Model	
  	
  
¨  Now	
  say	
  that	
  you	
  could	
  play	
  the	
  financial	
  game	
  a	
  number	
  of	
  -mes,	
  n	
  
	
  
	
  
	
  
	
  
¨  In	
  each	
  game	
  the	
  probabili-es	
  and	
  payoffs	
  for	
  the	
  game	
  remain	
  the	
  	
  same,	
  thus	
  
the	
  wealth	
  increments,	
  ΔSi,	
  are	
  independent	
  and	
  iden(cally	
  distributed	
  (IID)	
  
¨  The	
  variance	
  is	
  also	
  finite,	
  its	
  8,100	
  $2,	
  thus	
  ΔS	
  is	
  IID/FV	
  
¨  One	
  of	
  the	
  most	
  important	
  sta-s-cal	
  	
  
principles	
  is	
  that	
  	
  sums	
  of	
  IID/	
  FV	
  	
  	
  
random	
  variables,	
  e.g.,	
  ΔS	
  approach	
  	
  
normal	
  distribu-on	
  as	
  n	
  becomes	
  	
  
large	
  (Central	
  Limit	
  Theorem)	
  
	
  
12	
  
∑=
+=+=
+++=
n
1i
i00n
n210n
	
  ΔSSΔS	
  SS
ΔS...ΔSΔSSS
[ ]
[ ]
[ ]
[ ]
[ ] BnΔSDS	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
BnΔSVar	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
AnΔSE	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Bn	
  ,AnNΔS	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
BA,N
n
ΔS
	
  	
  	
  	
  n
ΔSSS
ΔS...ΔSΔSSS
2
2
2
0n
n210n
⋅→
⋅→
⋅→
⋅⋅→
→∞→
+=
+++=
Central	
  Limit	
  Theorem	
  	
  
13	
  
0
200
400
600
800
1000
1200
1400
$13,000 $14,000 $15,000 $16,000 $17,000 $18,000 $19,000 $20,000
Frequency
Gain	
  Per	
  100	
  Game	
  Sequence
I	
  wrote	
  a	
  VB	
  program	
  that	
  ran	
  a	
  
100	
  game	
  sequence	
  10,000	
  
-mes.	
  	
  I	
  computed	
  the	
  average	
  
gain	
  per	
  game	
  sequence	
  and	
  
ploled	
  a	
  histogram	
  of	
  the	
  
sums.	
  	
  The	
  observed	
  mean	
  sum	
  
was	
  $17,002.	
  	
  	
  
	
  
This	
  is	
  a	
  simula(on.	
  
	
  
Would	
  you	
  play	
  the	
  game	
  a	
  100	
  
-mes?	
  Would	
  you	
  play	
  it	
  one	
  
-me?	
  	
  	
  	
  
Central	
  Limit	
  Theorem	
  	
  
14	
  
0
200
400
600
800
1000
1200
1400
$130 $135 $140 $145 $150 $155 $160 $165 $170 $175 $180 $185 $190 $195 $200
Frequency
Average	
  Gain	
  Per	
  Game
I	
  modified	
  the	
  program	
  to	
  
compute	
  the	
  average	
  gain	
  per	
  
game	
  in	
  each	
  of	
  	
  10,000	
  
sequences	
  and	
  ploled	
  a	
  
histogram	
  of	
  these	
  average	
  
gains.	
  	
  The	
  observed	
  mean	
  gain	
  
was	
  $170.02.	
  	
  	
  
Another	
  Game:	
  	
  Coin	
  Flipping	
  	
  
¨  Now	
  lets	
  play	
  another	
  financial	
  game	
  :	
  coin	
  flipping.	
  	
  	
  
¨  Say	
  you	
  gain	
  $10	
  on	
  heads	
  and	
  pay	
  $10	
  on	
  tails.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  
Is	
  each	
  flip	
  an	
  independent	
  event?	
  	
  With	
  the	
  same	
  probabili-es?	
  And	
  has	
  
finite	
  variance?	
  	
  	
  Yes,	
  its	
  IID/FV	
  
¨  Coin	
  flipping	
  is	
  a	
  ‘fair	
  game’	
  since	
  the	
  expected	
  return	
  for	
  each	
  player	
  
(counter	
  party)	
  is	
  zero	
  –	
  neither	
  player	
  has	
  an	
  expected	
  advantage	
  	
  
¤  Coin	
  flipping	
  is	
  characterized	
  as	
  a	
  binomial	
  model	
  	
  
15	
  
[ ] ( ) [ ] [ ] [ ]( )
[ ] ( ) [ ] $10$	
  100ΔSSD	
  	
  	
  	
  	
  	
  	
  	
  100$.5$10.5$10ΔSE
$	
  	
  100ΔSEΔSEΔSVar	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  $0.5$10.5$10ΔSE
22222
222
===⋅−+⋅=
=−==⋅−+⋅=
Binomial	
  Model	
  for	
  Coin	
  Flipping	
  	
  
16	
  
3	
  trials	
  	
   40	
  trials	
  	
  
0 1 2 3 0 1 2 3 0 1 2 3
$30 1	
   0.125	
  
$20 1	
   0.250	
  
$10 $10 1	
   3	
   0.500	
   0.375	
  
$0 $0 1	
   2	
   1.000	
   0.500	
  
-­‐$10 -­‐$10 1	
   3	
   0.500	
   0.375	
  
-­‐$20 1	
   0.250	
  
-­‐$30 1	
   0.125	
  
-­‐$	
   -­‐$	
   -­‐$	
   -­‐$	
   1	
   2	
   4	
   8	
   1.000	
   1.000	
   1.000	
   1.000	
  
Flips	
   Flips	
   Flips	
  
Binomial	
  
tree	
  
Another	
  Game:	
  	
  Die	
  Rolling	
  	
  
¨  Using	
  a	
  single	
  die,	
  if	
  you	
  roll	
  a	
  6	
  then	
  you	
  receive	
  $110,	
  while	
  
any	
  other	
  outcome	
  results	
  in	
  you	
  paying	
  $10	
  	
  
17	
  
[ ] ( )
[ ] ( )
[ ] [ ] [ ]( )
[ ] $44.72$	
  2,000ΔSD	
  
$	
  	
  000,2100100,2ΔSEΔSEΔSar
$	
  	
  100,2110$
6
1
$10-­‐
6
5
ΔSE
10$110$
6
1
$10-­‐
6
5
ΔSE
2
222
2222
==
=−=−=
=⋅+⋅=
=⋅+⋅=
S
V
0
200
400
600
800
1000
1200
-­‐$400 $0 $400 $800 $1,200 $1,600 $2,000 $2,400 $2,800
Frequency
Gain	
  Per	
  100	
  Roll	
  Sequence
Another	
  Game:	
  	
  Die	
  Rolling	
  	
  
18	
  
I	
  modified	
  the	
  program	
  and	
  ran	
  the	
  100	
  
die	
  rolling	
  game	
  sequence	
  10,000	
  -mes.	
  	
  
I	
  computed	
  the	
  sums	
  for	
  the	
  100	
  rolls.	
  
The	
  mean	
  was	
  $999.	
  	
  
‘Rate	
  Game’	
  	
  
¨  Now	
  let’s	
  consider	
  a	
  game	
  defined	
  by	
  rates	
  of	
  gain	
  or	
  loss	
  (rates	
  of	
  return)	
  
¤  45%	
  chance	
  of	
  losing	
  1%	
  
¤  55%	
  chance	
  of	
  gaining	
  1.25%	
  	
  
	
  	
  
	
  
	
  
	
  
	
  
¨  The	
  Central	
  Limit	
  Theorem	
  also	
  addresses	
  	
  
products	
  of	
  IID	
  /	
  FV	
  random	
  variables.	
  	
  For	
  	
  
large	
  n,	
  the	
  future	
  value	
  factor,	
  fn,	
  	
  	
  
approaches	
  a	
  log-­‐normal	
  distribu-on	
  
¨  If	
  f	
  is	
  lognormal,	
  what	
  does	
  that	
  imply	
  about	
  the	
  
probability	
  distribu-on	
  of	
  r?	
  	
  	
  
¤  Nothing	
  other	
  than	
  its	
  IID/FV	
  
19	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
S
S
	
  r1
S
SS
	
  r
)r(1SS
1i-­‐
i
i
1i-­‐
1i-­‐i
i
i1i-­‐i
=+
−
=
+⋅=
( )...rrr...rrrrrr...rrr1S	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  )r(1....)r(1)r(1	
  S	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  )r(1f	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  fS)r(1S	
  	
  S
3213231213210
n210
n
1i
inn0
n
1i
i0n
+⋅⋅++⋅+⋅+⋅+++++⋅=
+⋅⋅+⋅+⋅=
+=⋅=+⋅= ∏∏ ==
‘Rate	
  Game’	
  	
  
¨  We	
  can	
  compute	
  the	
  mean,	
  a,	
  and	
  variance,	
  d2,	
  of	
  r	
  
	
  
	
  
	
  
	
  
	
  
	
  
¨  We	
  can	
  also	
  compute	
  the	
  mean,	
  mode,	
  median,	
  and	
  variance	
  of	
  	
  f	
  –	
  but	
  
we	
  need	
  to	
  know	
  more	
  about	
  lognormal	
  distribu-ons,	
  so	
  let’s	
  delay	
  for	
  
now	
  
20	
  
( ) rof	
  	
  variance	
  	
  	
  	
  ar
n
1
d
rof	
  	
  value	
  mean	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  r
n
1
a
n
1i
2
i
2
n
1i
i
∑
∑
=
=
−⋅≡
⋅≡
	
  	
  	
  	
  	
  	
  	
  NL~	
  	
  )r(1f
n
1i
in ∏=
+=
‘Rate	
  Game’:	
  Log	
  Normal	
  Distribu-on	
  
21	
  
I again modified the VB
program for a sequence of 50
rate games. I ran the
sequence 10,000 times. I
computed the accumulated
future value factor for each
sequence and plotted this
histogram. So there are
10,000 observations in the
histogram. The accumulated
mean future value factor for
50 games was 1.126.
Another	
  ‘Rate	
  Game’	
  	
  
¨  Now	
  lets	
  play	
  the	
  same	
  rate	
  game	
  again	
  but	
  track	
  the	
  natural	
  log	
  of	
  your	
  wealth,	
  
ln(S),	
  instead	
  of	
  your	
  wealth,	
  S	
  
	
  
	
  
¨  Define	
  the	
  rate	
  of	
  return	
  for	
  natural	
  log	
  wealth,	
  vi,	
  	
  instead	
  of	
  the	
  rate	
  of	
  return,	
  ri,	
  
on	
  wealth	
  (r	
  is	
  the	
  simple	
  rate	
  of	
  return)	
  	
  
22	
  
( ) ( )
( ) ( )
)rln(1	
  	
  	
  	
  	
  
S
SS
1ln	
  	
  	
  	
  	
  
S
S
ln	
  v	
  
SlnSlnv
vSln	
  	
  Sln
i
1i
1ii
1i
i
i
1iii
i1i-­‐i
+=
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛ −
+=
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
=
−=
+=
−
−
−
−
i
i
v
1ii
1i
iv
1i
i
i
eSS
S
S
e
S
S
lnv
⋅=
=
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
=
−
−
−
( )
)eln(e	
  	
  S SSln
==
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1
S
S
	
  r
1i-­‐
i
i −=
Another	
  ‘Rate	
  Game’	
  Con-nued	
  	
  
¨  So	
  the	
  equivalent	
  rate	
  game	
  which	
  tracks	
  the	
  natural	
  log	
  of	
  wealth,	
  ln(S),	
  is	
  	
  
¤  45%	
  chance	
  of	
  losing	
  .995%	
  of	
  your	
  natural	
  log	
  wealth	
  =	
  ln(1-­‐1%)	
  
¤  55%	
  chance	
  of	
  gaining	
  1.242%	
  of	
  your	
  natural	
  log	
  wealth	
  =	
  ln(1+1.25%)	
  
	
  
¨  The	
  Central	
  Limit	
  Theorem	
  typically	
  addresses	
  sums	
  of	
  IID	
  /	
  FV	
  random	
  
variables.	
  	
  For	
  large	
  n,	
  the	
  sum	
  of	
  natural	
  log	
  rates,	
  sn,	
  approaches	
  a	
  
normal	
  distribu-on	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  	
  
23	
  
( ) ( )
( ) ( )
N~vs
vSln	
  	
  Sln
v...vvSln	
  	
  Sln
n
1i
in
n
1i
i0n
n210n
∑
∑
=
=
=
+=
++++=
Another	
  ‘Rate	
  Game’	
  Con-nued	
  	
  
¨  The	
  mean,	
  u,	
  and	
  variance,	
  s2,	
  of	
  v	
  can	
  be	
  calculated	
  as	
  before	
  	
  
	
  
	
  
	
  
	
  
¨  So	
  v	
  is	
  normally	
  distributed	
  	
  
¨  The	
  normal	
  distribu-on	
  has	
  many	
  nice	
  quali-es	
  including	
  	
  
¤  Dependence	
  is	
  defined	
  by	
  linear	
  correla-on	
  
¤  The	
  parameters	
  that	
  define	
  the	
  PDF	
  are	
  also	
  the	
  sta-s-cs	
  –	
  mean	
  and	
  variance	
  	
  
¤  The	
  sta-s-cs	
  are	
  scalable	
  
24	
  
[ ]2
su,N~v
( ) vof	
  	
  variance	
  	
  	
  	
  uv
n
1
s
vof	
  	
  value	
  mean	
  	
  	
  	
  v
n
1
u
n
1i
2
i
2
n
1i
i
∑
∑
=
=
−⋅≡
⋅≡
[ ]2
su,2222N~ ⋅⋅[ ]2
su,N~v
If	
  u	
  is	
  the	
  daily	
  mean	
  and	
  s2	
  is	
  the	
  daily	
  
variance	
  of	
  natural	
  log	
  return	
  rate	
  v	
  	
  	
  
Then	
  the	
  monthly	
  rate	
  of	
  return	
  is	
  also	
  
normal	
  with	
  mean	
  22·∙u	
  and	
  variance	
  22·∙s2	
  	
  	
  	
  
This	
  is	
  not	
  true	
  for	
  a	
  lognormal	
  distributed	
  
random	
  variable	
  	
  
Central	
  Limit	
  Theorem	
  	
  
25	
  
( ) ( )
( ) )rln(1..)rln(1)rln(1Sln	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
)rln(1Sln	
  	
  Sln
n210
n
1i
i0n
+++++++=
++= ∑=
The	
  sum	
  of	
  a	
  large	
  number	
  of	
  IID/FV	
  
random	
  variables	
  is	
  approximately	
  
normally	
  distributed	
  
Sums	
  of	
  v	
  and	
  ln(1+r)	
  -­‐	
  natural	
  log	
  rates	
  
of	
  return	
  -­‐	
  approach	
  normal	
  distribu-on	
  
)r(1....)r(1)r(1	
  S	
  	
  	
  	
  	
  	
  
)r(1S	
  	
  S
n210
n
1i
i0n
+⋅⋅+⋅+⋅=
+⋅= ∏=
The	
  product	
  of	
  a	
  large	
  number	
  of	
  IID/FV	
  
random	
  variables	
  is	
  approximately	
  
lognormally	
  distributed	
  
Products	
  of	
  (1+r)	
  and	
  ev	
  -­‐	
  future	
  value	
  
factors	
  –	
  approach	
  lognormal	
  
distribu-on	
  
( ) [ ]
( ) [ ]2
i
2
n
1i
i
s	
  u,N~r1ln
sn	
  u,nN~r1ln
+
⋅⋅+∑=
[ ]2
n
1i
i sn	
  u,nNL~)r(1 ⋅⋅+∏=
The	
  same	
  parameters,	
  u	
  and	
  s2,define	
  
the	
  lognormal	
  pdf	
  but	
  are	
  not	
  the	
  
mean	
  and	
  variance	
  of	
  the	
  lognormal	
  
distribu-on	
  	
  	
  
0
200
400
600
800
1000
1200
1400
1600
1/3/1950 11/7/1956 9/12/1963 7/17/1970 5/21/1977 3/25/1984 1/28/1991 12/2/1997 10/6/2004
SPX	
  Price	
  From	
  1950	
  to	
  2011	
  
26	
  
SPX	
  price	
  from	
  1950	
  to	
  2011	
  
15,472	
  days	
  	
  
Latest Chart
SPX	
  Daily	
  Ln	
  Return	
  Rates	
  
27	
  
15,471	
  daily	
  natural	
  log	
  
return	
  rates	
  from	
  	
  
1950	
  to	
  2011	
  
SPX	
  Daily	
  Ln	
  Rate	
  Histogram	
  
28	
  
15,471	
  daily	
  natural	
  log	
  
return	
  rates	
  from	
  	
  
1950	
  to	
  2011	
  
	
  
Appears	
  to	
  be	
  ‘somewhat	
  
normal’,	
  but	
  is	
  leptokur-c	
  
and	
  skewed	
  
Mean:	
  Expected	
  value	
  	
  
Median:	
  50%	
  probable	
  value	
  	
  
Mode:	
  Highest	
  frequency	
  	
  
Again	
  the	
  CLT	
  says	
  that	
  large	
  sums	
  of	
  natural	
  log	
  daily	
  rates	
  approach	
  a	
  normal	
  distribu-on,	
  but	
  
we’ve	
  made	
  no	
  comment	
  on	
  the	
  daily	
  rates	
  themselves	
  other	
  than	
  assume	
  that	
  they’re	
  IID/FV	
  
Stock	
  Inves-ng	
  	
  
¨  The	
  stock	
  prices	
  and	
  returns	
  can	
  be	
  modeled	
  by	
  either	
  
¤  Natural	
  log	
  stock	
  prices,	
  ln(S),	
  	
  and	
  natural	
  log	
  rates	
  of	
  return,	
  v,	
  or	
  	
  
¤  Stock	
  prices,	
  S,	
  and	
  simple	
  rates	
  of	
  return,	
  r	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
¤  The	
  addi-ve	
  or	
  mul-plica-ve	
  central	
  limit	
  theorem	
  is	
  u-lized.	
  	
  
	
  
n  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  approaches	
  a	
  normal	
  distribu-on	
  (for	
  m	
  simula-ons)	
  	
  
	
  
	
  
n  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  approaches	
  a	
  lognormal	
  	
  distribu-on	
  (for	
  m	
  simula-ons)	
  	
  
	
  
¤  The	
  distribu-on	
  of	
  v	
  and	
  r	
  is	
  not	
  yet	
  specified,	
  but	
  they	
  are	
  assumed	
  IID/FV	
  	
  
29	
  
( ) ( )
( ) ( )
∏∑
∏∑
==
==
+=⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
=⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+⋅=+=
+⋅=+=
n
1i
i
0
n
n
1i
i
0
n
n
1i
i0n
n
1i
i0n
i1i-­‐ii1i-­‐i
)r(1
S
S
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  v
S
S
ln
)r(1S	
  	
  S	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  vSln	
  	
  Sln
	
  )r(1SS	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  vSln	
  	
  Sln
∑=
n
1i
iv
∏=
+
n
1i
i)r(1
0	
  	
  	
  	
  1	
  	
  	
  	
  	
  2	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  i-­‐1	
  	
  	
  	
  i	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  n-­‐1	
  	
  	
  	
  n	
  
Standard	
  Price	
  Models	
  	
  
30	
  
1i-­‐
1i-­‐i
i
i1i-­‐i
S
SS
	
  r
)r(1SS
−
=
+⋅=
[ ]2
n
1i
i sn	
  u,nNL~)r(1 ⋅⋅+∏=
If	
  r	
  is	
  IID/FV	
  and	
  n	
  -­‐>	
  ∞	
   If	
  v	
  is	
  IID/FV	
  and	
  n	
  -­‐>	
  ∞	
  
[ ]2
n
1i
i sn	
  u,nN~v ⋅⋅∑=
( ) ( )
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
=
+=
−1i
i
i
i1i-­‐i
S
S
lnv
vSln	
  	
  Sln
0	
  	
  	
  	
  1	
  	
  	
  	
  	
  2	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  i-­‐1	
  	
  	
  	
  i	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  n-­‐1	
  	
  	
  	
  n	
  
n·∙u	
  and	
  n·∙s2	
  are	
  PDF	
  
parameters	
  but	
  not	
  sta-s-cs	
  	
  
n·∙u	
  and	
  n·∙s2	
  are	
  both	
  PDF	
  
parameters	
  and	
  sta-s-cs	
  –	
  
the	
  mean	
  and	
  the	
  variance	
  	
  
Standard	
  Price	
  Model	
  
¨  Standard	
  finance	
  theory	
  assumes	
  v	
  and	
  r	
  are	
  IID/FV	
  and	
  use	
  the	
  addi-ve	
  and	
  
mul-plica-ve	
  CLTs	
  and	
  resul-ng	
  normal	
  and	
  lognormal	
  pdfs	
  for	
  sums	
  and	
  
products	
  	
  
	
  
	
  
¨  In	
  addi-on,	
  vi	
  and	
  ri	
  ,	
  are	
  related	
  as	
  follows	
  
¤  Thus	
  r	
  and	
  v	
  cannot	
  have	
  the	
  same	
  probability	
  distribu-on	
  	
  
	
  
¨  So	
  standard	
  finance	
  models	
  make	
  the	
  simplest	
  addi(onal	
  assump-on:	
  	
  Natural	
  log	
  
rates,	
  v,	
  are	
  normally	
  distributed	
  which	
  then	
  requires	
  that	
  simple	
  return	
  rates,	
  r,	
  
are	
  lognormally	
  distributed	
  
	
  
	
  
	
  
¨  However	
  some	
  finance	
  methods,	
  i.e.,	
  single	
  period	
  methods,	
  provide	
  useful	
  
results	
  with	
  an	
  assump-on	
  that	
  simple	
  rates,	
  r,	
  are	
  normally	
  distributed,	
  	
  but	
  this	
  
assump-on	
  is	
  generally	
  inconsistent	
  with	
  the	
  standard	
  model	
  
	
  
	
  
31	
  
NL~)r(1f	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  N~	
  v	
  	
  s	
  
n
1i
in
n
1i
in ∏∑ ==
+==
iv
i e	
  )r(1 =+
[ ]
[ ] [ ]2s,uN
2
v
i
s,uNLe)r1(
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  s,uN~v
e	
  )r(1
2
i
==+
=+
Probability	
  Distribu-ons	
  Over	
  Time	
  	
  
32	
  
-­‐75% -­‐50% -­‐25% 0% 25% 50% 75% 100% 125% 150% 175% 200% 225% 250% 275% 300%
Natural	
  log	
  rates,	
  v,	
  
are	
  assumed	
  
normal.	
  	
  The	
  mean	
  
and	
  variance	
  of	
  a	
  
normal	
  distribu-on	
  
scale	
  linear	
  in	
  -me	
  	
  
The	
  future	
  value	
  factors	
  (1+r)	
  are	
  
assumed	
  log	
  normally	
  distributed.	
  	
  
The	
  mean	
  and	
  variance	
  do	
  not	
  scale	
  
linearly	
  in	
  -me.	
  
Three	
  Alterna-ve	
  Models	
  	
  	
  
¨  Relax	
  the	
  finite	
  variance	
  assump-on	
  
¤  4	
  parameter	
  family	
  of	
  distribu-ons	
  	
  
generated	
  by	
  a	
  ‘Levy	
  stable’	
  process	
  
¤  Variance	
  doesn’t	
  converge	
  as	
  n	
  increases	
  	
  	
  
	
  
¨  Relax	
  the	
  IID	
  assump-on	
  
¤  introduce	
  a	
  simple	
  condi-onally	
  	
  
dependent,	
  stochas-c	
  vola-lity	
  model	
  	
  
¤  GARCH	
  -me	
  series	
  	
  
	
  
¨  Use	
  power	
  law	
  frequency	
  distribu-on	
  
¤  Very	
  common	
  distribu-on	
  in	
  nature	
  
¤  Scale	
  invariant	
  	
  	
  
33	
  
Simulated	
  
vola-lity	
  	
  
Essen-al	
  Concepts	
  	
  
¨  Systems	
  
¤  Determinis-c:	
  includes	
  chao-c	
  
¤  Stochas-c:	
  sta-onary	
  (IID/FV)	
  and	
  non-­‐sta-onary	
  
¤  Complex:	
  including	
  self	
  organized	
  cri-cality	
  and	
  complex	
  adap-ve	
  systems	
  
¨  Standard	
  finance	
  models	
  assume	
  
¤  Natural	
  log	
  rates,	
  v,	
  	
  natural	
  log	
  prices,	
  ln(S),	
  natural	
  log	
  of	
  future	
  	
  value	
  factors,	
  
ln(1+r)	
  are	
  normally	
  distributed	
  
¤  Simple	
  rates,	
  r,	
  future	
  value	
  factors,	
  ev	
  and	
  (1+r),	
  and	
  price,	
  S,	
  are	
  lognormally	
  
distributed	
  	
  
¨  Actually	
  the	
  standard	
  model	
  doesn’t	
  fit	
  historical	
  data	
  with	
  any	
  sta-s-cal	
  
confidence,	
  but	
  the	
  model	
  is	
  useful,	
  but	
  has	
  limita-ons	
  	
  
¤  Think	
  of	
  Newton’s	
  model	
  of	
  gravity	
  	
  
¨  Alterna-ve	
  models	
  that	
  do	
  fit	
  historical	
  data	
  beler	
  have	
  not	
  been	
  as	
  
generally	
  useful	
  as	
  the	
  standard	
  model	
  in	
  a	
  variety	
  of	
  applica-ons	
  	
  
34	
  
Addendum:	
  Links	
  &	
  Sta-s-cs	
  Nota-on	
  	
  
¨  Links	
  	
  
¤  Scien-fic	
  American	
  
¤  A	
  Standard	
  Model	
  Skep-c	
  
¤  Predic-on	
  Markets	
  	
  
¤  TradeKing	
  API	
  
	
  
¨  Rate	
  nota-on	
  summary	
  	
  
35	
  
Rate
Periodic	
  
mean	
  
Annual	
  
mean
Periodic	
  
standard	
  
deviation
Annual	
  
standard	
  
deviation
Rate	
  
pdf
a α
g γ
v u µ s σ Normal
d	
  =	
  SD(r)	
  =	
  SD(1+r)
r d δ Log	
  
normal
Addendum:	
  More	
  Review	
  Of	
  Probability	
  
¨  Random	
  number	
  generator	
  	
  
¤  Actually	
  genera-ng	
  a	
  IID/	
  FV	
  random	
  variable	
  
¤  Again,	
  random	
  doesn’t	
  only	
  mean	
  IID/FV	
  random	
  	
  
¤  Excel	
  	
  
n  rand()	
  	
  	
  uniform	
  between	
  0	
  and	
  1	
  	
  
n  Normsinv(rand())	
  	
  	
  normally	
  distributed	
  ~N[0,1]	
  
n  Norminv(rand(),µ, σ)	
  	
  	
  normally	
  distributed	
  ~N[µ, σ]	
  
¨  Importance	
  of	
  IID	
  /	
  FV	
  character	
  of	
  a	
  random	
  variable	
  	
  
¤  IID	
  	
  -­‐>	
  	
  Law	
  of	
  large	
  numbers	
  	
  -­‐>	
  Expected	
  value	
  	
  
¤  IID	
  /	
  FV	
  -­‐>	
  Probability	
  density	
  func-ons	
  for	
  random	
  variable	
  	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐>	
  Central	
  limit	
  theorem	
  -­‐>	
  	
  Normal	
  and	
  lognormal	
  distribu-ons	
  for	
  sums	
  and	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  products	
  of	
  random	
  variable	
  regardless	
  of	
  pdf	
  for	
  random	
  variable	
  itself	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐>	
  Produced	
  by	
  a	
  sta-onary	
  random	
  process	
  	
  	
  	
  	
  
	
   	
   	
  	
  
36	
  
Addendum:	
  	
  Logarithms	
  and	
  the	
  CLT	
  	
  
37	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
)xln(xln
)yln()xln()yxln(
n
1i
i
n
1i
i ∑∏ ==
=⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+=⋅
Natural	
  logs	
  are	
  usually	
  introduced	
  as	
  follows	
  	
  
The	
  rela-onship	
  is	
  generalized	
  as	
  follows	
  	
  
Specializing	
  for	
  standard	
  finance	
  	
  
( )
( ) ( ) [ ]
( ) [ ] [ ]
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
sn,unNL~e~r1	
  	
  	
  	
  	
  	
  
sn,unN~vr1ln	
  r1ln
r1x
2sn,unN
n
1i
i
2
n
1i
i
n
1i
i
n
1i
i
ii
2
⋅⋅+∴
⋅⋅=+=⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+
+=
⋅⋅
=
===
∏
∑∑∏

More Related Content

Viewers also liked

Towards a Responsive Business
Towards a Responsive BusinessTowards a Responsive Business
Towards a Responsive BusinessVenetia Bird
 
Callvine short overview_-_july 2010
Callvine short overview_-_july 2010Callvine short overview_-_july 2010
Callvine short overview_-_july 2010michaelprince
 
From Incubation To Reality (Accelerate East)
From Incubation To Reality (Accelerate East)From Incubation To Reality (Accelerate East)
From Incubation To Reality (Accelerate East)Zuora, Inc.
 
VAST-2 - Tracking effects of land management on veg condition over time at si...
VAST-2 - Tracking effects of land management on veg condition over time at si...VAST-2 - Tracking effects of land management on veg condition over time at si...
VAST-2 - Tracking effects of land management on veg condition over time at si...Richard Thackway
 
Tracking the Transformation of Vegetated Landscapes (VAST)
Tracking the Transformation of Vegetated Landscapes (VAST)Tracking the Transformation of Vegetated Landscapes (VAST)
Tracking the Transformation of Vegetated Landscapes (VAST)Richard Thackway
 
CPA Summit - Leadership & New/Young Professional
CPA Summit -  Leadership & New/Young ProfessionalCPA Summit -  Leadership & New/Young Professional
CPA Summit - Leadership & New/Young ProfessionalTom Hood, CPA,CITP,CGMA
 
Ambitie 2020 Themasessie Energie en Klimaat: inspiratiepresentatie door Miche...
Ambitie 2020 Themasessie Energie en Klimaat: inspiratiepresentatie door Miche...Ambitie 2020 Themasessie Energie en Klimaat: inspiratiepresentatie door Miche...
Ambitie 2020 Themasessie Energie en Klimaat: inspiratiepresentatie door Miche...MVO Nederland
 

Viewers also liked (7)

Towards a Responsive Business
Towards a Responsive BusinessTowards a Responsive Business
Towards a Responsive Business
 
Callvine short overview_-_july 2010
Callvine short overview_-_july 2010Callvine short overview_-_july 2010
Callvine short overview_-_july 2010
 
From Incubation To Reality (Accelerate East)
From Incubation To Reality (Accelerate East)From Incubation To Reality (Accelerate East)
From Incubation To Reality (Accelerate East)
 
VAST-2 - Tracking effects of land management on veg condition over time at si...
VAST-2 - Tracking effects of land management on veg condition over time at si...VAST-2 - Tracking effects of land management on veg condition over time at si...
VAST-2 - Tracking effects of land management on veg condition over time at si...
 
Tracking the Transformation of Vegetated Landscapes (VAST)
Tracking the Transformation of Vegetated Landscapes (VAST)Tracking the Transformation of Vegetated Landscapes (VAST)
Tracking the Transformation of Vegetated Landscapes (VAST)
 
CPA Summit - Leadership & New/Young Professional
CPA Summit -  Leadership & New/Young ProfessionalCPA Summit -  Leadership & New/Young Professional
CPA Summit - Leadership & New/Young Professional
 
Ambitie 2020 Themasessie Energie en Klimaat: inspiratiepresentatie door Miche...
Ambitie 2020 Themasessie Energie en Klimaat: inspiratiepresentatie door Miche...Ambitie 2020 Themasessie Energie en Klimaat: inspiratiepresentatie door Miche...
Ambitie 2020 Themasessie Energie en Klimaat: inspiratiepresentatie door Miche...
 

Similar to Price Models

Principles of Actuarial Science Chapter 2
Principles of Actuarial Science Chapter 2Principles of Actuarial Science Chapter 2
Principles of Actuarial Science Chapter 2ssuser8226b2
 
Mba i qt unit-4.1_introduction to probability distributions
Mba i qt unit-4.1_introduction to probability distributionsMba i qt unit-4.1_introduction to probability distributions
Mba i qt unit-4.1_introduction to probability distributionsRai University
 
Probabilitydistributionlecture web
Probabilitydistributionlecture webProbabilitydistributionlecture web
Probabilitydistributionlecture webkassimics
 
Statistical inference: Probability and Distribution
Statistical inference: Probability and DistributionStatistical inference: Probability and Distribution
Statistical inference: Probability and DistributionEugene Yan Ziyou
 
Introduction to probability distributions-Statistics and probability analysis
Introduction to probability distributions-Statistics and probability analysis Introduction to probability distributions-Statistics and probability analysis
Introduction to probability distributions-Statistics and probability analysis Vijay Hemmadi
 
Probability distribution 2
Probability distribution 2Probability distribution 2
Probability distribution 2Nilanjan Bhaumik
 
Fin415 Week 2 Slides
Fin415 Week 2 SlidesFin415 Week 2 Slides
Fin415 Week 2 Slidessmarkbarnes
 
Probability Models and Random Variables
Probability Models and Random VariablesProbability Models and Random Variables
Probability Models and Random Variablespwheeles
 
Lecture 4 Probability Distributions.pptx
Lecture 4 Probability Distributions.pptxLecture 4 Probability Distributions.pptx
Lecture 4 Probability Distributions.pptxABCraftsman
 
CPSC531-Probability.pptx
CPSC531-Probability.pptxCPSC531-Probability.pptx
CPSC531-Probability.pptxRidaIrfan10
 
Real time information reconstruction -The Prediction Market
Real time information reconstruction -The Prediction MarketReal time information reconstruction -The Prediction Market
Real time information reconstruction -The Prediction Marketraghavr186
 
Probability 4
Probability 4Probability 4
Probability 4herbison
 
Probability 4.1
Probability 4.1Probability 4.1
Probability 4.1herbison
 

Similar to Price Models (20)

Principles of Actuarial Science Chapter 2
Principles of Actuarial Science Chapter 2Principles of Actuarial Science Chapter 2
Principles of Actuarial Science Chapter 2
 
Mba i qt unit-4.1_introduction to probability distributions
Mba i qt unit-4.1_introduction to probability distributionsMba i qt unit-4.1_introduction to probability distributions
Mba i qt unit-4.1_introduction to probability distributions
 
Probabilitydistributionlecture web
Probabilitydistributionlecture webProbabilitydistributionlecture web
Probabilitydistributionlecture web
 
Statistical inference: Probability and Distribution
Statistical inference: Probability and DistributionStatistical inference: Probability and Distribution
Statistical inference: Probability and Distribution
 
Introduction to probability distributions-Statistics and probability analysis
Introduction to probability distributions-Statistics and probability analysis Introduction to probability distributions-Statistics and probability analysis
Introduction to probability distributions-Statistics and probability analysis
 
Probability distribution 2
Probability distribution 2Probability distribution 2
Probability distribution 2
 
Fin415 Week 2 Slides
Fin415 Week 2 SlidesFin415 Week 2 Slides
Fin415 Week 2 Slides
 
Stats chapter 7
Stats chapter 7Stats chapter 7
Stats chapter 7
 
Random Variables
Random VariablesRandom Variables
Random Variables
 
Dias Da Cruz Steve - Seminar
Dias Da Cruz Steve - SeminarDias Da Cruz Steve - Seminar
Dias Da Cruz Steve - Seminar
 
lecture4.ppt
lecture4.pptlecture4.ppt
lecture4.ppt
 
Probability Models and Random Variables
Probability Models and Random VariablesProbability Models and Random Variables
Probability Models and Random Variables
 
Lecture 4 Probability Distributions.pptx
Lecture 4 Probability Distributions.pptxLecture 4 Probability Distributions.pptx
Lecture 4 Probability Distributions.pptx
 
Probability Distribution
Probability DistributionProbability Distribution
Probability Distribution
 
CPSC531-Probability.pptx
CPSC531-Probability.pptxCPSC531-Probability.pptx
CPSC531-Probability.pptx
 
Casino Mathematics
Casino MathematicsCasino Mathematics
Casino Mathematics
 
Real time information reconstruction -The Prediction Market
Real time information reconstruction -The Prediction MarketReal time information reconstruction -The Prediction Market
Real time information reconstruction -The Prediction Market
 
Probability 4
Probability 4Probability 4
Probability 4
 
Probability 4.1
Probability 4.1Probability 4.1
Probability 4.1
 
Binomial Probability Distributions
Binomial Probability DistributionsBinomial Probability Distributions
Binomial Probability Distributions
 

More from David Keck

More from David Keck (20)

Topic0 g
Topic0 gTopic0 g
Topic0 g
 
Topic0 f
Topic0 fTopic0 f
Topic0 f
 
Topic0 e
Topic0 eTopic0 e
Topic0 e
 
Topic0 d
Topic0 dTopic0 d
Topic0 d
 
Topic0 c
Topic0 cTopic0 c
Topic0 c
 
Topic0 b
Topic0 bTopic0 b
Topic0 b
 
Topic0 a
Topic0 aTopic0 a
Topic0 a
 
Market hypotheses 2016
Market hypotheses 2016Market hypotheses 2016
Market hypotheses 2016
 
Capital 2016
Capital 2016Capital 2016
Capital 2016
 
Bonds 2016
Bonds 2016Bonds 2016
Bonds 2016
 
Presentation isc mshow
Presentation isc mshowPresentation isc mshow
Presentation isc mshow
 
Mpt2016
Mpt2016Mpt2016
Mpt2016
 
Mpt2016 pdf
Mpt2016 pdfMpt2016 pdf
Mpt2016 pdf
 
Decision making criteria
Decision making criteriaDecision making criteria
Decision making criteria
 
Capm pdf
Capm pdfCapm pdf
Capm pdf
 
Equity venture capital part 1
Equity venture capital part 1Equity venture capital part 1
Equity venture capital part 1
 
Introduction2016
Introduction2016Introduction2016
Introduction2016
 
Valuation part 1
Valuation part 1Valuation part 1
Valuation part 1
 
Capital part 1
Capital part 1Capital part 1
Capital part 1
 
Capital part 2
Capital part 2Capital part 2
Capital part 2
 

Recently uploaded

10 QuickBooks Tips 2024 - Globus Finanza.pdf
10 QuickBooks Tips 2024 - Globus Finanza.pdf10 QuickBooks Tips 2024 - Globus Finanza.pdf
10 QuickBooks Tips 2024 - Globus Finanza.pdfglobusfinanza
 
Hello this ppt is about seminar final project
Hello this ppt is about seminar final projectHello this ppt is about seminar final project
Hello this ppt is about seminar final projectninnasirsi
 
Aon-UK-DC-Pension-Tracker-Q1-2024. slideshare
Aon-UK-DC-Pension-Tracker-Q1-2024. slideshareAon-UK-DC-Pension-Tracker-Q1-2024. slideshare
Aon-UK-DC-Pension-Tracker-Q1-2024. slideshareHenry Tapper
 
Money Forward Integrated Report “Forward Map” 2024
Money Forward Integrated Report “Forward Map” 2024Money Forward Integrated Report “Forward Map” 2024
Money Forward Integrated Report “Forward Map” 2024Money Forward
 
ekthesi-trapeza-tis-ellados-gia-2023.pdf
ekthesi-trapeza-tis-ellados-gia-2023.pdfekthesi-trapeza-tis-ellados-gia-2023.pdf
ekthesi-trapeza-tis-ellados-gia-2023.pdfSteliosTheodorou4
 
The Inspirational Story of Julio Herrera Velutini - Global Finance Leader
The Inspirational Story of Julio Herrera Velutini - Global Finance LeaderThe Inspirational Story of Julio Herrera Velutini - Global Finance Leader
The Inspirational Story of Julio Herrera Velutini - Global Finance LeaderArianna Varetto
 
Kempen ' UK DB Endgame Paper Apr 24 final3.pdf
Kempen ' UK DB Endgame Paper Apr 24 final3.pdfKempen ' UK DB Endgame Paper Apr 24 final3.pdf
Kempen ' UK DB Endgame Paper Apr 24 final3.pdfHenry Tapper
 
What is sip and What are its Benefits in 2024
What is sip and What are its Benefits in 2024What is sip and What are its Benefits in 2024
What is sip and What are its Benefits in 2024prajwalgopocket
 
2024-04-09 - Pension Playpen roundtable - slides.pptx
2024-04-09 - Pension Playpen roundtable - slides.pptx2024-04-09 - Pension Playpen roundtable - slides.pptx
2024-04-09 - Pension Playpen roundtable - slides.pptxHenry Tapper
 
Crypto Confidence Unlocked: AnyKYCaccount's Shortcut to Binance Verification
Crypto Confidence Unlocked: AnyKYCaccount's Shortcut to Binance VerificationCrypto Confidence Unlocked: AnyKYCaccount's Shortcut to Binance Verification
Crypto Confidence Unlocked: AnyKYCaccount's Shortcut to Binance VerificationAny kyc Account
 
Introduction to Health Economics Dr. R. Kurinji Malar.pptx
Introduction to Health Economics Dr. R. Kurinji Malar.pptxIntroduction to Health Economics Dr. R. Kurinji Malar.pptx
Introduction to Health Economics Dr. R. Kurinji Malar.pptxDrRkurinjiMalarkurin
 
Global Economic Outlook, 2024 - Scholaride Consulting
Global Economic Outlook, 2024 - Scholaride ConsultingGlobal Economic Outlook, 2024 - Scholaride Consulting
Global Economic Outlook, 2024 - Scholaride Consultingswastiknandyofficial
 
Banking: Commercial and Central Banking.pptx
Banking: Commercial and Central Banking.pptxBanking: Commercial and Central Banking.pptx
Banking: Commercial and Central Banking.pptxANTHONYAKINYOSOYE1
 
OAT_RI_Ep18 WeighingTheRisks_Mar24_GlobalCredit.pptx
OAT_RI_Ep18 WeighingTheRisks_Mar24_GlobalCredit.pptxOAT_RI_Ep18 WeighingTheRisks_Mar24_GlobalCredit.pptx
OAT_RI_Ep18 WeighingTheRisks_Mar24_GlobalCredit.pptxhiddenlevers
 
Building pressure? Rising rents, and what to expect in the future
Building pressure? Rising rents, and what to expect in the futureBuilding pressure? Rising rents, and what to expect in the future
Building pressure? Rising rents, and what to expect in the futureResolutionFoundation
 
Gender and caste discrimination in india
Gender and caste discrimination in indiaGender and caste discrimination in india
Gender and caste discrimination in indiavandanasingh01072003
 
Thoma Bravo Equity - Presentation Pension Fund
Thoma Bravo Equity - Presentation Pension FundThoma Bravo Equity - Presentation Pension Fund
Thoma Bravo Equity - Presentation Pension FundAshwinJey
 
2B Nation-State.pptx contemporary world nation
2B  Nation-State.pptx contemporary world nation2B  Nation-State.pptx contemporary world nation
2B Nation-State.pptx contemporary world nationko9240888
 
ΤτΕ: Ανάπτυξη 2,3% και πληθωρισμός 2,8% φέτος
ΤτΕ: Ανάπτυξη 2,3% και πληθωρισμός 2,8% φέτοςΤτΕ: Ανάπτυξη 2,3% και πληθωρισμός 2,8% φέτος
ΤτΕ: Ανάπτυξη 2,3% και πληθωρισμός 2,8% φέτοςNewsroom8
 
Liquidity Decisions in Financial management
Liquidity Decisions in Financial managementLiquidity Decisions in Financial management
Liquidity Decisions in Financial managementshrutisingh143670
 

Recently uploaded (20)

10 QuickBooks Tips 2024 - Globus Finanza.pdf
10 QuickBooks Tips 2024 - Globus Finanza.pdf10 QuickBooks Tips 2024 - Globus Finanza.pdf
10 QuickBooks Tips 2024 - Globus Finanza.pdf
 
Hello this ppt is about seminar final project
Hello this ppt is about seminar final projectHello this ppt is about seminar final project
Hello this ppt is about seminar final project
 
Aon-UK-DC-Pension-Tracker-Q1-2024. slideshare
Aon-UK-DC-Pension-Tracker-Q1-2024. slideshareAon-UK-DC-Pension-Tracker-Q1-2024. slideshare
Aon-UK-DC-Pension-Tracker-Q1-2024. slideshare
 
Money Forward Integrated Report “Forward Map” 2024
Money Forward Integrated Report “Forward Map” 2024Money Forward Integrated Report “Forward Map” 2024
Money Forward Integrated Report “Forward Map” 2024
 
ekthesi-trapeza-tis-ellados-gia-2023.pdf
ekthesi-trapeza-tis-ellados-gia-2023.pdfekthesi-trapeza-tis-ellados-gia-2023.pdf
ekthesi-trapeza-tis-ellados-gia-2023.pdf
 
The Inspirational Story of Julio Herrera Velutini - Global Finance Leader
The Inspirational Story of Julio Herrera Velutini - Global Finance LeaderThe Inspirational Story of Julio Herrera Velutini - Global Finance Leader
The Inspirational Story of Julio Herrera Velutini - Global Finance Leader
 
Kempen ' UK DB Endgame Paper Apr 24 final3.pdf
Kempen ' UK DB Endgame Paper Apr 24 final3.pdfKempen ' UK DB Endgame Paper Apr 24 final3.pdf
Kempen ' UK DB Endgame Paper Apr 24 final3.pdf
 
What is sip and What are its Benefits in 2024
What is sip and What are its Benefits in 2024What is sip and What are its Benefits in 2024
What is sip and What are its Benefits in 2024
 
2024-04-09 - Pension Playpen roundtable - slides.pptx
2024-04-09 - Pension Playpen roundtable - slides.pptx2024-04-09 - Pension Playpen roundtable - slides.pptx
2024-04-09 - Pension Playpen roundtable - slides.pptx
 
Crypto Confidence Unlocked: AnyKYCaccount's Shortcut to Binance Verification
Crypto Confidence Unlocked: AnyKYCaccount's Shortcut to Binance VerificationCrypto Confidence Unlocked: AnyKYCaccount's Shortcut to Binance Verification
Crypto Confidence Unlocked: AnyKYCaccount's Shortcut to Binance Verification
 
Introduction to Health Economics Dr. R. Kurinji Malar.pptx
Introduction to Health Economics Dr. R. Kurinji Malar.pptxIntroduction to Health Economics Dr. R. Kurinji Malar.pptx
Introduction to Health Economics Dr. R. Kurinji Malar.pptx
 
Global Economic Outlook, 2024 - Scholaride Consulting
Global Economic Outlook, 2024 - Scholaride ConsultingGlobal Economic Outlook, 2024 - Scholaride Consulting
Global Economic Outlook, 2024 - Scholaride Consulting
 
Banking: Commercial and Central Banking.pptx
Banking: Commercial and Central Banking.pptxBanking: Commercial and Central Banking.pptx
Banking: Commercial and Central Banking.pptx
 
OAT_RI_Ep18 WeighingTheRisks_Mar24_GlobalCredit.pptx
OAT_RI_Ep18 WeighingTheRisks_Mar24_GlobalCredit.pptxOAT_RI_Ep18 WeighingTheRisks_Mar24_GlobalCredit.pptx
OAT_RI_Ep18 WeighingTheRisks_Mar24_GlobalCredit.pptx
 
Building pressure? Rising rents, and what to expect in the future
Building pressure? Rising rents, and what to expect in the futureBuilding pressure? Rising rents, and what to expect in the future
Building pressure? Rising rents, and what to expect in the future
 
Gender and caste discrimination in india
Gender and caste discrimination in indiaGender and caste discrimination in india
Gender and caste discrimination in india
 
Thoma Bravo Equity - Presentation Pension Fund
Thoma Bravo Equity - Presentation Pension FundThoma Bravo Equity - Presentation Pension Fund
Thoma Bravo Equity - Presentation Pension Fund
 
2B Nation-State.pptx contemporary world nation
2B  Nation-State.pptx contemporary world nation2B  Nation-State.pptx contemporary world nation
2B Nation-State.pptx contemporary world nation
 
ΤτΕ: Ανάπτυξη 2,3% και πληθωρισμός 2,8% φέτος
ΤτΕ: Ανάπτυξη 2,3% και πληθωρισμός 2,8% φέτοςΤτΕ: Ανάπτυξη 2,3% και πληθωρισμός 2,8% φέτος
ΤτΕ: Ανάπτυξη 2,3% και πληθωρισμός 2,8% φέτος
 
Liquidity Decisions in Financial management
Liquidity Decisions in Financial managementLiquidity Decisions in Financial management
Liquidity Decisions in Financial management
 

Price Models

  • 2. Learning  Objec-ves       ¨  Models     ¤  A  mathema-cal  or  physical  representa-on  of  a  hypothesis,  theory,   or  law   ¤  Simplifica-on  of  reality  for  decision  making  and  design     ¨  Models  for  dynamical  systems     n  Determinis-c,  Stochas(c,  Complex     ¨  Security  price  and  return  rate  models     ¨  Review  of  probability  and  sta-s-cs       2  
  • 3. A  Financial  Game     ¨  Would  you  play  a  financial  game  with     ¤  a  90%  probability  of  gaining  $200  and     ¤  a  10%  probability  of  losing    $100  ?     ¨  Alterna-vely,  would  you  take  $20  with  certainty  ?       ¨  In  probability  and  sta(s(cs,  you  studied  decision  making  with  uncertainty     ¤  But  it  was  actually  decision  making  with  risk  !       ¤  Expected  value:      $200  ·∙  .90  -­‐  $100  ·∙  .1  =  $170     ¤  What  does  that  calcula-on  really  mean?    Is  it  ra-onal  to  play  this  financial   game?       ¤  I  would  guess  that  most  of  you  would  take  the  $20  ,  why  ?   3  
  • 4. Ques-ons   ¨  Your  common  sense  likely  tells  you  that  too  much  uncertainty  and  risk   remain  in  the  game     ¤  How  many  -mes  can  I  play  the  game?     ¤  What’s  the  dura-on  of  the  game?     ¤  Are  there  any  other  alterna-ve  games?   ¤  Any  opportunity  cost  ?     ¤  How  much  money  do  I  have?     ¤  Is  there  any  risk  of  not  geng  paid?   ¤  Does  ‘probability’  (expected    value)  even  apply  to  a  single  game?         ¤  Other  ?       ¨  Actually  there’s  a  difference  between  risk  and  uncertainty,  but  we’ll   explore  that  in  a  later  chapter     4  
  • 5. Review  Of  Probability   ¨  Random  Variable     ¤  Can  take  on  different  values  unlike  determinis(c  variables   ¤  Values  come  from  experiments,  measurements,  random  processes     n  Say  x  is  a  random  variable  with  a  -me  sequence  of  values  xi  produced   by  a  random  process,  X                 ¤  Random  does  not  necessarily  mean  that  there  is  no  underlying  structure   n  The  structure  is  defined  by  a  probability  distribu-on  characterized  by   parameters  and  sta(s(cs         5   Random   process   X   Random   variable   x   Random   sequence   xi        
  • 6. Review  Of  Probability   ¨  Expected  Value     ¤  The  expected  value  of  a  random  variable,  x,  is  the  weighted  value  of  m   possible  values  or  outcomes           ¤  Example           ¤  This  calculate  implies  that  each  outcome,  xi,  is  independent  of  the  other  m-­‐1   outcomes     n  Thus  no  condi-onal  dependencies  between  the  m  outcomes   n  How  do  we  determine  Pr[xi]    ?     6   [ ] [ ] i m 1i i xxPrxE ⋅= ∑= [ ] [ ] 170$100$1.200$90.xxPrxE i 2 1i i =⋅−⋅=⋅= ∑=
  • 8. Review  Of  Probability   ¨  Law  of  Large  Numbers  (LLN)   ¤  If  x  is  an  independent  and  iden-cally  distributed  random  variable  (IID),  the  sum  sn/n   converges  to  the  expected  value  of  x,  A,  as  n  approaches  infinity                       ¨  Variance:    Average  squared  error  from  the  mean         ¨  Standard  Devia-on             8                    x n 1 n s            x...xxxs n 1i i n n21 n 1i in ∑ ∑ = = ⋅= +++=≡ [ ] [ ] [ ]( ) 222 BxExExVar ≡−= [ ] AnsE A n s E        n      As n n ⋅→ →⎥⎦ ⎤ ⎢⎣ ⎡ ∞→ [ ] [ ] BxVarxSD ≡=
  • 9. Review  Of  Probability   ¨  Independent  random  variables:  No  condi-onal  dependence         ¨  If  y  is  a  lagged  sequence  of  x,  then       ¨  Linear  (Pearson)  correla-on,  ρ,    is  a  measure  of  linear  dependence  and  is   commonly  used  for  ellip(cally  distributed     random  variables,  x  and  y       ¨  Ellip-cally  distributed  random  variables  include  Gaussian,    t-­‐distribu-on,  Cauchy,   Laplace,  Logis-cs,    etc.   ¨  Otherwise  non-­‐correla-on  does  not  imply  independence     ¨  Checks  for  independence  of  an  ellip-c  random  variable  x  start  with  checking     auto-­‐correla-on  of  x,  and  its  square,  x2,  or  its  de-­‐trended  square  (x-­‐E(x))2           9   ]Pr[x]x,...,x,x|Pr[x i02i-­‐1i-­‐i = [ ] [ ]( ) [ ]( )[ ] yx DSDS yEyxExE yx,ρ ⋅ −⋅− = Pr[x]y]|Pr[x =
  • 10. Game  Model     ¨  Let’s  develop  a  ‘stochas-c  model’  for  the  financial  game     ¨  Say  that  your  wealth  at  -me  i  or  ti  is  Si   ¤  Integer  periods,  i,  and  discrete  -me,  ti   ¨  You  play  the  game  between  -me  i-­‐1  and  -me  i  over  -me  Δt  =  ti  –  ti-­‐1   ¨  Your  gain  or  loss    (return  or  change  in  wealth)  is  ΔSi  for  that  ith  game         ¨  Your  ini-al  wealth  is  S0  at  -me  i  =  0    or  t0=0.0     ¨  The  implica-on  is  that  the  original  game  is  played     only  once     10    ΔS  SS i1i-­‐i += 101 S  SS Δ+= i-­‐1   ti-­‐1   Si-­‐1   ΔSi   i                     ti                               Si    
  • 11. Game  Model       ¨  You  can  also  compute  the  variance,  Var,  and  standard  devia-on,  SD,  of   the  game                 11   [ ] [ ] [ ]( ) [ ] $908,100      ΔSSD $  8,10028,900-­‐  1,00036,000                               $1700.10$100)(0.90$200                               ΔSEΔSEΔSVar 2 222 22 == =+= −⋅−+⋅= −= -­‐100        200     Outcome     Frequency  
  • 12. Game  Model     ¨  Now  say  that  you  could  play  the  financial  game  a  number  of  -mes,  n           ¨  In  each  game  the  probabili-es  and  payoffs  for  the  game  remain  the    same,  thus   the  wealth  increments,  ΔSi,  are  independent  and  iden(cally  distributed  (IID)   ¨  The  variance  is  also  finite,  its  8,100  $2,  thus  ΔS  is  IID/FV   ¨  One  of  the  most  important  sta-s-cal     principles  is  that    sums  of  IID/  FV       random  variables,  e.g.,  ΔS  approach     normal  distribu-on  as  n  becomes     large  (Central  Limit  Theorem)     12   ∑= +=+= +++= n 1i i00n n210n  ΔSSΔS  SS ΔS...ΔSΔSSS [ ] [ ] [ ] [ ] [ ] BnΔSDS                               BnΔSVar                               AnΔSE                               Bn  ,AnNΔS                                 BA,N n ΔS        n ΔSSS ΔS...ΔSΔSSS 2 2 2 0n n210n ⋅→ ⋅→ ⋅→ ⋅⋅→ →∞→ += +++=
  • 13. Central  Limit  Theorem     13   0 200 400 600 800 1000 1200 1400 $13,000 $14,000 $15,000 $16,000 $17,000 $18,000 $19,000 $20,000 Frequency Gain  Per  100  Game  Sequence I  wrote  a  VB  program  that  ran  a   100  game  sequence  10,000   -mes.    I  computed  the  average   gain  per  game  sequence  and   ploled  a  histogram  of  the   sums.    The  observed  mean  sum   was  $17,002.         This  is  a  simula(on.     Would  you  play  the  game  a  100   -mes?  Would  you  play  it  one   -me?        
  • 14. Central  Limit  Theorem     14   0 200 400 600 800 1000 1200 1400 $130 $135 $140 $145 $150 $155 $160 $165 $170 $175 $180 $185 $190 $195 $200 Frequency Average  Gain  Per  Game I  modified  the  program  to   compute  the  average  gain  per   game  in  each  of    10,000   sequences  and  ploled  a   histogram  of  these  average   gains.    The  observed  mean  gain   was  $170.02.      
  • 15. Another  Game:    Coin  Flipping     ¨  Now  lets  play  another  financial  game  :  coin  flipping.       ¨  Say  you  gain  $10  on  heads  and  pay  $10  on  tails.                     Is  each  flip  an  independent  event?    With  the  same  probabili-es?  And  has   finite  variance?      Yes,  its  IID/FV   ¨  Coin  flipping  is  a  ‘fair  game’  since  the  expected  return  for  each  player   (counter  party)  is  zero  –  neither  player  has  an  expected  advantage     ¤  Coin  flipping  is  characterized  as  a  binomial  model     15   [ ] ( ) [ ] [ ] [ ]( ) [ ] ( ) [ ] $10$  100ΔSSD                100$.5$10.5$10ΔSE $    100ΔSEΔSEΔSVar                                  $0.5$10.5$10ΔSE 22222 222 ===⋅−+⋅= =−==⋅−+⋅=
  • 16. Binomial  Model  for  Coin  Flipping     16   3  trials     40  trials     0 1 2 3 0 1 2 3 0 1 2 3 $30 1   0.125   $20 1   0.250   $10 $10 1   3   0.500   0.375   $0 $0 1   2   1.000   0.500   -­‐$10 -­‐$10 1   3   0.500   0.375   -­‐$20 1   0.250   -­‐$30 1   0.125   -­‐$   -­‐$   -­‐$   -­‐$   1   2   4   8   1.000   1.000   1.000   1.000   Flips   Flips   Flips   Binomial   tree  
  • 17. Another  Game:    Die  Rolling     ¨  Using  a  single  die,  if  you  roll  a  6  then  you  receive  $110,  while   any  other  outcome  results  in  you  paying  $10     17   [ ] ( ) [ ] ( ) [ ] [ ] [ ]( ) [ ] $44.72$  2,000ΔSD   $    000,2100100,2ΔSEΔSEΔSar $    100,2110$ 6 1 $10-­‐ 6 5 ΔSE 10$110$ 6 1 $10-­‐ 6 5 ΔSE 2 222 2222 == =−=−= =⋅+⋅= =⋅+⋅= S V
  • 18. 0 200 400 600 800 1000 1200 -­‐$400 $0 $400 $800 $1,200 $1,600 $2,000 $2,400 $2,800 Frequency Gain  Per  100  Roll  Sequence Another  Game:    Die  Rolling     18   I  modified  the  program  and  ran  the  100   die  rolling  game  sequence  10,000  -mes.     I  computed  the  sums  for  the  100  rolls.   The  mean  was  $999.    
  • 19. ‘Rate  Game’     ¨  Now  let’s  consider  a  game  defined  by  rates  of  gain  or  loss  (rates  of  return)   ¤  45%  chance  of  losing  1%   ¤  55%  chance  of  gaining  1.25%                 ¨  The  Central  Limit  Theorem  also  addresses     products  of  IID  /  FV  random  variables.    For     large  n,  the  future  value  factor,  fn,       approaches  a  log-­‐normal  distribu-on   ¨  If  f  is  lognormal,  what  does  that  imply  about  the   probability  distribu-on  of  r?       ¤  Nothing  other  than  its  IID/FV   19                         S S  r1 S SS  r )r(1SS 1i-­‐ i i 1i-­‐ 1i-­‐i i i1i-­‐i =+ − = +⋅= ( )...rrr...rrrrrr...rrr1S                                                  )r(1....)r(1)r(1  S                              )r(1f                                                                    fS)r(1S    S 3213231213210 n210 n 1i inn0 n 1i i0n +⋅⋅++⋅+⋅+⋅+++++⋅= +⋅⋅+⋅+⋅= +=⋅=+⋅= ∏∏ ==
  • 20. ‘Rate  Game’     ¨  We  can  compute  the  mean,  a,  and  variance,  d2,  of  r               ¨  We  can  also  compute  the  mean,  mode,  median,  and  variance  of    f  –  but   we  need  to  know  more  about  lognormal  distribu-ons,  so  let’s  delay  for   now   20   ( ) rof    variance        ar n 1 d rof    value  mean                                  r n 1 a n 1i 2 i 2 n 1i i ∑ ∑ = = −⋅≡ ⋅≡              NL~    )r(1f n 1i in ∏= +=
  • 21. ‘Rate  Game’:  Log  Normal  Distribu-on   21   I again modified the VB program for a sequence of 50 rate games. I ran the sequence 10,000 times. I computed the accumulated future value factor for each sequence and plotted this histogram. So there are 10,000 observations in the histogram. The accumulated mean future value factor for 50 games was 1.126.
  • 22. Another  ‘Rate  Game’     ¨  Now  lets  play  the  same  rate  game  again  but  track  the  natural  log  of  your  wealth,   ln(S),  instead  of  your  wealth,  S       ¨  Define  the  rate  of  return  for  natural  log  wealth,  vi,    instead  of  the  rate  of  return,  ri,   on  wealth  (r  is  the  simple  rate  of  return)     22   ( ) ( ) ( ) ( ) )rln(1           S SS 1ln           S S ln  v   SlnSlnv vSln    Sln i 1i 1ii 1i i i 1iii i1i-­‐i += ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − += ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ = −= += − − − − i i v 1ii 1i iv 1i i i eSS S S e S S lnv ⋅= = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ = − − − ( ) )eln(e    S SSln ==                       1 S S  r 1i-­‐ i i −=
  • 23. Another  ‘Rate  Game’  Con-nued     ¨  So  the  equivalent  rate  game  which  tracks  the  natural  log  of  wealth,  ln(S),  is     ¤  45%  chance  of  losing  .995%  of  your  natural  log  wealth  =  ln(1-­‐1%)   ¤  55%  chance  of  gaining  1.242%  of  your  natural  log  wealth  =  ln(1+1.25%)     ¨  The  Central  Limit  Theorem  typically  addresses  sums  of  IID  /  FV  random   variables.    For  large  n,  the  sum  of  natural  log  rates,  sn,  approaches  a   normal  distribu-on                       23   ( ) ( ) ( ) ( ) N~vs vSln    Sln v...vvSln    Sln n 1i in n 1i i0n n210n ∑ ∑ = = = += ++++=
  • 24. Another  ‘Rate  Game’  Con-nued     ¨  The  mean,  u,  and  variance,  s2,  of  v  can  be  calculated  as  before             ¨  So  v  is  normally  distributed     ¨  The  normal  distribu-on  has  many  nice  quali-es  including     ¤  Dependence  is  defined  by  linear  correla-on   ¤  The  parameters  that  define  the  PDF  are  also  the  sta-s-cs  –  mean  and  variance     ¤  The  sta-s-cs  are  scalable   24   [ ]2 su,N~v ( ) vof    variance        uv n 1 s vof    value  mean        v n 1 u n 1i 2 i 2 n 1i i ∑ ∑ = = −⋅≡ ⋅≡ [ ]2 su,2222N~ ⋅⋅[ ]2 su,N~v If  u  is  the  daily  mean  and  s2  is  the  daily   variance  of  natural  log  return  rate  v       Then  the  monthly  rate  of  return  is  also   normal  with  mean  22·∙u  and  variance  22·∙s2         This  is  not  true  for  a  lognormal  distributed   random  variable    
  • 25. Central  Limit  Theorem     25   ( ) ( ) ( ) )rln(1..)rln(1)rln(1Sln                       )rln(1Sln    Sln n210 n 1i i0n +++++++= ++= ∑= The  sum  of  a  large  number  of  IID/FV   random  variables  is  approximately   normally  distributed   Sums  of  v  and  ln(1+r)  -­‐  natural  log  rates   of  return  -­‐  approach  normal  distribu-on   )r(1....)r(1)r(1  S             )r(1S    S n210 n 1i i0n +⋅⋅+⋅+⋅= +⋅= ∏= The  product  of  a  large  number  of  IID/FV   random  variables  is  approximately   lognormally  distributed   Products  of  (1+r)  and  ev  -­‐  future  value   factors  –  approach  lognormal   distribu-on   ( ) [ ] ( ) [ ]2 i 2 n 1i i s  u,N~r1ln sn  u,nN~r1ln + ⋅⋅+∑= [ ]2 n 1i i sn  u,nNL~)r(1 ⋅⋅+∏= The  same  parameters,  u  and  s2,define   the  lognormal  pdf  but  are  not  the   mean  and  variance  of  the  lognormal   distribu-on      
  • 26. 0 200 400 600 800 1000 1200 1400 1600 1/3/1950 11/7/1956 9/12/1963 7/17/1970 5/21/1977 3/25/1984 1/28/1991 12/2/1997 10/6/2004 SPX  Price  From  1950  to  2011   26   SPX  price  from  1950  to  2011   15,472  days     Latest Chart
  • 27. SPX  Daily  Ln  Return  Rates   27   15,471  daily  natural  log   return  rates  from     1950  to  2011  
  • 28. SPX  Daily  Ln  Rate  Histogram   28   15,471  daily  natural  log   return  rates  from     1950  to  2011     Appears  to  be  ‘somewhat   normal’,  but  is  leptokur-c   and  skewed   Mean:  Expected  value     Median:  50%  probable  value     Mode:  Highest  frequency     Again  the  CLT  says  that  large  sums  of  natural  log  daily  rates  approach  a  normal  distribu-on,  but   we’ve  made  no  comment  on  the  daily  rates  themselves  other  than  assume  that  they’re  IID/FV  
  • 29. Stock  Inves-ng     ¨  The  stock  prices  and  returns  can  be  modeled  by  either   ¤  Natural  log  stock  prices,  ln(S),    and  natural  log  rates  of  return,  v,  or     ¤  Stock  prices,  S,  and  simple  rates  of  return,  r                 ¤  The  addi-ve  or  mul-plica-ve  central  limit  theorem  is  u-lized.       n                                     approaches  a  normal  distribu-on  (for  m  simula-ons)         n                                                   approaches  a  lognormal    distribu-on  (for  m  simula-ons)       ¤  The  distribu-on  of  v  and  r  is  not  yet  specified,  but  they  are  assumed  IID/FV     29   ( ) ( ) ( ) ( ) ∏∑ ∏∑ == == +=⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ =⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ +⋅=+= +⋅=+= n 1i i 0 n n 1i i 0 n n 1i i0n n 1i i0n i1i-­‐ii1i-­‐i )r(1 S S                                                            v S S ln )r(1S    S                                    vSln    Sln  )r(1SS                                              vSln    Sln ∑= n 1i iv ∏= + n 1i i)r(1 0        1          2                      i-­‐1        i                              n-­‐1        n  
  • 30. Standard  Price  Models     30   1i-­‐ 1i-­‐i i i1i-­‐i S SS  r )r(1SS − = +⋅= [ ]2 n 1i i sn  u,nNL~)r(1 ⋅⋅+∏= If  r  is  IID/FV  and  n  -­‐>  ∞   If  v  is  IID/FV  and  n  -­‐>  ∞   [ ]2 n 1i i sn  u,nN~v ⋅⋅∑= ( ) ( ) ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ = += −1i i i i1i-­‐i S S lnv vSln    Sln 0        1          2                      i-­‐1        i                              n-­‐1        n   n·∙u  and  n·∙s2  are  PDF   parameters  but  not  sta-s-cs     n·∙u  and  n·∙s2  are  both  PDF   parameters  and  sta-s-cs  –   the  mean  and  the  variance    
  • 31. Standard  Price  Model   ¨  Standard  finance  theory  assumes  v  and  r  are  IID/FV  and  use  the  addi-ve  and   mul-plica-ve  CLTs  and  resul-ng  normal  and  lognormal  pdfs  for  sums  and   products         ¨  In  addi-on,  vi  and  ri  ,  are  related  as  follows   ¤  Thus  r  and  v  cannot  have  the  same  probability  distribu-on       ¨  So  standard  finance  models  make  the  simplest  addi(onal  assump-on:    Natural  log   rates,  v,  are  normally  distributed  which  then  requires  that  simple  return  rates,  r,   are  lognormally  distributed         ¨  However  some  finance  methods,  i.e.,  single  period  methods,  provide  useful   results  with  an  assump-on  that  simple  rates,  r,  are  normally  distributed,    but  this   assump-on  is  generally  inconsistent  with  the  standard  model       31   NL~)r(1f                            N~  v    s   n 1i in n 1i in ∏∑ == +== iv i e  )r(1 =+ [ ] [ ] [ ]2s,uN 2 v i s,uNLe)r1(                                            s,uN~v e  )r(1 2 i ==+ =+
  • 32. Probability  Distribu-ons  Over  Time     32   -­‐75% -­‐50% -­‐25% 0% 25% 50% 75% 100% 125% 150% 175% 200% 225% 250% 275% 300% Natural  log  rates,  v,   are  assumed   normal.    The  mean   and  variance  of  a   normal  distribu-on   scale  linear  in  -me     The  future  value  factors  (1+r)  are   assumed  log  normally  distributed.     The  mean  and  variance  do  not  scale   linearly  in  -me.  
  • 33. Three  Alterna-ve  Models       ¨  Relax  the  finite  variance  assump-on   ¤  4  parameter  family  of  distribu-ons     generated  by  a  ‘Levy  stable’  process   ¤  Variance  doesn’t  converge  as  n  increases         ¨  Relax  the  IID  assump-on   ¤  introduce  a  simple  condi-onally     dependent,  stochas-c  vola-lity  model     ¤  GARCH  -me  series       ¨  Use  power  law  frequency  distribu-on   ¤  Very  common  distribu-on  in  nature   ¤  Scale  invariant       33   Simulated   vola-lity    
  • 34. Essen-al  Concepts     ¨  Systems   ¤  Determinis-c:  includes  chao-c   ¤  Stochas-c:  sta-onary  (IID/FV)  and  non-­‐sta-onary   ¤  Complex:  including  self  organized  cri-cality  and  complex  adap-ve  systems   ¨  Standard  finance  models  assume   ¤  Natural  log  rates,  v,    natural  log  prices,  ln(S),  natural  log  of  future    value  factors,   ln(1+r)  are  normally  distributed   ¤  Simple  rates,  r,  future  value  factors,  ev  and  (1+r),  and  price,  S,  are  lognormally   distributed     ¨  Actually  the  standard  model  doesn’t  fit  historical  data  with  any  sta-s-cal   confidence,  but  the  model  is  useful,  but  has  limita-ons     ¤  Think  of  Newton’s  model  of  gravity     ¨  Alterna-ve  models  that  do  fit  historical  data  beler  have  not  been  as   generally  useful  as  the  standard  model  in  a  variety  of  applica-ons     34  
  • 35. Addendum:  Links  &  Sta-s-cs  Nota-on     ¨  Links     ¤  Scien-fic  American   ¤  A  Standard  Model  Skep-c   ¤  Predic-on  Markets     ¤  TradeKing  API     ¨  Rate  nota-on  summary     35   Rate Periodic   mean   Annual   mean Periodic   standard   deviation Annual   standard   deviation Rate   pdf a α g γ v u µ s σ Normal d  =  SD(r)  =  SD(1+r) r d δ Log   normal
  • 36. Addendum:  More  Review  Of  Probability   ¨  Random  number  generator     ¤  Actually  genera-ng  a  IID/  FV  random  variable   ¤  Again,  random  doesn’t  only  mean  IID/FV  random     ¤  Excel     n  rand()      uniform  between  0  and  1     n  Normsinv(rand())      normally  distributed  ~N[0,1]   n  Norminv(rand(),µ, σ)      normally  distributed  ~N[µ, σ]   ¨  Importance  of  IID  /  FV  character  of  a  random  variable     ¤  IID    -­‐>    Law  of  large  numbers    -­‐>  Expected  value     ¤  IID  /  FV  -­‐>  Probability  density  func-ons  for  random  variable                            -­‐>  Central  limit  theorem  -­‐>    Normal  and  lognormal  distribu-ons  for  sums  and                                          products  of  random  variable  regardless  of  pdf  for  random  variable  itself                        -­‐>  Produced  by  a  sta-onary  random  process                   36  
  • 37. Addendum:    Logarithms  and  the  CLT     37                                                       )xln(xln )yln()xln()yxln( n 1i i n 1i i ∑∏ == =⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ +=⋅ Natural  logs  are  usually  introduced  as  follows     The  rela-onship  is  generalized  as  follows     Specializing  for  standard  finance     ( ) ( ) ( ) [ ] ( ) [ ] [ ]                                                     sn,unNL~e~r1             sn,unN~vr1ln  r1ln r1x 2sn,unN n 1i i 2 n 1i i n 1i i n 1i i ii 2 ⋅⋅+∴ ⋅⋅=+=⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + += ⋅⋅ = === ∏ ∑∑∏