Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.
Digital Radiological Imaging Laboratory
Digital Breast Tomosynthesis
with Minimal Compression
David A. Scaduto, Min Yang, ...
Breast Compression
Breast Compression
• Image Quality
 Attenuation equalization
 Structure superposition
 Contrast resolution
 Geometric ...
Reduced Breast Compression
• Patient comfort/compliance
• Tomosynthesis
 Reduced superposition of tissue structures
• Con...
Reduced Breast Compression
• Increased breast thickness
 Increased mean glandular dose (MGD)
 Increased scatter radiatio...
Previous Work: DBT
• Saunders et al.: Monte Carlo simulation;
12.5% increase in breast thickness
 Comparable image qualit...
Previous Work: DBT
• Förnvik et al.: Observer study; compression
reduced by 50%
 Constant kVp, mAs for both scans
 Compa...
Technique Optimization
• Optimize technique to
 Reduce breast compression
 Maintain image quality / lesion conspicuity
...
Methods
• Theoretical optimization
study
 Zero frequency SDNR
analysis
• Image quality study
 Phantom study
 Clinical s...
Zero Frequency SDNR Model
, ,
2 2 2
, ,
SDNR P B P L
P B S B a  
  

 
T tμLμB
Φ0
ΦB ΦL
W. Zhao, R. Deych, and E....
Effect of kVp on SDNR
26 28 30 32 34 36
0
2
4
6
8
10
12
14SDNR
kVp
4.0 cm
4.5 cm
Effect of kVp on MGD
26 28 30 32 34 36
0
2
4
6
8
10
12
14SDNR
kVp
4.0 cm
4.5 cm
1.0
1.2
1.4
1.6
1.8
2.0
MGD[mGy]
6.8%
26 2...
AEC Dose Study
28 29 30 31
kVp + 0 kVp + 1 kVp + 2 kVp + 3
5
10
15
20
25
4.5 cm (4.0 cm)
%ChangeinMGD
kVp
AEC Dose Study
Technique Chart
Full Compression Minimal Compression
Breast Thickness (mm) kVp Breast Thickness (mm) kVp
20-29 26 20-29 28...
Image Quality: Phantom Assessment
4.5 cm
28 kVp
5.0 cm
28 kVp
5.0 cm
31 kVp
1.63 mGy 1.96 mGy 1.66 mGy
Full Compression
Mi...
Thickness
(fully compressed) kVp Masses Calcifications
2
Full Compression 26 5 6
Minimal Compression 28 5 6
3
27 5 5
30 5 ...
Clinical Observer Study
• IRB approved protocol
• Two DBT scans
 Full Compression (8-10 daN)
 Minimal Compression (2-4 d...
Patient 1
6.4 daN
36 mm
26 kVp
1.9 mGy
2.3 daN
42 mm
28 kVp
2.0 mGy
Patient 2
7.7 daN
51 mm
29 kVp
2.64 mGy
3.1 daN
58 mm
32 kVp
2.54 mGy
Patient 3
8.2 daN
52 mm
29 kVp
1.3 mGy
3.2 daN
59 mm
32 kVp
1.3 mGy
Dose and Patient Comfort
Patient
Mean Glandular Dose (mGy)
% Change
Full
Compression
Minimal
Compression
1 1.95 2.05 5.1
2...
Motion Assessment
Tube Travel
Motion Assessment
Motion Assessment
Motion Assessment
0 5 10 15 20 25
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
DifferentialMarkerPosition[mm]
Projection Number
S...
Discussion and Future Work
• Image quality comparable; lesion conspicuity
maintained
• Increase in quantum noise evident
•...
Conclusions
• Zero-frequency SDNR model implemented to
optimize imaging technique
• Increasing kVp for minimally compresse...
Acknowledgements
We gratefully acknowledge
• NIH 1 R01 CA148053
• Siemens Healthcare
Digital Breast Tomosynthesis with Minimal Compression
Prochain SlideShare
Chargement dans…5
×

sur

Digital Breast Tomosynthesis with Minimal Compression Slide 1 Digital Breast Tomosynthesis with Minimal Compression Slide 2 Digital Breast Tomosynthesis with Minimal Compression Slide 3 Digital Breast Tomosynthesis with Minimal Compression Slide 4 Digital Breast Tomosynthesis with Minimal Compression Slide 5 Digital Breast Tomosynthesis with Minimal Compression Slide 6 Digital Breast Tomosynthesis with Minimal Compression Slide 7 Digital Breast Tomosynthesis with Minimal Compression Slide 8 Digital Breast Tomosynthesis with Minimal Compression Slide 9 Digital Breast Tomosynthesis with Minimal Compression Slide 10 Digital Breast Tomosynthesis with Minimal Compression Slide 11 Digital Breast Tomosynthesis with Minimal Compression Slide 12 Digital Breast Tomosynthesis with Minimal Compression Slide 13 Digital Breast Tomosynthesis with Minimal Compression Slide 14 Digital Breast Tomosynthesis with Minimal Compression Slide 15 Digital Breast Tomosynthesis with Minimal Compression Slide 16 Digital Breast Tomosynthesis with Minimal Compression Slide 17 Digital Breast Tomosynthesis with Minimal Compression Slide 18 Digital Breast Tomosynthesis with Minimal Compression Slide 19 Digital Breast Tomosynthesis with Minimal Compression Slide 20 Digital Breast Tomosynthesis with Minimal Compression Slide 21 Digital Breast Tomosynthesis with Minimal Compression Slide 22 Digital Breast Tomosynthesis with Minimal Compression Slide 23 Digital Breast Tomosynthesis with Minimal Compression Slide 24 Digital Breast Tomosynthesis with Minimal Compression Slide 25 Digital Breast Tomosynthesis with Minimal Compression Slide 26 Digital Breast Tomosynthesis with Minimal Compression Slide 27 Digital Breast Tomosynthesis with Minimal Compression Slide 28 Digital Breast Tomosynthesis with Minimal Compression Slide 29 Digital Breast Tomosynthesis with Minimal Compression Slide 30
Prochain SlideShare
Digital Breast Tomosynthesis
Suivant

2 j’aime

Partager

Digital Breast Tomosynthesis with Minimal Compression

Breast compression is utilized in mammography to improve image quality and reduce radiation dose. Lesion conspicuity is improved by reducing scatter effects on contrast and by reducing the superposition of tissue structures. However, patient discomfort due to breast compression has been cited as a potential cause of noncompliance with recommended screening practices. Further, compression may also occlude blood flow in the breast, complicating imaging with intravenous contrast agents and preventing accurate quantification of contrast enhancement and kinetics. Previous studies have investigated reducing breast compression in planar mammography and digital breast tomosynthesis (DBT), though this typically comes at the expense of degradation in image quality or increase in mean glandular dose (MGD). We propose to optimize the image acquisition technique for reduced compression in DBT without compromising image quality or increasing MGD. A zero-frequency signal-difference-to-noise ratio model is employed to investigate the relationship between tube potential, SDNR and MGD. Phantom and patient images are acquired on a prototype DBT system using the optimized imaging parameters and are assessed for image quality and lesion conspicuity. A preliminary assessment of patient motion during DBT with minimal compression is presented.

Livres associés

Gratuit avec un essai de 30 jours de Scribd

Tout voir

Livres audio associés

Gratuit avec un essai de 30 jours de Scribd

Tout voir

Digital Breast Tomosynthesis with Minimal Compression

  1. 1. Digital Radiological Imaging Laboratory Digital Breast Tomosynthesis with Minimal Compression David A. Scaduto, Min Yang, Wei Zhao DEPARTMENT OF RADIOLOGY
  2. 2. Breast Compression
  3. 3. Breast Compression • Image Quality  Attenuation equalization  Structure superposition  Contrast resolution  Geometric unsharpness  Motion artifacts • Dose reduction
  4. 4. Reduced Breast Compression • Patient comfort/compliance • Tomosynthesis  Reduced superposition of tissue structures • Contrast-enhanced imaging  Significant reductions in blood flow (~88%) observed in forces of up to 10 daN  2 daN resulted in 50% blood flow reduction 1 G. Marshall, J. Public Health Medicine. 16(1), 79–86 (1994). 2 A.R. Aro, H.J. de Koning, P. Absetz, and M. Schreck, J. Med. Screen. 6(2), 82–88 (1999). 3 D.R. Busch et al., Acad. Radiol. 21(2), 151–61 (2014).
  5. 5. Reduced Breast Compression • Increased breast thickness  Increased mean glandular dose (MGD)  Increased scatter radiation (reduced contrast) • Increased patient motion
  6. 6. Previous Work: DBT • Saunders et al.: Monte Carlo simulation; 12.5% increase in breast thickness  Comparable image quality when maintained detector signal  Poorer lesion conspicuity when maintaining MGD  Constant tube potential R.S. Saunders, E. Samei, J.Y. Lo, and J.A. Baker, Radiology 251(3), 673–682 (2009).
  7. 7. Previous Work: DBT • Förnvik et al.: Observer study; compression reduced by 50%  Constant kVp, mAs for both scans  Comparable image quality D. Förnvik, I. Andersson, T. Svahn, P. Timberg, S. Zackrisson, and A. Tingberg, Radiat. Prot. Dosimetry 139(1-3), 118–23 (2010).
  8. 8. Technique Optimization • Optimize technique to  Reduce breast compression  Maintain image quality / lesion conspicuity  Minimize dose increase • Lesion conspicuity may be maintained by increasing effective beam energy (kVp) while maintaining comparable MGD (< 10% increase)
  9. 9. Methods • Theoretical optimization study  Zero frequency SDNR analysis • Image quality study  Phantom study  Clinical study W target 50 μm Rh filtration
  10. 10. Zero Frequency SDNR Model , , 2 2 2 , , SDNR P B P L P B S B a         T tμLμB Φ0 ΦB ΦL W. Zhao, R. Deych, and E. Dolazza, Proc. SPIE 5745, 1272–1281 (2005). 26 28 30 32 34 36 0 2 4 6 8 10 12 14 4 cm 6 cm 8 cm SDNR kVp
  11. 11. Effect of kVp on SDNR 26 28 30 32 34 36 0 2 4 6 8 10 12 14SDNR kVp 4.0 cm 4.5 cm
  12. 12. Effect of kVp on MGD 26 28 30 32 34 36 0 2 4 6 8 10 12 14SDNR kVp 4.0 cm 4.5 cm 1.0 1.2 1.4 1.6 1.8 2.0 MGD[mGy] 6.8% 26 28 30 32 34 36 0 2 4 6 8 10 12 14SDNR kVp 4.0 cm 4.5 cm 1.0 1.2 1.4 1.6 1.8 2.0 MGD[mGy] -11.8%
  13. 13. AEC Dose Study 28 29 30 31 kVp + 0 kVp + 1 kVp + 2 kVp + 3 5 10 15 20 25 4.5 cm (4.0 cm) %ChangeinMGD kVp
  14. 14. AEC Dose Study
  15. 15. Technique Chart Full Compression Minimal Compression Breast Thickness (mm) kVp Breast Thickness (mm) kVp 20-29 26 20-29 28 30-39 27 30-39 30 40-49 28 40-49 31 50-59 29 50-59 32 60-69 30 60-69 32 70-79 31 70-79 33 80-89 33 80+ 35 90+ 35
  16. 16. Image Quality: Phantom Assessment 4.5 cm 28 kVp 5.0 cm 28 kVp 5.0 cm 31 kVp 1.63 mGy 1.96 mGy 1.66 mGy Full Compression Minimal Compression
  17. 17. Thickness (fully compressed) kVp Masses Calcifications 2 Full Compression 26 5 6 Minimal Compression 28 5 6 3 27 5 5 30 5 5 4 28 4 5 31 4 6 5 29 5 5 32 5 5 6 30 4 5 33 4 5 7 31 4 5 33 4 6 8 33 4 5 35 3 5
  18. 18. Clinical Observer Study • IRB approved protocol • Two DBT scans  Full Compression (8-10 daN)  Minimal Compression (2-4 daN) • Endpoints:  Lesion conspicuity (radiologist assessment)  Mean glandular dose  Motion assessment
  19. 19. Patient 1 6.4 daN 36 mm 26 kVp 1.9 mGy 2.3 daN 42 mm 28 kVp 2.0 mGy
  20. 20. Patient 2 7.7 daN 51 mm 29 kVp 2.64 mGy 3.1 daN 58 mm 32 kVp 2.54 mGy
  21. 21. Patient 3 8.2 daN 52 mm 29 kVp 1.3 mGy 3.2 daN 59 mm 32 kVp 1.3 mGy
  22. 22. Dose and Patient Comfort Patient Mean Glandular Dose (mGy) % Change Full Compression Minimal Compression 1 1.95 2.05 5.1 2 1.62 1.49 -8.0 3 1.95 1.64 -15.8 4 2.64 2.54 -3.8 5 1.34 1.35 0.7 • All patients report minimal compression to be “much more comfortable” than full compression
  23. 23. Motion Assessment Tube Travel
  24. 24. Motion Assessment
  25. 25. Motion Assessment
  26. 26. Motion Assessment 0 5 10 15 20 25 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 DifferentialMarkerPosition[mm] Projection Number Stationary Phantom (A) Stationary Phantom (B) Full Compression (A) Full Compression (B) Minimal Compression (A) Minimal Compression (B) 0 5 10 15 20 25 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 DifferentialMarkerPosition[mm] Projection Number Stationary Phantom (A) Stationary Phantom (B) Full Compression (A) Full Compression (B) Minimal Compression (A) Minimal Compression (B) 0 5 10 15 20 25 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 DifferentialMarkerPosition[mm] Projection Number Stationary Phantom (A) Stationary Phantom (B) Full Compression (A) Full Compression (B) Minimal Compression (A) Minimal Compression (B)
  27. 27. Discussion and Future Work • Image quality comparable; lesion conspicuity maintained • Increase in quantum noise evident • Compensation schemes  Effect of different reconstruction algorithms  Non-uniform dose distributions  Synthetic mammograms Y.-H. Hu and W. Zhao, “The effect of angular dose distribution on the detection of microcalcifications in digital breast tomosynthesis,” Med. Phys. 38(5), 2455 (2011).
  28. 28. Conclusions • Zero-frequency SDNR model implemented to optimize imaging technique • Increasing kVp for minimally compressed breasts minimizes MGD increase without significantly sacrificing SDNR • Increased scatter increases quantum noise • Lesion conspicuity may be maintained • Initial clinical results suggest breast compression may be reduced in DBT
  29. 29. Acknowledgements We gratefully acknowledge • NIH 1 R01 CA148053 • Siemens Healthcare
  • RebeccaMedina21

    Nov. 27, 2021
  • NarinaMaritz

    Jan. 5, 2018

Breast compression is utilized in mammography to improve image quality and reduce radiation dose. Lesion conspicuity is improved by reducing scatter effects on contrast and by reducing the superposition of tissue structures. However, patient discomfort due to breast compression has been cited as a potential cause of noncompliance with recommended screening practices. Further, compression may also occlude blood flow in the breast, complicating imaging with intravenous contrast agents and preventing accurate quantification of contrast enhancement and kinetics. Previous studies have investigated reducing breast compression in planar mammography and digital breast tomosynthesis (DBT), though this typically comes at the expense of degradation in image quality or increase in mean glandular dose (MGD). We propose to optimize the image acquisition technique for reduced compression in DBT without compromising image quality or increasing MGD. A zero-frequency signal-difference-to-noise ratio model is employed to investigate the relationship between tube potential, SDNR and MGD. Phantom and patient images are acquired on a prototype DBT system using the optimized imaging parameters and are assessed for image quality and lesion conspicuity. A preliminary assessment of patient motion during DBT with minimal compression is presented.

Vues

Nombre de vues

1 150

Sur Slideshare

0

À partir des intégrations

0

Nombre d'intégrations

23

Actions

Téléchargements

0

Partages

0

Commentaires

0

Mentions J'aime

2

×