Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.
Enabling Precision Behavior Change
@ehekler
Dr. Eric Hekler
Arizona State University
November 19, 2015
Talk given at the U...
Outline
• Precision behavior change
• Requirements for precision
behavior change
• Agile science
• UbiHealthy Cup
@ehekler
@ehekler http://www.nih.gov/precisionmedicine/
Behavior at the center
Hovell M, Wahlgren D, Adams M. Emerging theories in health promotion practice and research. 2009;2:...
Behaviors explain most variability in health
Flickr – Stuck in Customs@ehekler
40
15
5
10
30
Sub-Optimal Health behaviors
...
Why now? Personal, pervasive, &
powerful technologies
Flickr – Stuck in CustomsPatrick, Hekler, Estrin, Godino, Crane, Rip...
Why now? Behavioral meteorology
Flickr-Bart Everson
Patrick, Hekler Estrin, Godino, Crane, Riper, & Mohr, & Riley, Manuscr...
Why now? The world needs us…
Flickr – Stuck in Customs
http://youtu.be/QPKKQnijnsM
Flickr – just.Luc
Flickr-meanMrmustard
Just in Time Adaptive Interventions
Just in Time
• State of opportunity
or vulnerability
• Receptive
• Key target behavior...
Just in Time: State of vulnerability
Flickr - Rob Marquardt
@ehekler Nahum-Shani, Hekler, & Spruijt-Metz, (2016) Health Ps...
Just in Time: State of opportunity
Flickr - Miroslav Petrasko
@ehekler Nahum-Shani, Hekler, & Spruijt-Metz, (2016) Health ...
Just in Time: Receptive
Flickr-Jonathan Powell
Nahum-Shani, Hekler, & Spruijt-Metz, (2016) Health Psychology@ehekler
Adaptive: Series of “Just in Time” moments
@ehekler Flickr - Dave Gray
Precision behavior change spectrum
Individual/User
Controlled
System
Controlled
Individual/System
Balanced Control
@ehekler
System controlled
“Giving the fish”
NSF IIS-1449751: EAGER: Defining a Dynamical Behavioral
Model to Support a Just in Tim...
System model
Riley, Martin, Rivera, Hekler, et al. 2016; Martin, Riley, Rivera, Hekler, et al. 2014@ehekler
Idiographic trajectory models
Hekler, et al. 2013 Health Education and Behavior@ehekler
Martin, Rivera, & Hekler Manuscript Submitted for Publication
Model-predictive controller
@ehekler
Individual controlled
“Teaching to fish”
Eric Hekler, Jisoo Lee, Erin Walker, Winslow Burleson, Arizona State University; ...
Measure
success
towards
goal
Results
Self-experimentation
Plan
+ Implement for 1 week
@ehekler
@ehekler
Requirements for precision behavior change
• Interoperability/communication
– Robust system architectures
• Ecologically-v...
Interoperable systems
@ehekler
LeadSecondary
Secondary
Secondary
SecondarySecondary
Interoperable systems
https://www.apple.com/ios/whats-new/health/ http://researchkit.github.io/ http://sagebase.org/
Interoperable systems
www.openmhealth.org
Ecologically-valid data streams
@ehekler
Lead Secondary
Secondary
Co-Lead
Turning “noise” into information
https://ubicomplab.cs.washington.edu/
Data standardization
@ehekler
LeadCo-Lead
Secondary
Secondary
Secondary
Data standardization
www.openmhealth.org
Agile science targets
• Interoperability/communication
– Robust system architectures
• Ecologically-valid data streams
– S...
Pre-agile software “waterfall”
@ehekler
Agile (XP Scrum) development
@ehekler
Agile science philosophical assumptions
https://en.wikipedia.org/wiki/Philosopher#/media/File:The_School_of_Athens.jpg@ehe...
Target =“Idiographic generalization”
Analytic Perspective Focus Mixed Model Analogy
Between-person On-average effects acro...
Evidence & logic defines truth
https://en.wikipedia.org/wiki/Phases_of_Venus#/media/File:Phases-of-Venus.svg@ehekler
Rigor achieved via trial & error
https://en.wikipedia.org/wiki/Incandescent_light_bulb#/media/File:Edison_incandescent_lig...
Knowledge accumulation via effective curation
www..google.com@ehekler
Agile science products
• Modules
• System models
• Personalization algorithms
@ehekler
Modules
Smallest, meaningful, repurposable,& concrete
“Perfect” intervention package Components
Flickr - Paul Swansen Flic...
Modules
APIs
www.yelp.com@ehekler
IFTTT
http://www.ifttt.com
Modules
Templates
www.ifttt.com@ehekler
Modules
http://www.ifttt.comwww.ifttt.com@ehekler
System models: Meteorology analogy
Flickr-Bart Everson
Patrick, Hekler, Estrin, Godino, Crane, Riper, & Mohr, & Riley Manu...
System models
Riley, Martin, Rivera, Hekler, et al. 2016; Martin, Riley, Rivera, Hekler, et al. 2014@ehekler
Dynamic hypotheses- “Sweet Spot”
Hekler (PI), Rivera (Co-PI), NSF IIS-1449751
-15
-10
-5
0
5
10
15
20
0
2000
4000
6000
800...
Personalization algorithms
www.netflix.com@ehekler
Martin, Rivera, & Hekler Am. Control Conference (2015)
Personalization algorithms
@ehekler
Agile science process
@ehekler
Sprint
• GOAL: Discovery and resource-efficient
vetting of promising new approaches
@ehekler
Amy Luginbill; Samantha Quagliano; Sepideh Zohreh
S=Stop
M=Move
I= I statement; I can do it!
L=Love (positivity)
E=Exhale
...
Phoenix Proposition 104
John Harlow, Erik Johnston, Zoe Yeh@ehekler
Phoenix Proposition 104
John Harlow, Erik Johnston, Zoe Yeh@ehekler http://movephx.org/get-the-facts/maps/
Phoenix Proposition 104
John Harlow, Erik Johnston, Zoe Yeh@ehekler http://movephx.org/get-the-facts/maps/
Optimization
• GOAL: Translation of a promising resources
into useful & evidence-based tools for
real-world use.
@ehekler
Linda M. Collins
The Methodology Center
Penn State
methodology.psu.edu@ehekler
Micro-randomization design
• Sequential, full factorial designs
• Randomize intervention component
• Each time we might de...
System identification experiments
-100
100
300
500
700
900
1100
1300
1500
0
2000
4000
6000
8000
10000
12000
14000
1 8 15 2...
Release
• GOAL: Share useful resources via
effective curation.
@ehekler
Shared test-beds
@ehekler
Secondary
Secondary
Secondary
Lead
Co-Lead
Co-Lead
Paco (thank you, Bob Evans!)
www.pacoapp.com@ehekler
Paco-read this on the website
www.pacoapp.com@ehekler
Paco
www.pacoapp.com@ehekler
Paco
www.pacoapp.com@ehekler
Fundamental problem
@ehekler
We each build “optimized”
packages for one-off
problems
We need to build inter-operable
modul...
RoboCup
@ehekler
https://upload.wikimedia.org/wikipedia/commons/2/22/Robocup_Bremen_2006_-_four_legged.JPG
RoboCup
@ehekler
https://c2.staticflickr.com/8/7410/9238794627_4be245177e_b.jpg
RoboCup Structure
• Target: “developing by 2050 a Robot
Soccer team capable of winning against
the human team champion of ...
What is mHealth’s RoboCup?
@ehekler https://upload.wikimedia.org/wikipedia/commons/e/e3/13-06-28-robocup-eindhoven-099.jpg...
UbiHealthy Cup v.2
• Target:
– Actionable tool the community needs (e.g.,
passive measure of consumption, user
burden, goa...
UbiHealthy Cup Bracket
https://www.whitehouse.gov/assets/images/brackets2009c.jpg
Final four
RCT (36m, 4)
Opt. 2
(24m, 8)
...
RECAP
@ehekler
TARGET: Precision behavior change
Individual/User
Controlled
System
Controlled
Individual/System
Balanced Control
@ehekler
Why now? Behavioral meteorology
Flickr-Bart Everson
Patrick, Riley, Estrin, Hekler, Godino, Crane, Riper, & Mohr, Manuscri...
Why now? The world needs us…
Flickr – Stuck in Customs
http://youtu.be/QPKKQnijnsM
Flickr – just.Luc
Flickr-meanMrmustard
First step…
@ehekler
Stop building “perfect”
packages…
Start building interoperable
modules
Flickr - Paul Swansen Flickr -...
Next step, organize and share!
Dr. Eric Hekler, Arizona State University
ehekler@asu.edu, @ehekler
Enabling Precision Behavior Change
Enabling Precision Behavior Change
Enabling Precision Behavior Change
Prochain SlideShare
Chargement dans…5
×

Enabling Precision Behavior Change

984 vues

Publié le

This talk was given at the University of North Carolina and describes a an open scientific research agenda for the development of more personalized and precise digital health interventions.

Publié dans : Santé & Médecine
  • Soyez le premier à commenter

Enabling Precision Behavior Change

  1. 1. Enabling Precision Behavior Change @ehekler Dr. Eric Hekler Arizona State University November 19, 2015 Talk given at the University of North Carolina, Chapel Hill
  2. 2. Outline • Precision behavior change • Requirements for precision behavior change • Agile science • UbiHealthy Cup @ehekler
  3. 3. @ehekler http://www.nih.gov/precisionmedicine/
  4. 4. Behavior at the center Hovell M, Wahlgren D, Adams M. Emerging theories in health promotion practice and research. 2009;2:347-85.@ehekler
  5. 5. Behaviors explain most variability in health Flickr – Stuck in Customs@ehekler 40 15 5 10 30 Sub-Optimal Health behaviors Social Circumstances Environmental Exposures Healthcare Genetics McGinnis, et al. 2002 Health Affairs
  6. 6. Why now? Personal, pervasive, & powerful technologies Flickr – Stuck in CustomsPatrick, Hekler, Estrin, Godino, Crane, Riper, & Mohr, Riley, Manuscript in Prep@ehekler
  7. 7. Why now? Behavioral meteorology Flickr-Bart Everson Patrick, Hekler Estrin, Godino, Crane, Riper, & Mohr, & Riley, Manuscript in Prep@ehekler
  8. 8. Why now? The world needs us… Flickr – Stuck in Customs http://youtu.be/QPKKQnijnsM Flickr – just.Luc Flickr-meanMrmustard
  9. 9. Just in Time Adaptive Interventions Just in Time • State of opportunity or vulnerability • Receptive • Key target behavior does not have to happen now Adaptive • Responsive to: – micro-scale changes (e.g., weather, stress) – Meso-scale changes (e.g., season, motivational waves) – Macro-scale life transitions (e.g., retirement, becoming a parent) @ehekler Nahum-Shani, Hekler, & Spruijt-Metz, (2016) Health Psychology
  10. 10. Just in Time: State of vulnerability Flickr - Rob Marquardt @ehekler Nahum-Shani, Hekler, & Spruijt-Metz, (2016) Health Psychology
  11. 11. Just in Time: State of opportunity Flickr - Miroslav Petrasko @ehekler Nahum-Shani, Hekler, & Spruijt-Metz, (2016) Health Psychology
  12. 12. Just in Time: Receptive Flickr-Jonathan Powell Nahum-Shani, Hekler, & Spruijt-Metz, (2016) Health Psychology@ehekler
  13. 13. Adaptive: Series of “Just in Time” moments @ehekler Flickr - Dave Gray
  14. 14. Precision behavior change spectrum Individual/User Controlled System Controlled Individual/System Balanced Control @ehekler
  15. 15. System controlled “Giving the fish” NSF IIS-1449751: EAGER: Defining a Dynamical Behavioral Model to Support a Just in Time Adaptive Intervention, PIs, Hekler & Rivera @ehekler
  16. 16. System model Riley, Martin, Rivera, Hekler, et al. 2016; Martin, Riley, Rivera, Hekler, et al. 2014@ehekler
  17. 17. Idiographic trajectory models Hekler, et al. 2013 Health Education and Behavior@ehekler
  18. 18. Martin, Rivera, & Hekler Manuscript Submitted for Publication Model-predictive controller @ehekler
  19. 19. Individual controlled “Teaching to fish” Eric Hekler, Jisoo Lee, Erin Walker, Winslow Burleson, Arizona State University; Bob Evans, Google Flickr Juhan Sonin @ehekler
  20. 20. Measure success towards goal Results Self-experimentation Plan + Implement for 1 week @ehekler
  21. 21. @ehekler
  22. 22. Requirements for precision behavior change • Interoperability/communication – Robust system architectures • Ecologically-valid data streams – Smartphone, wearable, data and digital trace inference • Data standardization – Schemas, ontologies, and other knowledge structuring tools • Behavior change tools – Codified evidence-based and usable behavior change modules • Predictive computational models – Multi-level & multi-time scale mathematical models about health and behavior • Personalization algorithms – Recommender system, model-predictive controller, or other translations of data into useful adaptation decisions • Test-bed for iterative optimization – Data , “ground truth” definitions, and participants @ehekler
  23. 23. Interoperable systems @ehekler LeadSecondary Secondary Secondary SecondarySecondary
  24. 24. Interoperable systems https://www.apple.com/ios/whats-new/health/ http://researchkit.github.io/ http://sagebase.org/
  25. 25. Interoperable systems www.openmhealth.org
  26. 26. Ecologically-valid data streams @ehekler Lead Secondary Secondary Co-Lead
  27. 27. Turning “noise” into information https://ubicomplab.cs.washington.edu/
  28. 28. Data standardization @ehekler LeadCo-Lead Secondary Secondary Secondary
  29. 29. Data standardization www.openmhealth.org
  30. 30. Agile science targets • Interoperability/communication – Robust system architectures • Ecologically-valid data streams – Smartphone, wearable, data and digital trace inference • Data standardization – Schemas, ontologies, and other knowledge structuring tools • Behavior change tools – Codified evidence-based and usable behavior change modules • Predictive computational models – Multi-level & multi-time scale mathematical models about health and behavior • Personalization algorithms – Recommender system, model-predictive controller, or other translations of data into useful adaptation decisions • Test-bed for iterative optimization – Data , “ground truth” definitions, and participants @ehekler@ehekler
  31. 31. Pre-agile software “waterfall” @ehekler
  32. 32. Agile (XP Scrum) development @ehekler
  33. 33. Agile science philosophical assumptions https://en.wikipedia.org/wiki/Philosopher#/media/File:The_School_of_Athens.jpg@ehekler
  34. 34. Target =“Idiographic generalization” Analytic Perspective Focus Mixed Model Analogy Between-person On-average effects across participants Fixed effect (centered) Within-person On average effects over time Fixed effect (daily variation) Idiographic Individualized responses Random effect (error term) @ehekler
  35. 35. Evidence & logic defines truth https://en.wikipedia.org/wiki/Phases_of_Venus#/media/File:Phases-of-Venus.svg@ehekler
  36. 36. Rigor achieved via trial & error https://en.wikipedia.org/wiki/Incandescent_light_bulb#/media/File:Edison_incandescent_lights.jpg@ehekler
  37. 37. Knowledge accumulation via effective curation www..google.com@ehekler
  38. 38. Agile science products • Modules • System models • Personalization algorithms @ehekler
  39. 39. Modules Smallest, meaningful, repurposable,& concrete “Perfect” intervention package Components Flickr - Paul Swansen Flickr - Benjamin Esham @ehekler
  40. 40. Modules APIs www.yelp.com@ehekler
  41. 41. IFTTT http://www.ifttt.com Modules Templates www.ifttt.com@ehekler
  42. 42. Modules http://www.ifttt.comwww.ifttt.com@ehekler
  43. 43. System models: Meteorology analogy Flickr-Bart Everson Patrick, Hekler, Estrin, Godino, Crane, Riper, & Mohr, & Riley Manuscript in Prep @ehekler
  44. 44. System models Riley, Martin, Rivera, Hekler, et al. 2016; Martin, Riley, Rivera, Hekler, et al. 2014@ehekler
  45. 45. Dynamic hypotheses- “Sweet Spot” Hekler (PI), Rivera (Co-PI), NSF IIS-1449751 -15 -10 -5 0 5 10 15 20 0 2000 4000 6000 8000 10000 12000 14000 AveChangeSelfEffficacy ActualDailySteps Recommended Goal Actual Steps Δ Self-Efficacy @ehekler
  46. 46. Personalization algorithms www.netflix.com@ehekler
  47. 47. Martin, Rivera, & Hekler Am. Control Conference (2015) Personalization algorithms @ehekler
  48. 48. Agile science process @ehekler
  49. 49. Sprint • GOAL: Discovery and resource-efficient vetting of promising new approaches @ehekler
  50. 50. Amy Luginbill; Samantha Quagliano; Sepideh Zohreh S=Stop M=Move I= I statement; I can do it! L=Love (positivity) E=Exhale SMS: “If you are stressed today, try one of the following options, Deep breathing, Stretching, get up move around.” MOBILECAR MAIDSERVICES GREEN CLEAN Prototype 1: S.M.I.L.E. Prototype 2: Facial Wave Prototype 3: SMS Intervention Prototype 4: De-stress your carScrappy Trials @ehekler
  51. 51. Phoenix Proposition 104 John Harlow, Erik Johnston, Zoe Yeh@ehekler
  52. 52. Phoenix Proposition 104 John Harlow, Erik Johnston, Zoe Yeh@ehekler http://movephx.org/get-the-facts/maps/
  53. 53. Phoenix Proposition 104 John Harlow, Erik Johnston, Zoe Yeh@ehekler http://movephx.org/get-the-facts/maps/
  54. 54. Optimization • GOAL: Translation of a promising resources into useful & evidence-based tools for real-world use. @ehekler
  55. 55. Linda M. Collins The Methodology Center Penn State methodology.psu.edu@ehekler
  56. 56. Micro-randomization design • Sequential, full factorial designs • Randomize intervention component • Each time we might deliver component • Multiple components can be randomized • Randomized 100s or 1000s of times Klasnja, Hekler, Shiffman, Boruvka, Almirall, Tewari, Murphy, Health Psych, 2016@ehekler
  57. 57. System identification experiments -100 100 300 500 700 900 1100 1300 1500 0 2000 4000 6000 8000 10000 12000 14000 1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 Points Stepsperday Days Points Provided (100, 300, 500) Fictionalized actual steps per day Daily step goal ((Baseline Median) to (Baseline Median+100% Baseline Median)) NSF IIS-1449751: Defining a Dynamical Behavioral Model to Support a Just in Time Adaptive Intervention, PIs, Hekler & Rivera@ehekler
  58. 58. Release • GOAL: Share useful resources via effective curation. @ehekler
  59. 59. Shared test-beds @ehekler Secondary Secondary Secondary Lead Co-Lead Co-Lead
  60. 60. Paco (thank you, Bob Evans!) www.pacoapp.com@ehekler
  61. 61. Paco-read this on the website www.pacoapp.com@ehekler
  62. 62. Paco www.pacoapp.com@ehekler
  63. 63. Paco www.pacoapp.com@ehekler
  64. 64. Fundamental problem @ehekler We each build “optimized” packages for one-off problems We need to build inter-operable modular resources Flickr - Paul Swansen Flickr - Benjamin Esham
  65. 65. RoboCup @ehekler https://upload.wikimedia.org/wikipedia/commons/2/22/Robocup_Bremen_2006_-_four_legged.JPG
  66. 66. RoboCup @ehekler https://c2.staticflickr.com/8/7410/9238794627_4be245177e_b.jpg
  67. 67. RoboCup Structure • Target: “developing by 2050 a Robot Soccer team capable of winning against the human team champion of the FIFA World Cup” • Rules: Change each year depending on state of the science http://www.robocup.org/about-robocup/regulations-rules/@ehekler
  68. 68. What is mHealth’s RoboCup? @ehekler https://upload.wikimedia.org/wikipedia/commons/e/e3/13-06-28-robocup-eindhoven-099.jpg Question generated by participants of the Schloss Dagstuhl Seminar on “Life-long Behavior Change Technologies:” June 21-26, 2015, http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=15262
  69. 69. UbiHealthy Cup v.2 • Target: – Actionable tool the community needs (e.g., passive measure of consumption, user burden, goal-setting module, team module) • Bracket Science – Competing teams that are winnowed down at each stage (stop getting money) – Final four tested head-to-head in an RCT • Challenges change over time Thanks to Susan Murphy & Pedja Klasnja for co-developing this idea.@ehekler
  70. 70. UbiHealthy Cup Bracket https://www.whitehouse.gov/assets/images/brackets2009c.jpg Final four RCT (36m, 4) Opt. 2 (24m, 8) Opt. 2 (24m)Opt. 1 (18m,16) Opt. 1 (18m)Sprint 2 (12m, 32) Sprint 2 (12m)Sprint 1 (6m, 64) Sprint 1 (6m)
  71. 71. RECAP @ehekler
  72. 72. TARGET: Precision behavior change Individual/User Controlled System Controlled Individual/System Balanced Control @ehekler
  73. 73. Why now? Behavioral meteorology Flickr-Bart Everson Patrick, Riley, Estrin, Hekler, Godino, Crane, Riper, & Mohr, Manuscript in Prep@ehekler
  74. 74. Why now? The world needs us… Flickr – Stuck in Customs http://youtu.be/QPKKQnijnsM Flickr – just.Luc Flickr-meanMrmustard
  75. 75. First step… @ehekler Stop building “perfect” packages… Start building interoperable modules Flickr - Paul Swansen Flickr - Benjamin Esham www.agilescience.org
  76. 76. Next step, organize and share! Dr. Eric Hekler, Arizona State University ehekler@asu.edu, @ehekler

×