DPP-42-44-Answer

STUDY  INNOVATIONS
STUDY INNOVATIONSEducator à Study Innovations

Subject : Mathematics Date : DPP No. : 42 DPP No. – 01 Class : XI Course : Total Marks : 20 Max. Time : 19 min. Single choice Objective ('–1' negative marking) Q.1, 2, 3, 4, 5 (3 marks 3 min.) [15, 15] Multiple choice objective ('–1' negative marking) Q.6 (5 marks 4 min.) [5, 4] Ques. No. 1 2 3 4 5 6 Total Mark obtained 1. A circle is concentric with circle x2 + y2  2x + 4y  20 = 0 . If perimeter of the semicircle is 36 then the equation of the circle is : [ use  = 22/7 ] (A*) x2 + y2  2x + 4y  44 = 0 (B) (x  1)2 + (y + 2)2 = (126/11)2 (C) x2 + y2  2x + 4y  43 = 0 (D) x2 + y2  2x + 4y  49 = 0 2. Chords of the curve 4x2 + y2 – x + 4y = 0 which subtend a right angle at the origin pass through a fixed point whose co-ordinates are : (A*)  1 ,  4  (B)  1 , 4 (C)  1 , 4 (D)  1 ,  4  5 5  5 5  5 5  5 5 3. A is a point on either of two rays y + |x| = 2 at a distance of units from their point of intersection. The coordinates of the foot of perpendicular from A on the bisector of the angle between them are (A)   2   , 2  (B*) (0, 0) (C)  2   , 2  (D) (0, 4) 4. The equation of the image of the circle x2 + y2 + 16x  24y + 183 = 0 in the line mirror 4x + 7y + 13 = 0 is: (A) x2 + y2 + 32x  4y + 235 = 0 (B) x2 + y2 + 32x + 4y  235 = 0 (C) x2 + y2 + 32x  4y  235 = 0 (D*) x2 + y2 + 32x + 4y + 235 = 0 5. The circle x2 + y2 + 4x – 7y + 12 = 0 cuts an intercept on y-axis of length (A) 3 (B) 4 (C) 7 (D*) 1 6. In a parallelogram as shown in the figure (a  b) : (A*) equation of the diagonal AC is (a + b) x + (a + b)y = 3 ab (B*) equation of the diagonal BD is u u  u u = 0 (C*) co-ordinates of the points of intersection of the D u1  bx + ay = ab C A  3ab 3ab  two diagonals are  ,  2(a  b)  2(a  b)  (D) the angle between the two diagonals is /3. Subject : Mathematics Date : DPP No. : 43 DPP No. – 02 Class : XI Course : Total Marks : 25 Max. Time : 26 min. Comprehension ('–1' negative marking) Q.1 to Q.3 (3 marks 3 min.) [9, 9] Single choice Objective ('–1' negative marking) Q.4, 5, 6 (3 marks 3 min.) [9, 9] Subjective Questions ('–1' negative marking) Q.7 (4 marks 5 min.) [4, 5] Assertion and Reason (no negative marking) Q.8 (3 marks 3 min.) [3, 3] Ques. No. 1 2 3 4 5 6 7 8 Total Mark obtained Comprehension (1 to 3) Consider the triangle ABC having vertex A (1, 1) and its orthocentre is (2, 4). Also side AB & BC are members of the family of line, ax + by + c = 0 where a, b, c are in A.P. 1. the vertex B is : (A) (2, 1) (B*) (1, –2) (C) (–1, 2) (D) None of these 2. the vertex C is : (A) (4, 16) (B) (17, –4) (C) (4, –17) (D*) (–17, 4) 3.  ABC is a : (A*) obtuse angled triangle (B) Right angled triangle (C) Acute angled triangle (D) Equilaterial triangle 4. The family of straight lines 3(a + 1) x – 4 (a – 1) y + 3 (a + 1) = 0

DAILY PRACTICE PROBLEMS
Subject : Mathematics Date : DPP No. : Class : XI Course :
DPP No. – 01
Total Marks : 20 Max. Time : 19 min.
Single choice Objective ('–1' negative marking) Q.1, 2, 3, 4, 5 (3 marks 3 min.) [15, 15]
Multiple choice objective ('–1' negative marking) Q.6 (5 marks 4 min.) [5, 4]
Ques. No. 1 2 3 4 5 6 Total
Mark obtained
1. A circle is concentric with circle x2
+ y2
 2x + 4y  20 = 0 . If perimeter of the semicircle is 36 then
the equation of the circle is : [ use  = 22/7 ]
(A*) x2
+ y2
 2x + 4y  44 = 0 (B) (x  1)2
+ (y + 2)2
= (126/11)2
(C) x2
+ y2
 2x + 4y  43 = 0 (D) x2
+ y2
 2x + 4y  49 = 0
2. Chords of the curve 4x2
+ y2
– x + 4y = 0 which subtend a right angle at the origin pass through a fixed
point whose co-ordinates are :
(A*)
1
5
4
5
, 





 (B) 






1
5
4
5
, (C)
1
5
4
5
,





 (D)  






1
5
4
5
,
3. A is a point on either of two rays y + 3 |x|= 2 at a distance of
4
3
units from their point of intersection.
The coordinates of the foot of perpendicular from A on the bisector of the angle between them are
(A) 






2
3
2
, (B*) (0, 0) (C) 2
3
2
,





 (D) (0, 4)
4. The equation of the image of the circle x2
+ y2
+ 16x  24y + 183 = 0 in the line mirror
4x + 7y + 13 = 0 is:
(A) x2
+ y2
+ 32x  4y + 235 = 0 (B) x2
+ y2
+ 32x + 4y  235 = 0
(C) x2
+ y2
+ 32x  4y  235 = 0 (D*) x2
+ y2
+ 32x + 4y + 235 = 0
5. The circle x2
+ y2
+ 4x – 7y + 12 = 0 cuts an intercept on y-axis of length
(A) 3 (B) 4 (C) 7 (D*) 1
6. In a parallelogram as shown in the figure (a  b) :
(A*) equation of the diagonal AC is
(a + b) x + (a + b)y = 3 ab
(B*) equation of the diagonal BD is u1
u4
 u2
u3
= 0
A B
C
D
u
a
x
+
b
y
=
a
b
3

u
a
x
+
b
y
=
2
a
b
4

u bx + ay = 2ab
2 
u bx + ay = ab
1 
(C*) co-ordinates of the points of intersection of the
two diagonals are 








 )
b
a
(
2
ab
3
,
)
b
a
(
2
ab
3
(D) the angle between the two diagonals is /3.
42
DAILY PRACTICE PROBLEMS
Subject : Mathematics Date : DPP No. : Class : XI Course :
DPP No. – 02
Total Marks : 25 Max. Time : 26 min.
Comprehension ('–1' negative marking) Q.1 to Q.3 (3 marks 3 min.) [9, 9]
Single choice Objective ('–1' negative marking) Q.4, 5, 6 (3 marks 3 min.) [9, 9]
Subjective Questions ('–1' negative marking) Q.7 (4 marks 5 min.) [4, 5]
Assertion and Reason (no negative marking) Q.8 (3 marks 3 min.) [3, 3]
Ques. No. 1 2 3 4 5 6 7 8 Total
Mark obtained
Comprehension (1 to 3)
Consider the triangle ABC having vertex A (1, 1) and its orthocentre is (2, 4). Also side AB & BC are
members of the family of line, ax + by + c = 0 where a, b, c are in A.P.
1. the vertex B is :
(A) (2, 1) (B*) (1, –2) (C) (–1, 2) (D) None of these
2. the vertex C is :
(A) (4, 16) (B) (17, –4) (C) (4, –17) (D*) (–17, 4)
3.  ABC is a :
(A*) obtuse angled triangle (B) Right angled triangle
(C) Acute angled triangle (D) Equilaterial triangle
4. The family of straight lines 3(a + 1) x – 4 (a – 1) y + 3 (a + 1) = 0 for different values of 'a' passes through a
fixed point whose coordinates are
(A) (1, 0) (B*) (–1, 0) (C) (–1, –1) (D) none of these
5. Let the minimum value of real quadratic expression ax2
– bx +
a
2
1
, a > 0 be y0
. If y0
occurs at x = k and
k = 2 y0
, then set of all possible values of b is
(A) {2, –1} (B) {–1, –2} (C) {2, 1} (D*) {– 2, 1}
6. The area of an equilateral triangle inscribed in the circle x² + y² 2x = 0 is :
(A*)
3 3
4
(B)
3 3
2
(C)
3 3
8
(D) none of these
7. Find the sum to ‘n’ terms and the sum to infinite terms of the series
terms
n
upto
...
..........
4
3
2
1
9
3
2
1
7
2
1
5
1
3
2
2
2
2
2
2
2
2
2
2










Ans. 6
S
,
1
n
n
6
Sn 

 
8. STATEMENT-1: If a, b, c are non-zero real numbers such that
3(a2
+ b2
+ c2
+ 1) = 2(a + b + c + ab + bc + ca), then a, b, c are in A.P. as well as in G.P.
and
STATEMENT-2: A series is in A.P. as well as in G.P. if all the terms in the series are equal and
non-zero.
(A*) STATEMENT-1 is True, STATEMENT-2 is True ; STATEMENT-2 is a correct explanation for
STATEMENT-1
(B) STATEMENT-1 is True, STATEMENT-2 is True ; STATEMENT-2 is NOT a correct explanation for
STATEMENT-1
(C) STATEMENT-1 isTrue, STATEMENT-2 is False
(D) STATEMENT-1 is False, STATEMENT-2 isTrue
Ans. (A)
43
DAILY PRACTICE PROBLEMS
Subject : Mathematics Date : DPP No. : Class : XI Course :
DPP No. – 03
Total Marks : 22 Max. Time : 23 min.
Single choice Objective ('–1' negative marking) Q.1, 2, 3, 4, 6 (3 marks 3 min.) [15, 15]
Subjective Questions ('–1' negative marking) Q.5 (4 marks 5 min.) [4, 5]
Assertion and Reason (no negative marking) Q.7 (3 marks 3 min.) [3, 3]
Ques. No. 1 2 3 4 5 6 7 Total
Mark obtained
1. The equation of the circle of radius 5 in the first quadrant which touches the x-axis and the line
3 x – 4 y = 0 is :
(A) x2
+ y2
– 24 x – y – 25 = 0 (B*) x2
+ y2
– 30 x – 10 y + 225 = 0
(C) x2
+ y2
– 16 x – 18 y + 64 = 0 (D) x2
+ y2
– 20 x – 12 y + 144 = 0
2. A circle touches the x axis and the line 4x – 3y + 4 = 0. If centre lies in the third quadrant and on the line
x – y – 1 = 0, then the equation of the circle is
(A) 9x2
+ 9y2
+ 24x + 6y – 1 = 0 (B) 9x2
+ 9y2
+ 6x – 2xy + 1 = 0
(C*) 9x2
+ 9y2
+ 6x + 24y + 1 = 0 (D) x2
+ y2
+ 2x + 3y + 1 = 0
3. If three distinct real numbers a, b, c are in G.P. and a + b + c = xb, x  R, then
(A) – 3 < x < 1 (B) x > 1 or x < – 3 (C*) x < –1 or x > 3 (D) – 1 < x < 3
4. Area of the triangle formed by the x + y = 3 and angle bisectors of the pair of straight lines x2
– y2
+ 2y =
1 is
(A*) 2 sq. units (B) 4 sq. units (C) 6 sq. units (D) 8 sq. units
5. Find the maximum and minimum distance of the point (2 ,  7) from the circle
x2
+ y2
 14 x  10 y  151 = 0 .
Ans. max = 28, min = 2
6. Consider the following statements for real values of x :
S1
: Number of circles through the three points A(3, 5), B (4, 6), C (5, 7) is 2.
S2
: |x – 2| = [– ], where [.] denotes greatest integer function, then x = 6, – 2
S3
: The image of the point (2,1) with respect to the line x + 1 = 0 is (–2 , 1)
State, in order, whether S1
, S2
, S3
are true or false
(A)TTT (B) FTF (C)TTT (D*) FFF
7. STATEMENT-1: The number of integral values of  , for which the equation 7cosx + 5sinx = 2  + 1 has a
solution, is 8.
and
STATEMENT-2: The equation acos + bsin  = c has atleast one solution if | c | > 2
2
b
a  .
(A) STATEMENT-1 is True, STATEMENT-2 is True ; STATEMENT-2 is a correct explanation for
STATEMENT-1
(B) STATEMENT-1 is True, STATEMENT-2 is True ; STATEMENT-2 is NOT a correct explanation for
STATEMENT-1
(C*) STATEMENT-1 isTrue, STATEMENT-2 is False
(D) STATEMENT-1 is False, STATEMENT-2 isTrue
Ans. (C)
44

Recommandé

DPP-42-44-PC par
DPP-42-44-PCDPP-42-44-PC
DPP-42-44-PCSTUDY INNOVATIONS
3 vues3 diapositives
DPP-28-30-Answer par
DPP-28-30-AnswerDPP-28-30-Answer
DPP-28-30-AnswerSTUDY INNOVATIONS
2 vues4 diapositives
DPP-92-94-Answer par
DPP-92-94-AnswerDPP-92-94-Answer
DPP-92-94-AnswerSTUDY INNOVATIONS
3 vues3 diapositives
DPP-48-50-Ans par
DPP-48-50-AnsDPP-48-50-Ans
DPP-48-50-AnsSTUDY INNOVATIONS
3 vues3 diapositives
DPP-36-38-Answer par
DPP-36-38-AnswerDPP-36-38-Answer
DPP-36-38-AnswerSTUDY INNOVATIONS
2 vues3 diapositives
DPP-22-24-Answer par
DPP-22-24-AnswerDPP-22-24-Answer
DPP-22-24-AnswerSTUDY INNOVATIONS
3 vues3 diapositives

Contenu connexe

Similaire à DPP-42-44-Answer

DPP-45-47-Ans-pending-B par
DPP-45-47-Ans-pending-BDPP-45-47-Ans-pending-B
DPP-45-47-Ans-pending-BSTUDY INNOVATIONS
2 vues3 diapositives
Circle-03-Exercise- par
Circle-03-Exercise-Circle-03-Exercise-
Circle-03-Exercise-STUDY INNOVATIONS
50 vues21 diapositives
DPP-36-38-PC par
DPP-36-38-PCDPP-36-38-PC
DPP-36-38-PCSTUDY INNOVATIONS
2 vues3 diapositives
DPP-92-94-PC par
DPP-92-94-PCDPP-92-94-PC
DPP-92-94-PCSTUDY INNOVATIONS
2 vues4 diapositives
DPP-37-39_Answer par
DPP-37-39_AnswerDPP-37-39_Answer
DPP-37-39_AnswerSTUDY INNOVATIONS
3 vues3 diapositives
Circle & St. line F-Only.pdf par
Circle & St. line F-Only.pdfCircle & St. line F-Only.pdf
Circle & St. line F-Only.pdfSTUDY INNOVATIONS
7 vues13 diapositives

Similaire à DPP-42-44-Answer(20)

Plus de STUDY INNOVATIONS

Science-Class-12 Physics and Chemistry DPP Talent Search Examinations par
Science-Class-12 Physics and Chemistry DPP Talent Search ExaminationsScience-Class-12 Physics and Chemistry DPP Talent Search Examinations
Science-Class-12 Physics and Chemistry DPP Talent Search ExaminationsSTUDY INNOVATIONS
5 vues15 diapositives
Science-Class-12 Maths DPP Talent Search Examinations par
Science-Class-12 Maths DPP Talent Search ExaminationsScience-Class-12 Maths DPP Talent Search Examinations
Science-Class-12 Maths DPP Talent Search ExaminationsSTUDY INNOVATIONS
6 vues3 diapositives
Science-Class-11 Physics and Chemistry DPP Talent Search Examinations par
Science-Class-11 Physics and Chemistry DPP Talent Search ExaminationsScience-Class-11 Physics and Chemistry DPP Talent Search Examinations
Science-Class-11 Physics and Chemistry DPP Talent Search ExaminationsSTUDY INNOVATIONS
12 vues14 diapositives
Science-Class-11 Maths DPP Talent Search Examinations par
Science-Class-11 Maths DPP Talent Search ExaminationsScience-Class-11 Maths DPP Talent Search Examinations
Science-Class-11 Maths DPP Talent Search ExaminationsSTUDY INNOVATIONS
5 vues3 diapositives
Science-Class-11 Biology DPP Talent Search Examinations par
Science-Class-11 Biology DPP Talent Search ExaminationsScience-Class-11 Biology DPP Talent Search Examinations
Science-Class-11 Biology DPP Talent Search ExaminationsSTUDY INNOVATIONS
6 vues9 diapositives
Science-Class-10 DPP Talent Search Examinations par
Science-Class-10 DPP Talent Search ExaminationsScience-Class-10 DPP Talent Search Examinations
Science-Class-10 DPP Talent Search ExaminationsSTUDY INNOVATIONS
8 vues12 diapositives

Plus de STUDY INNOVATIONS(20)

Science-Class-12 Physics and Chemistry DPP Talent Search Examinations par STUDY INNOVATIONS
Science-Class-12 Physics and Chemistry DPP Talent Search ExaminationsScience-Class-12 Physics and Chemistry DPP Talent Search Examinations
Science-Class-12 Physics and Chemistry DPP Talent Search Examinations
Science-Class-12 Maths DPP Talent Search Examinations par STUDY INNOVATIONS
Science-Class-12 Maths DPP Talent Search ExaminationsScience-Class-12 Maths DPP Talent Search Examinations
Science-Class-12 Maths DPP Talent Search Examinations
Science-Class-11 Physics and Chemistry DPP Talent Search Examinations par STUDY INNOVATIONS
Science-Class-11 Physics and Chemistry DPP Talent Search ExaminationsScience-Class-11 Physics and Chemistry DPP Talent Search Examinations
Science-Class-11 Physics and Chemistry DPP Talent Search Examinations
Science-Class-11 Maths DPP Talent Search Examinations par STUDY INNOVATIONS
Science-Class-11 Maths DPP Talent Search ExaminationsScience-Class-11 Maths DPP Talent Search Examinations
Science-Class-11 Maths DPP Talent Search Examinations
Science-Class-11 Biology DPP Talent Search Examinations par STUDY INNOVATIONS
Science-Class-11 Biology DPP Talent Search ExaminationsScience-Class-11 Biology DPP Talent Search Examinations
Science-Class-11 Biology DPP Talent Search Examinations
Mathematics-Class-10 DPP Talent Search Examinations par STUDY INNOVATIONS
Mathematics-Class-10 DPP Talent Search ExaminationsMathematics-Class-10 DPP Talent Search Examinations
Mathematics-Class-10 DPP Talent Search Examinations
Mathematics-Class-4 DPP Talent Search Examinations par STUDY INNOVATIONS
Mathematics-Class-4 DPP Talent Search ExaminationsMathematics-Class-4 DPP Talent Search Examinations
Mathematics-Class-4 DPP Talent Search Examinations

Dernier

CONTENTS.pptx par
CONTENTS.pptxCONTENTS.pptx
CONTENTS.pptxiguerendiain
57 vues17 diapositives
Ch. 8 Political Party and Party System.pptx par
Ch. 8 Political Party and Party System.pptxCh. 8 Political Party and Party System.pptx
Ch. 8 Political Party and Party System.pptxRommel Regala
53 vues11 diapositives
ICS3211_lecture 08_2023.pdf par
ICS3211_lecture 08_2023.pdfICS3211_lecture 08_2023.pdf
ICS3211_lecture 08_2023.pdfVanessa Camilleri
187 vues30 diapositives
Education and Diversity.pptx par
Education and Diversity.pptxEducation and Diversity.pptx
Education and Diversity.pptxDrHafizKosar
177 vues16 diapositives
On Killing a Tree.pptx par
On Killing a Tree.pptxOn Killing a Tree.pptx
On Killing a Tree.pptxAncyTEnglish
66 vues11 diapositives
AUDIENCE - BANDURA.pptx par
AUDIENCE - BANDURA.pptxAUDIENCE - BANDURA.pptx
AUDIENCE - BANDURA.pptxiammrhaywood
89 vues44 diapositives

Dernier(20)

Ch. 8 Political Party and Party System.pptx par Rommel Regala
Ch. 8 Political Party and Party System.pptxCh. 8 Political Party and Party System.pptx
Ch. 8 Political Party and Party System.pptx
Rommel Regala53 vues
Education and Diversity.pptx par DrHafizKosar
Education and Diversity.pptxEducation and Diversity.pptx
Education and Diversity.pptx
DrHafizKosar177 vues
Solar System and Galaxies.pptx par DrHafizKosar
Solar System and Galaxies.pptxSolar System and Galaxies.pptx
Solar System and Galaxies.pptx
DrHafizKosar94 vues
When Sex Gets Complicated: Porn, Affairs, & Cybersex par Marlene Maheu
When Sex Gets Complicated: Porn, Affairs, & CybersexWhen Sex Gets Complicated: Porn, Affairs, & Cybersex
When Sex Gets Complicated: Porn, Affairs, & Cybersex
Marlene Maheu73 vues
How to empty an One2many field in Odoo par Celine George
How to empty an One2many field in OdooHow to empty an One2many field in Odoo
How to empty an One2many field in Odoo
Celine George72 vues
The basics - information, data, technology and systems.pdf par JonathanCovena1
The basics - information, data, technology and systems.pdfThe basics - information, data, technology and systems.pdf
The basics - information, data, technology and systems.pdf
JonathanCovena1126 vues
Create a Structure in VBNet.pptx par Breach_P
Create a Structure in VBNet.pptxCreate a Structure in VBNet.pptx
Create a Structure in VBNet.pptx
Breach_P75 vues
Structure and Functions of Cell.pdf par Nithya Murugan
Structure and Functions of Cell.pdfStructure and Functions of Cell.pdf
Structure and Functions of Cell.pdf
Nithya Murugan701 vues

DPP-42-44-Answer

  • 1. DAILY PRACTICE PROBLEMS Subject : Mathematics Date : DPP No. : Class : XI Course : DPP No. – 01 Total Marks : 20 Max. Time : 19 min. Single choice Objective ('–1' negative marking) Q.1, 2, 3, 4, 5 (3 marks 3 min.) [15, 15] Multiple choice objective ('–1' negative marking) Q.6 (5 marks 4 min.) [5, 4] Ques. No. 1 2 3 4 5 6 Total Mark obtained 1. A circle is concentric with circle x2 + y2  2x + 4y  20 = 0 . If perimeter of the semicircle is 36 then the equation of the circle is : [ use  = 22/7 ] (A*) x2 + y2  2x + 4y  44 = 0 (B) (x  1)2 + (y + 2)2 = (126/11)2 (C) x2 + y2  2x + 4y  43 = 0 (D) x2 + y2  2x + 4y  49 = 0 2. Chords of the curve 4x2 + y2 – x + 4y = 0 which subtend a right angle at the origin pass through a fixed point whose co-ordinates are : (A*) 1 5 4 5 ,        (B)        1 5 4 5 , (C) 1 5 4 5 ,       (D)         1 5 4 5 , 3. A is a point on either of two rays y + 3 |x|= 2 at a distance of 4 3 units from their point of intersection. The coordinates of the foot of perpendicular from A on the bisector of the angle between them are (A)        2 3 2 , (B*) (0, 0) (C) 2 3 2 ,       (D) (0, 4) 4. The equation of the image of the circle x2 + y2 + 16x  24y + 183 = 0 in the line mirror 4x + 7y + 13 = 0 is: (A) x2 + y2 + 32x  4y + 235 = 0 (B) x2 + y2 + 32x + 4y  235 = 0 (C) x2 + y2 + 32x  4y  235 = 0 (D*) x2 + y2 + 32x + 4y + 235 = 0 5. The circle x2 + y2 + 4x – 7y + 12 = 0 cuts an intercept on y-axis of length (A) 3 (B) 4 (C) 7 (D*) 1 6. In a parallelogram as shown in the figure (a  b) : (A*) equation of the diagonal AC is (a + b) x + (a + b)y = 3 ab (B*) equation of the diagonal BD is u1 u4  u2 u3 = 0 A B C D u a x + b y = a b 3  u a x + b y = 2 a b 4  u bx + ay = 2ab 2  u bx + ay = ab 1  (C*) co-ordinates of the points of intersection of the two diagonals are           ) b a ( 2 ab 3 , ) b a ( 2 ab 3 (D) the angle between the two diagonals is /3. 42
  • 2. DAILY PRACTICE PROBLEMS Subject : Mathematics Date : DPP No. : Class : XI Course : DPP No. – 02 Total Marks : 25 Max. Time : 26 min. Comprehension ('–1' negative marking) Q.1 to Q.3 (3 marks 3 min.) [9, 9] Single choice Objective ('–1' negative marking) Q.4, 5, 6 (3 marks 3 min.) [9, 9] Subjective Questions ('–1' negative marking) Q.7 (4 marks 5 min.) [4, 5] Assertion and Reason (no negative marking) Q.8 (3 marks 3 min.) [3, 3] Ques. No. 1 2 3 4 5 6 7 8 Total Mark obtained Comprehension (1 to 3) Consider the triangle ABC having vertex A (1, 1) and its orthocentre is (2, 4). Also side AB & BC are members of the family of line, ax + by + c = 0 where a, b, c are in A.P. 1. the vertex B is : (A) (2, 1) (B*) (1, –2) (C) (–1, 2) (D) None of these 2. the vertex C is : (A) (4, 16) (B) (17, –4) (C) (4, –17) (D*) (–17, 4) 3.  ABC is a : (A*) obtuse angled triangle (B) Right angled triangle (C) Acute angled triangle (D) Equilaterial triangle 4. The family of straight lines 3(a + 1) x – 4 (a – 1) y + 3 (a + 1) = 0 for different values of 'a' passes through a fixed point whose coordinates are (A) (1, 0) (B*) (–1, 0) (C) (–1, –1) (D) none of these 5. Let the minimum value of real quadratic expression ax2 – bx + a 2 1 , a > 0 be y0 . If y0 occurs at x = k and k = 2 y0 , then set of all possible values of b is (A) {2, –1} (B) {–1, –2} (C) {2, 1} (D*) {– 2, 1} 6. The area of an equilateral triangle inscribed in the circle x² + y² 2x = 0 is : (A*) 3 3 4 (B) 3 3 2 (C) 3 3 8 (D) none of these 7. Find the sum to ‘n’ terms and the sum to infinite terms of the series terms n upto ... .......... 4 3 2 1 9 3 2 1 7 2 1 5 1 3 2 2 2 2 2 2 2 2 2 2           Ans. 6 S , 1 n n 6 Sn     8. STATEMENT-1: If a, b, c are non-zero real numbers such that 3(a2 + b2 + c2 + 1) = 2(a + b + c + ab + bc + ca), then a, b, c are in A.P. as well as in G.P. and STATEMENT-2: A series is in A.P. as well as in G.P. if all the terms in the series are equal and non-zero. (A*) STATEMENT-1 is True, STATEMENT-2 is True ; STATEMENT-2 is a correct explanation for STATEMENT-1 (B) STATEMENT-1 is True, STATEMENT-2 is True ; STATEMENT-2 is NOT a correct explanation for STATEMENT-1 (C) STATEMENT-1 isTrue, STATEMENT-2 is False (D) STATEMENT-1 is False, STATEMENT-2 isTrue Ans. (A) 43
  • 3. DAILY PRACTICE PROBLEMS Subject : Mathematics Date : DPP No. : Class : XI Course : DPP No. – 03 Total Marks : 22 Max. Time : 23 min. Single choice Objective ('–1' negative marking) Q.1, 2, 3, 4, 6 (3 marks 3 min.) [15, 15] Subjective Questions ('–1' negative marking) Q.5 (4 marks 5 min.) [4, 5] Assertion and Reason (no negative marking) Q.7 (3 marks 3 min.) [3, 3] Ques. No. 1 2 3 4 5 6 7 Total Mark obtained 1. The equation of the circle of radius 5 in the first quadrant which touches the x-axis and the line 3 x – 4 y = 0 is : (A) x2 + y2 – 24 x – y – 25 = 0 (B*) x2 + y2 – 30 x – 10 y + 225 = 0 (C) x2 + y2 – 16 x – 18 y + 64 = 0 (D) x2 + y2 – 20 x – 12 y + 144 = 0 2. A circle touches the x axis and the line 4x – 3y + 4 = 0. If centre lies in the third quadrant and on the line x – y – 1 = 0, then the equation of the circle is (A) 9x2 + 9y2 + 24x + 6y – 1 = 0 (B) 9x2 + 9y2 + 6x – 2xy + 1 = 0 (C*) 9x2 + 9y2 + 6x + 24y + 1 = 0 (D) x2 + y2 + 2x + 3y + 1 = 0 3. If three distinct real numbers a, b, c are in G.P. and a + b + c = xb, x  R, then (A) – 3 < x < 1 (B) x > 1 or x < – 3 (C*) x < –1 or x > 3 (D) – 1 < x < 3 4. Area of the triangle formed by the x + y = 3 and angle bisectors of the pair of straight lines x2 – y2 + 2y = 1 is (A*) 2 sq. units (B) 4 sq. units (C) 6 sq. units (D) 8 sq. units 5. Find the maximum and minimum distance of the point (2 ,  7) from the circle x2 + y2  14 x  10 y  151 = 0 . Ans. max = 28, min = 2 6. Consider the following statements for real values of x : S1 : Number of circles through the three points A(3, 5), B (4, 6), C (5, 7) is 2. S2 : |x – 2| = [– ], where [.] denotes greatest integer function, then x = 6, – 2 S3 : The image of the point (2,1) with respect to the line x + 1 = 0 is (–2 , 1) State, in order, whether S1 , S2 , S3 are true or false (A)TTT (B) FTF (C)TTT (D*) FFF 7. STATEMENT-1: The number of integral values of  , for which the equation 7cosx + 5sinx = 2  + 1 has a solution, is 8. and STATEMENT-2: The equation acos + bsin  = c has atleast one solution if | c | > 2 2 b a  . (A) STATEMENT-1 is True, STATEMENT-2 is True ; STATEMENT-2 is a correct explanation for STATEMENT-1 (B) STATEMENT-1 is True, STATEMENT-2 is True ; STATEMENT-2 is NOT a correct explanation for STATEMENT-1 (C*) STATEMENT-1 isTrue, STATEMENT-2 is False (D) STATEMENT-1 is False, STATEMENT-2 isTrue Ans. (C) 44