QUIZ-1 (CLASS-XII) Q.1 A circular arch having width 24m and height 9m is to be constructed. What is the radius of the circle of which the arch is an arc? (A) 10m (B) 12.5 m (C) 13.5m (D) 14m Q.2 The sum of the solutions on the interval (0, 2] to the equation: 0 = – (2 sin 2 x + 2 cos2 x) , is (cos x 0 ) cos x (A) 3 (B) 4 (C) 5 (D) 6 Q.3 Let XOY be a right triangle with XOY = 90°. Let M and N be the midpoints of legs OX and OY respectively. If XN = 19 and YM = 22, then XY equals (A) 26 (B) 13 (C) 32.5 (D) 41 Q.4 Given parallelogram ABCD, with AB = 10, AD = 12 and BD = 2 . The length of (AC) is (A) 10 (B) 2 (C) 12 (D) 2 Q.5 ABC is a right triangle with hypotenuse AB and AC = 15 cm. Altitude CH divides AB into segments AH and HB, with HB = 16cm. The area of ABC, is (A) 120 cm2 (B) 144cm2 (C) 150cm2 (D) 216cm2 Q.6 Consider the eight digit number N = 11115556. Which of the following statements are true? I. N is divisible by 11 II. N – 9 is a prime III N is a perfect square (A) I (B) II (C) III (D) I, II and III Q.7 The value of the series 1 + 2 – 3 – 4 + 5 + 6 – 7 – 8 + 9 + ... – 99 – 100, is (A) –100 (B) 0 (C) 1 (D) 100 QUIZ-2 (CLASS-XII) One or more than one is/are correct. Q.1 If x = t3 + t + 5 & y = sin t then (3t 2 + 1) sin t + 6 t cos t d2y dx2 = (3t 2 + 1) sin t + 6 t cos t (A) (3t 2 + 1)3 (B) (3t 2 + 1)2 (C) (3t 2 + 1) sin t + 6 t cos t 2 (D) cost 2 (3t 2 + 1) 1 d2y 3t + 1 Q.2 If y = 2x2 + 3x + 1 then dx2 at x = 2 is : (A) 38 27 (B) 38 27 (C) 27 38 (D) none Q.3 If y2 = P(x), is a polynomial of degree 3, then 2 d dx y . d2y 2 equals : dx (A) P (x) + P (x) (B) P (x) . P (x) (C) P (x) . P (x) (D) a constant Q.4 If f (x) = x 2 & g (x) = f ( f (x)) then for x > 20, g (x) = (A) 1 (B) 1 (C) 0 (D) none Q.5 People living at Mars, instead of the usual definition of derivative D f(x), define a new kind of derivative, D*f(x) by the formula D*f(x) = Limit h0 f 2 (x + h) f 2 (x) h where f2 (x) means [f(x)]2. If f(x) = x lnx then D * f (x) x = e has the value (A) e (B) 2e (C) 4e (D) none Q.6 If f(x) = x . x, then its derivative is : (A) 2x (B) 2x (C) 2x (D) 2x sgn x QUIZ-3 (CLASS-XII) Q.1 If y = and dy dx = ax + b then the value of a + b is equal to 5 (A) cot 8 Q.2 Value of sin 705° is 5 (B) cot 12 5 (C) tan 12 5 (D) tan 8 (A) 6 2 4 (B) 2 6 4 (C) 3 2 4 (D) 1 3 2 Q.3 Find all real functions of one real variable that satisfy the following functional equation, 1 f (x) + 2 f x = x Q.4 In the figure, each region T represents an equilateral triangle and each region S a semicircle. The complete figure is a semicircle of radius 6 with its centre O. The three smaller semicircles touch the large semicircle at points A, B and C. What is the radius of a semicircle S? Q.5 Solve = 2. QUIZ-4 (CLASS-XII) Q.1 If f (x) = x5 + 2x3 + 2x an
QUIZ-1 (CLASS-XII) Q.1 A circular arch having width 24m and height 9m is to be constructed. What is the radius of the circle of which the arch is an arc? (A) 10m (B) 12.5 m (C) 13.5m (D) 14m Q.2 The sum of the solutions on the interval (0, 2] to the equation: 0 = – (2 sin 2 x + 2 cos2 x) , is (cos x 0 ) cos x (A) 3 (B) 4 (C) 5 (D) 6 Q.3 Let XOY be a right triangle with XOY = 90°. Let M and N be the midpoints of legs OX and OY respectively. If XN = 19 and YM = 22, then XY equals (A) 26 (B) 13 (C) 32.5 (D) 41 Q.4 Given parallelogram ABCD, with AB = 10, AD = 12 and BD = 2 . The length of (AC) is (A) 10 (B) 2 (C) 12 (D) 2 Q.5 ABC is a right triangle with hypotenuse AB and AC = 15 cm. Altitude CH divides AB into segments AH and HB, with HB = 16cm. The area of ABC, is (A) 120 cm2 (B) 144cm2 (C) 150cm2 (D) 216cm2 Q.6 Consider the eight digit number N = 11115556. Which of the following statements are true? I. N is divisible by 11 II. N – 9 is a prime III N is a perfect square (A) I (B) II (C) III (D) I, II and III Q.7 The value of the series 1 + 2 – 3 – 4 + 5 + 6 – 7 – 8 + 9 + ... – 99 – 100, is (A) –100 (B) 0 (C) 1 (D) 100 QUIZ-2 (CLASS-XII) One or more than one is/are correct. Q.1 If x = t3 + t + 5 & y = sin t then (3t 2 + 1) sin t + 6 t cos t d2y dx2 = (3t 2 + 1) sin t + 6 t cos t (A) (3t 2 + 1)3 (B) (3t 2 + 1)2 (C) (3t 2 + 1) sin t + 6 t cos t 2 (D) cost 2 (3t 2 + 1) 1 d2y 3t + 1 Q.2 If y = 2x2 + 3x + 1 then dx2 at x = 2 is : (A) 38 27 (B) 38 27 (C) 27 38 (D) none Q.3 If y2 = P(x), is a polynomial of degree 3, then 2 d dx y . d2y 2 equals : dx (A) P (x) + P (x) (B) P (x) . P (x) (C) P (x) . P (x) (D) a constant Q.4 If f (x) = x 2 & g (x) = f ( f (x)) then for x > 20, g (x) = (A) 1 (B) 1 (C) 0 (D) none Q.5 People living at Mars, instead of the usual definition of derivative D f(x), define a new kind of derivative, D*f(x) by the formula D*f(x) = Limit h0 f 2 (x + h) f 2 (x) h where f2 (x) means [f(x)]2. If f(x) = x lnx then D * f (x) x = e has the value (A) e (B) 2e (C) 4e (D) none Q.6 If f(x) = x . x, then its derivative is : (A) 2x (B) 2x (C) 2x (D) 2x sgn x QUIZ-3 (CLASS-XII) Q.1 If y = and dy dx = ax + b then the value of a + b is equal to 5 (A) cot 8 Q.2 Value of sin 705° is 5 (B) cot 12 5 (C) tan 12 5 (D) tan 8 (A) 6 2 4 (B) 2 6 4 (C) 3 2 4 (D) 1 3 2 Q.3 Find all real functions of one real variable that satisfy the following functional equation, 1 f (x) + 2 f x = x Q.4 In the figure, each region T represents an equilateral triangle and each region S a semicircle. The complete figure is a semicircle of radius 6 with its centre O. The three smaller semicircles touch the large semicircle at points A, B and C. What is the radius of a semicircle S? Q.5 Solve = 2. QUIZ-4 (CLASS-XII) Q.1 If f (x) = x5 + 2x3 + 2x an