FLOW MEASUREMENT – SUMMARY OF IMPORTANT EQUATION
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 3 of 14
𝐴1 & 𝐴2 = 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑖𝑛𝑙𝑒𝑡 𝑎𝑛𝑑 𝑡ℎ𝑟𝑜𝑎𝑡 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦
𝑍1 & 𝑍2 = 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑙𝑒𝑡 𝑎𝑛𝑑 𝑡ℎ𝑟𝑜𝑎𝑡 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦
𝜌, 𝜌1 & 𝜌2 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, 𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 𝑎𝑡 𝑖𝑛𝑙𝑒𝑡 𝑎𝑛𝑑 𝑡ℎ𝑟𝑜𝑎𝑡 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦
Considering the venture meter being held horizontal and fluid at inlet & throat of
same density
𝑍1 = 𝑍2; 𝜌1 = 𝜌2; 𝑚 = 𝜌1𝐴1𝑣1 = 𝜌2𝐴2𝑣2
𝑣2
2
− 𝑣1
2
2𝑔
=
𝑝1 − 𝑝2
𝑤
By equation of continuity
𝐴1𝑣1 = 𝐴2𝑣2
𝑣1 = (
𝐴2
𝐴1
) 𝑣2
𝑣2 =
1
√1 − (
𝐴2
𝐴1
)
2
∗ √
2𝑔
𝑤
(𝑝1 − 𝑝2)
𝑣2 = 𝑀√
2𝑔
𝑤
(𝑝1 − 𝑝2); 𝑀 =
1
√1 − (
𝐴2
𝐴1
)
2
Considering few losses, 𝑣2 is multiplied with a factor 𝐶𝑣 called the coefficient of
velocity.
𝑣2(𝑎𝑐𝑡𝑢𝑎𝑙) = 𝐶𝑣𝑀√
2𝑔
𝑤
(𝑝1 − 𝑝2)
Discharge (volume flow rate)
𝑄 = 𝐴2𝑣2 = 𝐶𝑣𝐴2𝑀√
2𝑔
𝑤
(𝑝1 − 𝑝2)
Considering contraction factor 𝐶𝑐
𝑄𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐶𝑐𝐶𝑣𝐴2𝑀√
2𝑔
𝑤
(𝑝1 − 𝑝2)
𝑸𝒂𝒄𝒕𝒖𝒂𝒍 = 𝑪𝒅𝑨𝟐𝑴𝑬√
𝟐𝒈
𝒘
(𝒑𝟏 − 𝒑𝟐)
𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐶𝑑 = 𝐶𝑐𝐶𝑣; 𝐸 = 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
FLOW MEASUREMENT – SUMMARY OF IMPORTANT EQUATION
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 4 of 14
4.
Orifice
Vena-contracta is a point where the liquid jet issued from the orifice has the
smallest diameter. It is located at as distance 𝐷1 2
⁄ from the orifice plate
approximately.
Actual velocity at vena-contracta is
𝒗𝟐(𝒂𝒄𝒕𝒖𝒂𝒍) = 𝑪𝒗𝑴√
𝟐𝒈
𝒘
(𝒑𝟏 − 𝒑𝟐) =
𝑪𝒗
√𝟏 − (
𝑨𝟐
𝑨𝟏
)
𝟐
√
𝟐𝒈
𝒘
(𝒑𝟏 − 𝒑𝟐)
The jet of liquid coming out of the orifice plate contracts to a minimum area 𝐴0 at
the vena-contracta.
Area of the vena-contracta is 𝐴0 = 𝐶𝑐𝐴0
∴ 𝑣2(𝑎𝑐𝑡𝑢𝑎𝑙) =
𝐶𝑣
√1 − (
𝐶𝑐𝐴0
𝐴1
)
2
√
2𝑔
𝑤
(𝑝1 − 𝑝2)
𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑄𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐴2𝑣2 = 𝐶𝑐𝑣2(𝑎𝑐𝑡𝑢𝑎𝑙)
∴ 𝑸𝒂𝒄𝒕𝒖𝒂𝒍 = 𝑪𝒗𝑪𝒄
𝑨𝟎
√𝟏 − (
𝑪𝒄𝑨𝟎
𝑨𝟏
)
𝟐
√
𝟐𝒈
𝒘
(𝒑𝟏 − 𝒑𝟐)
Taking into account the effect of temperature (E)
𝑸𝒂𝒄𝒕𝒖𝒂𝒍 = 𝑪𝒅𝑨𝟎𝑴𝑬√
𝟐𝒈
𝒘
(𝒑𝟏 − 𝒑𝟐)
Let 𝐾 = 𝐶𝑑𝑀
∴ 𝑸𝒂𝒄𝒕𝒖𝒂𝒍 = 𝑲𝑬𝑨𝟎√
𝟐𝒈
𝒘
(𝒑𝟏 − 𝒑𝟐)
Mass Flow across an Orifice Plate
𝑸𝒎 =
𝑪𝒅
√𝟏 − 𝜷𝟒
𝝐
𝝅
𝟒
𝒅𝟐
√𝟐∆𝒑 ∗ 𝝆𝟏
𝑄𝑚 = 𝑜𝑟𝑖𝑓𝑖𝑐𝑒 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒, 𝐶𝑑 = 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝛽 = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑟𝑎𝑡𝑖𝑜,
𝜖 = 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟, 𝑑 = 𝑖𝑛𝑛𝑒𝑟 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟,
∆𝑝 = 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝜌 = 𝑓𝑙𝑢𝑖𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦