Publicité

Contenu connexe

Similaire à Heat Pumps(20)

Publicité

Heat Pumps

  1. Hightemperatureheatpumps integrationin industrial separationanddryingprocesses Daniel Flórez-Orrego, Eduardo Antonio Pina, Meire Ribeiro Domingos, Shivom Sharma, François Maréchal daniel.florezorrego@epfl.ch 35th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems ECOS 2022 3rd – 7th July, Copenhagen, Denmark École Polytechnique Fédérale de Lausanne
  2.  Ammonia 2.0% energy consumption 1.3% of CO2 emissions High temperature heat pumps integration Florez-Orrego, Daniel, et al. 2 Introduction  Pulp 5.6% energy consumption 2.3% of CO2 emissions  Large heating demand  Waste heat is an important byproduct.  More stringent carbon regulations, need for decarbonization.  Deployment of HTHPs may reduce CO2 emissions by 30 - 40%.  NetZero 2050 roadmap IEA: 15-30% heating demand of light industries.
  3. Florez-Orrego, Daniel, et al. High temperature heat pumps integration 1. Typical ammonia plant without heat pump integration 2. Alternative ammonia plant with heat pump integration 3. Typical pulp plant with multiple effect evaporation 4. Alternative pulp plant with mechanical vapor recompression Processscenarios 3
  4. Ammonia Plant High temperature heat pumps integration Florez-Orrego, Daniel, et al. 4 1000 t/day Processesdescription Feedstock consumption (NG) 21.69GJ/tproduct Chemical process power demand 1.56 GJ/tproduct Refrigeration power demand 0.35 GJ/tproduct Min. cooling req. 7.44 GJ/tproduct Min. heating req. 4.33 GJ/tproduct CO2 avoided 1.42 tCO2/tproduct
  5. Processesdescription High temperature heat pumps integration Florez-Orrego, Daniel, et al. 5 Pulp Plant 880 tAD/day Multiple effect evaporator Feedstock consumption (Wood) 41.15 GJ/tproduct Chemical process power demand 2.84 GJ/tproduct Refrigeration power demand 0.00 GJ/tproduct Min. cooling req. 2.24 GJ/tproduct Min. heating req. 12.23 GJ/tproduct Fossil CO2 avoided 0.00 tCO2/tproduct
  6. High temperature heat pumps integration Florez-Orrego, Daniel, et al. 6 Mechanical vapor recompression Processesdescription Pulp Plant 877.8,5 tAD/day Feedstock consumption (Wood) 41.15 GJ/tproduct Chemical process power demand 2.84 GJ/tproduct Refrigeration power demand 0.00 GJ/tproduct Min. cooling req. 15.16 GJ/tproduct Min. heating req. 25.37 GJ/tproduct Fossil CO2 avoided 0.00 tCO2/tproduct
  7. Process Modeling and Simulation: Aspen Plus v.11 Methods High temperature heat pumps integration Florez-Orrego, Daniel, et al. 7 Energy integration framework: OSMOSE Lua Minimum Energy Requirement Equation Oriented Modeling and Simulation Sequential Modular Simulation
  8. High temperature heat pumps integration Florez-Orrego, Daniel, et al. 8 Methods Energy integration Exergy method
  9. Optimization problem: maximum revenue (incl. HP or MVR investment): Methods High temperature heat pumps integration Florez-Orrego, Daniel, et al. 9               , , _ 8760 HPor MVR r Power Chips Natural Wood Power Chips Wood Natural Oil Oil Biomass Grid Gas Biomass Biomass Grid Gas Biomass f y R W Pulp Ammo Ammonia Pulp Product Product Product Z Ann factor f B c f B c f B c f B c f W c f B c f B c                  Min   2 2 CO nia CO Product Marketed Marketed f m c                     Subject to: , , 1 1 1 0 1.. N N r r i r r i f q Q R R r N                exp 1 0 N net imp chemical units f W W W W           max, min, y y 1.. f f f N            1 1 0, 0, R 0 r N R R     exp 0, 0 imp W W   w = {utility units, resources}, yw existence (binary) and fw load factor variables cNG=0.032 EUR/kWh; cEE=0.07 EUR/kWh; cOil= 0.018 EUR/kWh; cChips= 0.016 EUR/kWh; cWood=0.013 EUR/kWh; cNH3=0.098 EUR/kWh; cPulp=0.144; EUR/kWh; cCO2market=0.0084 EUR/kg;
  10. High temperature heat pumps integration Florez-Orrego, Daniel, et al. 10 Methods
  11. Performance indicators:  Exergy efficiency  CO2 emissions (direct + indirect):  Revenues: Methods Florez-Orrego, Daniel, et al. 11 , , or ex ammonia pulp consumed ideal Power consumed actual natural gas oil wood chips Grid B B B B B B B B W        2 2 2 2 , , 2, , , Product Product, , 1 3600 1000 1000 CH Power CO Power CO CO i i Grid Grid i Spec i CO i CH Wood Chips i i Natural gas Oil f W r t r b B f I t m b CO                                          2 2 , Exp/Imp , , , Ammonia, Natural gas, Oil, Pulp Chips,Wood, Product , Exp/Imp Revenue Power Grid i Product i Product i Product i Product HPor MVR Power CO CO Grid Marketed Marketed f B c f B c EUR t Z Ann f m c f W c                             _ 8760 factor
  12. Typical ammonia plant without heat pump integration Resultsanddiscussion High temperature heat pumps integration Florez-Orrego, Daniel, et al. 12 Overall exergy consumption 28.73 GJ/tproduct ηex=64,75% Grid power import 0.65 GJ/tproduct No grid power exported Fuel import (NG) 6.39 GJ/tproduct Heat pump power demand 0.00 GJ/tproduct Spec. CAPEX Heat Pump 0 EUR/tproduct Total revenues 256.09 EUR/tproduct Net fossil CO2 emitted 0.52 tCO2/tproduct
  13. Alternative ammonia plant with heat pump integration Resultsanddiscussion High temperature heat pumps integration Florez-Orrego, Daniel, et al. 13 Overall exergy cons. 26.51 GJ/tproduct ↓ 8% ηex=70.15% ↑ 8% Grid power import 1.75 GJ/tproduct No grid power exported Fuel import (NG) 3.07 GJ/tproduct Heat pump power demand 0.39 GJ/tproduct Spec. CAPEX Heat Pump 2.55 EUR/tproduct Total revenues 261.57 EUR/tproduct ↑ 2% Net CO2 emitted 0.33 tCO2/tproduct ↓ 36.5%
  14. NAME EVENT / NAME PRESENTATION Speaker 14  Overall exergy consumption 28.73 GJ/tproduct  ηex 64.75%  Grid power import 0.65 GJ/tproduct  No grid power exported  Fuel import (NG) 6.39 GJ/tproduct  Heat pump power demand 0.00 GJ/tproduct  Rankine power generation (BP) 1.47 GJ/tproduct  Cooling tower power demand 0.17 GJ/tproduct  Operating incomes 518.26 EUR/tproduct  Operating costs 262.17 EUR/tproduct  Spec. CAPEX Heat Pump 0 EUR/tproduct  Total revenues 256.09 EUR/tproduct  Fossil CO2 dir. emitted 0.37 tCO2/tproduct  Fossil CO2 indir. emitted 0.15 tCO2/tproduct  Net fossil CO2 emitted 0.52 tCO2/tproduct  Overall exergy consumption 26.51 GJ/tproduct  ηex 70.15%  Grid power import 1.75 GJ/tproduct  No grid power exported  Fuel import (NG) 3.07 GJ/tproduct  Heat pump power demand 0.39 GJ/tproduct  Rankine power generation (BP) 0.70 GJ/tproduct  Cooling tower power demand 0.13 GJ/tproduct  Operating incomes 518.26 EUR/tproduct  Operating costs 254.15 EUR/tproduct  Spec. CAPEX Heat Pump 2.55 EUR/tproduct  Total revenues 261.57 EUR/tproduct  Fossil CO2 dir. emitted 0.18 tCO2/tproduct  Fossil CO2 indir. emitted 0.15 tCO2/tproduct  Net fossil CO2 emitted 0.33 tCO2/tproduct Typical ammonia plant without heat pump integration Typical ammonia plant with heat pump integration
  15. Typical pulp plant with multiple effect evaporation Resultsanddiscussion High temperature heat pumps integration Florez-Orrego, Daniel, et al. 15  Overall exergy consumption 42.13 GJ/tproduct  ηex=45.91%  No grid power import  Grid power export 1.51 GJ/tproduct  Fuel import (Chips) 0.00 GJ/tproduct  Fuel import (Oil) 0.98 GJ/tproduct  Heat pump power demand 0.00 GJ/tproduct  Spec. CAPEX Heat Pump 0 EUR/tproduct  Total revenues 583.19 EUR/tproduct  Net fossil CO2 emitted 0.25 tCO2/tproduct
  16. Alternative pulp plant with mechanical vapor recompression Resultsanddiscussion High temperature heat pumps integration Florez-Orrego, Daniel, et al. 16  Overall exergy cons. 43.94 GJ/tproduct ↓ 4%  ηex=43.94% ↓ 4%  No grid power import  Grid power export 1.48 GJ/tproduct  Fuel import (Chips) 1.81 GJ/tproduct  Fuel import (Oil) 0.98 GJ/tproduct  Heat pump power demand 0.99 GJ/tproduct  Spec. CAPEX Heat Pump 5.95 EUR/tproduct  Total revenues 568.65 EUR/tproduct ↓ 3%  Net fossil CO2 emitted 0.26 tCO2/tproduct ↑ 1% Exergy of steam vs. Electricity Qdrying x Ө x Neffects < WMVR
  17. NAME EVENT / NAME PRESENTATION Speaker 17  Overall exergy consumption 43.94 GJ/tproduct  ηex 43.94%  No grid power import  Grid power export 1.48 GJ/tproduct  Fuel import (Chips) 1.81 GJ/tproduct  Fuel import (Oil) 0.98 GJ/tproduct  Heat pump power demand 0.99 GJ/tproduct  Rankine power generation (BP) 5.48 GJ/tproduct  Cooling tower power demand 0.11 GJ/tproduct  Operating incomes 736.14 EUR/tproduct  Operating costs 161.53 EUR/tproduct  Spec. CAPEX Heat Pump 5.95 EUR/tproduct  Total revenues 568.65 EUR/tproduct  Fossil CO2 dir. emitted 0.07 tCO2/tproduct  Fossil CO2 indir. emitted 0.19 tCO2/tproduct  Net fossil CO2 emitted 0.26 tCO2/tproduct  Overall exergy consumption 42.13 GJ/tproduct  ηex 45.91%  No grid power import  Grid power export 1.51 GJ/tproduct  Fuel import (Chips) 0.00 GJ/tproduct  Fuel import (Oil) 0.98 GJ/tproduct  Heat pump power demand 0.00 GJ/tproduct  Rankine power generation (BP) 4.42 GJ/tproduct  Cooling power demand 0.07 GJ/tproduct  Operating incomes 736.67 EUR/tproduct  Operating costs 153.49 EUR/tproduct  Spec. CAPEX Heat Pump 0 EUR/tproduct  Total revenues 583.19 EUR/tproduct  Fossil CO2 dir. emitted 0.07 tCO2/tproduct  Fossil CO2 indir. emitted 0.18 tCO2/tproduct  Net fossil CO2 emitted 0.25 tCO2/tproduct Typical pulp plant with multiple effect evaporation Alternative pulp plant with mechanical vapor recompression
  18. Sensitivitytotheenergyinputcosts High temperature heat pumps integration Florez-Orrego, Daniel, et al. 18 A B C D
  19. Sensitivitytotheenergyinputcosts High temperature heat pumps integration Florez-Orrego, Daniel, et al. 19 For tax 0 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.01 A B B B B B B B B B B 0.02 A C B B B B B B B B B 0.03 A D B B B B B B B B B 0.04 A D C B B B B B B B B 0.05 A A D C B B B B B B B 0.06 A A D C B B B B B B B 0.07 A A D D C B B B B B B 0.08 A A D D C B B B B B B 0.09 A A A D D C B B B B B 0.1 A A A D D C C B B B B 0.15 A A A A D D D D C C B cGN cEE For tax 120 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.01 A D C B B B B B B B B 0.02 A A D B B B B B B B B 0.03 A A D C B B B B B B B 0.04 A A D D B B B B B B B 0.05 A A D D C B B B B B B 0.06 A A A D D C B B B B B 0.07 A A A D D C B B B B B 0.08 A A A D D D B B B B B 0.09 A A A D D D C C B B B 0.1 A A A D D D D C B B B 0.15 A A A A A D D D D C C cGN cEE Category of integrated composite curve Introduction of a high carbon tax triggers the transition towards heat pump integration. Heat pump integration: • when tax is 0 EUR/tCO2  only for ratios cEE/cNG < 2.33 • when tax is 120 EUR/tCO2  as high as cEE/cNG < 5
  20. Sensitivitytotheenergyinputcosts High temperature heat pumps integration Florez-Orrego, Daniel, et al. 20 For tax 0 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.01 1 0 0 0 0 0 0 0 0 0 0 0.02 1 0 0 0 0 0 0 0 0 0 0 0.03 1 1 0 0 0 0 0 0 0 0 0 0.04 1 1 0 0 0 0 0 0 0 0 0 0.05 1 1 1 0 0 0 0 0 0 0 0 0.06 1 1 1 0 0 0 0 0 0 0 0 0.07 1 1 1 1 0 0 0 0 0 0 0 0.08 1 1 1 1 0 0 0 0 0 0 0 0.09 1 1 1 1 1 0 0 0 0 0 0 0.1 1 1 1 1 1 0 0 0 0 0 0 0.15 1 1 1 1 1 1 1 1 0 0 0 cGN cEE For tax 120 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.01 1 1 0 0 0 0 0 0 0 0 0 0.02 1 1 1 0 0 0 0 0 0 0 0 0.03 1 1 1 0 0 0 0 0 0 0 0 0.04 1 1 1 1 0 0 0 0 0 0 0 0.05 1 1 1 1 0 0 0 0 0 0 0 0.06 1 1 1 1 1 0 0 0 0 0 0 0.07 1 1 1 1 1 0 0 0 0 0 0 0.08 1 1 1 1 1 1 0 0 0 0 0 0.09 1 1 1 1 1 1 0 0 0 0 0 0.1 1 1 1 1 1 1 1 0 0 0 0 0.15 1 1 1 1 1 1 1 1 1 0 0 cEE cGN Heat pump integration
  21. Sensitivitytotheenergyinputcosts High temperature heat pumps integration Florez-Orrego, Daniel, et al. 21 Efficiency as a function of the natural gas and electricity costs (and carbon taxes) For tax 0 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.01 70% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 0.02 70% 65% 61% 61% 61% 61% 61% 61% 61% 61% 61% 0.03 70% 69% 62% 61% 61% 61% 61% 61% 61% 61% 61% 0.04 70% 69% 65% 62% 61% 61% 61% 61% 61% 61% 61% 0.05 70% 70% 69% 65% 61% 61% 61% 61% 61% 61% 61% 0.06 70% 70% 69% 65% 62% 61% 61% 61% 61% 61% 61% 0.07 70% 70% 69% 69% 65% 62% 61% 61% 61% 61% 61% 0.08 70% 70% 69% 69% 65% 62% 62% 61% 61% 61% 61% 0.09 70% 70% 70% 69% 69% 65% 62% 61% 61% 61% 61% 0.1 70% 70% 70% 69% 69% 65% 65% 62% 61% 61% 61% 0.15 70% 70% 70% 70% 69% 69% 69% 69% 65% 65% 62% cEE cGN For tax 120 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.01 70% 69% 65% 61% 61% 61% 61% 61% 61% 61% 61% 0.02 70% 70% 69% 62% 61% 61% 61% 61% 61% 61% 61% 0.03 70% 70% 69% 65% 62% 61% 61% 61% 61% 61% 61% 0.04 70% 70% 69% 69% 62% 62% 61% 61% 61% 61% 61% 0.05 70% 70% 69% 69% 65% 62% 61% 61% 61% 61% 61% 0.06 70% 70% 70% 69% 69% 65% 62% 61% 61% 61% 61% 0.07 70% 70% 70% 69% 69% 65% 62% 62% 61% 61% 61% 0.08 70% 70% 70% 69% 69% 69% 65% 62% 62% 61% 61% 0.09 70% 70% 70% 69% 69% 69% 65% 65% 62% 61% 61% 0.1 70% 70% 70% 70% 69% 69% 69% 65% 62% 62% 61% 0.15 70% 70% 70% 70% 70% 69% 69% 69% 69% 65% 65% cEE cGN
  22. Sensitivitytotheenergyinputcosts High temperature heat pumps integration Florez-Orrego, Daniel, et al. 22 Emissions as a function of the natural gas and electricity costs For tax 0 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.01 0,329 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0.02 0,329 0,523 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0.03 0,329 0,336 0,637 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0.04 0,329 0,336 0,523 0,637 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0.05 0,329 0,329 0,336 0,523 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0.06 0,329 0,329 0,336 0,523 0,637 0,654 0,654 0,654 0,654 0,654 0,654 0.07 0,329 0,329 0,336 0,336 0,523 0,637 0,654 0,654 0,654 0,654 0,654 0.08 0,329 0,329 0,336 0,336 0,523 0,637 0,637 0,654 0,654 0,654 0,654 0.09 0,329 0,329 0,329 0,336 0,336 0,523 0,637 0,654 0,654 0,654 0,654 0.1 0,329 0,329 0,329 0,336 0,336 0,523 0,523 0,637 0,654 0,654 0,654 0.15 0,329 0,329 0,329 0,329 0,336 0,336 0,336 0,336 0,523 0,523 0,637 cEE cGN For tax 120 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.01 0,329455 0,33628 0,522696 0,653826 0,653826 0,653826 0,653826 0,653826 0,653826 0,653826 0,653826 0.02 0,329455 0,329455 0,33628 0,637015 0,653826 0,653826 0,653826 0,653826 0,653826 0,653826 0,653826 0.03 0,329455 0,329455 0,33628 0,522696 0,637015 0,653826 0,653826 0,653826 0,653826 0,653826 0,653826 0.04 0,329455 0,329455 0,33628 0,33628 0,637015 0,637015 0,653826 0,653826 0,653826 0,653826 0,653826 0.05 0,329455 0,329455 0,33628 0,33628 0,522696 0,637015 0,653826 0,653826 0,653826 0,653826 0,653826 0.06 0,329455 0,329455 0,329455 0,33628 0,33628 0,522696 0,637015 0,653826 0,653826 0,653826 0,653826 0.07 0,329455 0,329455 0,329455 0,33628 0,33628 0,522696 0,637015 0,637015 0,653826 0,653826 0,653826 0.08 0,329455 0,329455 0,329455 0,33628 0,33628 0,33628 0,522696 0,637015 0,637015 0,653826 0,653826 0.09 0,329455 0,329455 0,329455 0,33628 0,33628 0,33628 0,522696 0,522696 0,637015 0,653826 0,653826 0.1 0,329455 0,329455 0,329455 0,329455 0,33628 0,33628 0,33628 0,522696 0,637015 0,637015 0,653826 0.15 0,329455 0,329455 0,329455 0,329455 0,329455 0,33628 0,33628 0,33628 0,33628 0,522696 0,522696 cEE cGN
  23. Sensitivitytotheenergyinputcosts High temperature heat pumps integration Florez-Orrego, Daniel, et al. 23 Revenues as a function of the natural gas and electricity costs Natural gas costs > 0.07 EUR/kWhNG make the system economically infeasible, since natural gas is also used as feedstock in the ammonia plant (Pulp mills plant have a broader operative range) Revenues fall by 18% 0 EUR/tCO2 70 EUR/tCO2 120 EUR/tCO2
  24. Florez-Orrego, Daniel, et al. Conclusions High temperature heat pumps integration  Natural gas price > 0.07 EUR/kWh  NH3 production economically unfeasible (regardless of price of electricity and use of steam network or heat pump  cost for the ammonia produced).  Higher cost of natural gas  electricity to supply heating in a more efficient way (HTHPs)  Accentuated when the carbon tax is increased.  Electricity imported is used in the plant to balance the power generation of the steam network. When cEE/cNG ratio is large, the system uses large amounts natural gas, hampering the cogeneration efficiency.  In the pulp plant, the excess waste heat is such that there is no need for EE import, and rather surplus EE export is evidenced.  Steam consumption in a Multiple Effect Evaporator results more efficient than driving a Mechanical Vapor Recompression  Profits self-power generation potential.  How much exergy of steam and how much exergy of power to achieve the same task: Qdrying x Ө x Neffects < WMVR.  Although installing a heat pump is not a warranty of higher efficiencies or revenues, it may bust efficiency in certain applications. 24
  25. The authors would like to thank the Swiss Federal Office of Energy (SFOE) for funding this research through the Grant Agreement number SI/502336-01. The first author would like to thanks the Colombian Administrative Department of Science, Technology and Innovation (1128416066-646/2014). The second author acknowledges the funding from the Ministry of Science, Innovation and Universities of Spain and the European Union “Next Generation EU” through 2021-2023 Margarita Salas grant. The third author acknowledges the Brazilian National Research Council for Scientific and Technological Development CNPq (142148/2019-9), and the Swiss Government Excellence Scholarship (2021.0235). Acknowledgments High temperature heat pumps integration Florez-Orrego, Daniel, et al. 25
  26. Thanksforyourattention Takfordinopmærksomhed High temperature heat pumps integration Florez-Orrego, Daniel, et al. 26
Publicité