SlideShare a Scribd company logo
1 of 13
Download to read offline
 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Methods	
  in	
  Water	
  Science	
  and	
  Technology	
  
	
  
	
  
Scientific	
  research	
  
	
  
Cross	
  validation	
  of	
  two	
  different	
  COD	
  test	
  kits	
  	
  
(Kit	
  with	
  Hg	
  and	
  kit	
  without	
  Hg)	
  
	
  
	
  
	
  
	
  
	
  
	
  
Written by: Eric Clayderman CAZOLI
December 2014
University	
  of	
  Stavanger	
  
Department	
  of	
  Mathematics	
  and	
  Natural	
  Sciences	
  
4036	
  Stavanger	
  
Abstract:	
  	
  COD	
  measurements	
  on	
  COD	
  standard	
  solutions	
  and	
  wastewater	
  samples	
  
were	
  done	
  by	
  using	
  two	
  different	
  COD	
  test	
  kits	
  (kit	
  with	
  Hg	
  and	
  kit	
  without	
  Hg).	
  Data	
  
obtained	
  from	
  both	
  kits	
  were	
  analyzed	
  by	
  looking	
  essentially	
  at	
  statistical	
  parameter	
  
mean	
  X	
  and	
  standard	
  deviation	
  σ.	
  The	
  objective	
  of	
  this	
  work	
  was	
  to	
  compare	
  the	
  
analyzed	
  data	
  in	
  order	
  to	
  check	
  the	
  cross	
  validation	
  of	
  the	
  two	
  kits.	
  Results	
  of	
  this	
  
work	
   showed	
   that	
   the	
   two	
   kits	
   are	
   the	
   same	
   when	
   measuring	
   COD	
   standard	
  
solutions,	
  while	
  they	
  do	
  not	
  really	
  overlap	
  when	
  measuring	
  wastewater	
  samples.	
  	
  
Key	
  words:	
  COD,	
  wastewater,	
  test	
  kits,	
  mean,	
  cross	
  validation	
  
	
  
1.	
  Introduction:	
  
	
  
Chemical	
   Oxygen	
   Demand	
   (COD)	
   is	
   a	
   term	
   used	
   in	
   both	
   water	
   and	
  
wastewater	
  treatment	
  to	
  measure	
  the	
  amount	
  of	
  a	
  specified	
  oxidant	
  reacting	
  with	
  a	
  
given	
  sample	
  under	
  controlled	
  conditions	
  (Al-­‐Momani,	
  2003).	
  The	
  diochromate	
  ion	
  
(Cr2O72-­‐)	
   is	
   the	
   specified	
   oxidant	
   in	
   colorimetric	
   method	
   and	
   its	
   amount	
   is	
  
expressed	
  in	
  terms	
  of	
  its	
  oxygen	
  equivalence.	
  
Under	
  the	
  presence	
  of	
  catalysts	
  (sulphuric	
  acid	
  H2SO4,	
  mercuric	
  sulphate	
  AgSO4	
  and	
  
sulfamic	
   acid	
   H3NSO3),	
   the	
   dichromate	
   (Cr2O72-­‐)	
   oxidizes	
   organic	
   material	
   in	
   a	
  
sample	
  after	
  incubation	
  of	
  2h	
  at	
  150°C.	
  This	
  oxidation	
  reduces	
  Cr2O72-­‐	
  (hexavalent)	
  
into	
  Cr3+	
  (trivalent).	
  Each	
  of	
  these	
  chromium	
  species	
  has	
  a	
  direct	
  relationship	
  with	
  
oxygen	
  consumed	
  (Association,	
  Association,	
  Federation,	
  &	
  Federation,	
  1915).	
  	
  
Colorimetric	
  method	
  for	
  COD	
  analysis	
  is	
  a	
  time	
  consuming	
  since	
  you	
  have	
  to	
  
prepare	
  both	
  digestion	
  and	
  catalyst	
  solutions.	
  Nowadays,	
  COD	
  test	
  kits	
  are	
  available	
  
for	
  an	
  easy	
  and	
  quick	
  COD	
  analysis.	
  A	
  COD	
  test	
  kit	
  is	
  like	
  a	
  small	
  glass	
  tube	
  (vial)	
  on	
  
which	
   there	
   is	
   a	
   unique	
   barcode	
   label	
   that	
   is	
   automatically	
   read	
   by	
   a	
  
spectrophotometer	
   to	
   identify	
   the	
   appropriate	
   method	
   and	
   take	
   the	
   COD	
  
measurement.	
  COD	
  test	
  kits	
  also	
  contain	
  both	
  digestion	
  and	
  catalyst	
  solutions	
  (like	
  in	
  
the	
  colorimetric	
  method)	
  that	
  react	
  with	
  samples	
  to	
  be	
  measured.	
  A	
  COD	
  test	
  kit	
  
may	
  present	
  a	
  risk	
  for	
  the	
  environment	
  when	
  it	
  contains	
  harmful	
  chemicals.	
  A	
  kit	
  
containing	
  Hg	
  is	
  harmful	
  for	
  the	
  environment	
  compared	
  to	
  the	
  one	
  that	
  has	
  Hg	
  free.	
  
Regarding	
  the	
  environmental	
  aspect	
  and	
  the	
  price	
  of	
  kits,	
  it	
  would	
  be	
  recommended	
  
to	
  use	
  the	
  one	
  with	
  Hg	
  free	
  and	
  the	
  one	
  that	
  is	
  less	
  costly.	
  	
  For	
  this	
  reason,	
  I	
  did	
  
some	
  COD	
  analysis	
  on	
  COD	
  standard	
  solutions	
  and	
  wastewater	
  samples	
  by	
  using	
  two	
  
types	
  of	
  COD	
  test	
  kits	
  (kit	
  with	
  Hg	
  and	
  kit	
  without	
  Hg).	
  For	
  this	
  COD	
  analysis,	
  three	
  
known	
   COD	
   concentrations	
   of	
   standard	
   solution	
   were	
   prepared	
   from	
   Potassium	
  
hydrogen	
  phthalate	
  (C8H5KO4).	
  	
  
The	
  objective	
  of	
  this	
  work	
  was	
  to	
  check	
  the	
  cross	
  validation	
  of	
  the	
  two	
  kits	
  by	
  
analyzing	
  the	
  statistical	
  parameter	
  mean	
  and	
  standard	
  deviation	
  of	
  obtained	
  data.	
  
Data	
  obtained	
  from	
  this	
  work	
  and	
  the	
  results	
  of	
  statistical	
  analysis	
  are	
  presented	
  and	
  
explained	
  in	
  the	
  result	
  section	
  of	
  this	
  paper.	
  	
  
	
  
2.Theory	
  
A	
  COD	
  test	
  kit	
  contains	
  all	
  necessary	
  chemicals	
  that	
  digest	
  organic	
  matters	
  in	
  
a	
   given	
   sample	
   and	
   catalyse	
   reactions	
   that	
   happen	
   inside.	
   The	
   following	
  
stoichiometry	
  shows	
  these	
  reactions	
  and	
  the	
  relationship	
  as	
  well	
  as	
  the	
  theoretical	
  
ratios	
  between	
  chromium	
  species	
  and	
  O2.	
  	
  
Oxidation:	
  	
  	
  	
  	
  	
  	
  	
  	
  C6H12O6	
  +	
  6	
  H2O	
  	
  	
  	
  	
  	
  	
  	
  	
  ===	
  	
  >	
  	
  	
  	
  	
  6	
  CO2	
  	
  +	
  24	
  e-­‐	
  	
  
+	
  24	
  H+	
  
Reduction:	
  	
  	
  	
  	
  	
  	
  24	
  e-­‐	
  	
  
+	
  24H+	
  
+	
  32	
  H+
	
  +	
  4	
  Cr2O72-­‐
	
  	
  ===	
  	
  >	
  	
  	
  	
  	
  8	
  Cr3+	
  
	
  +	
  28	
  H2O	
  
	
  
	
  
Redox	
  reaction:	
  C6H12O6	
  	
  +	
  +	
  32	
  H+
	
  +	
  4	
  Cr2O72-­‐
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ===	
  	
  >	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  8	
  Cr3+	
  
	
  +	
  6	
  CO2	
  	
  +	
  	
  22	
  
H2O	
  
	
  
	
  
	
  
In	
  reality,	
  O2	
  is	
  the	
  electron	
  acceptor:	
  	
  C6H12O6	
  +	
  6	
  H2O	
  	
  ===	
  	
  >	
  	
  	
  	
  6	
  CO2	
  	
  +	
  24	
  e-­‐	
  	
  
+	
  24	
  H+
	
  	
  	
  	
  	
  
	
  
	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  24	
  e-­‐	
  	
  
+	
  24	
  H+	
  
+	
  6	
  O2	
  	
  	
  ===	
  	
  >	
  12	
  H2O	
  
From	
  the	
  reactions	
  above,	
  we	
  can	
  see	
  that	
  1	
  mole	
  of	
  	
  O2	
  	
  takes	
  up	
  4	
  e-­‐	
  	
  
	
  and	
  1	
  mole	
  of	
  
Cr2O72-­‐	
  
	
  takes	
  up	
  6	
  e-­‐	
  
.	
  
=	
  	
  >	
  	
  4	
  e-­‐	
  	
  
	
  /6	
  e-­‐	
  
	
  *	
  mole	
  Cr2O72-­‐
/	
  mole	
  O2	
  =	
  4	
  mole	
  Cr2O72-­‐
/	
  6	
  mole	
  O2	
  =	
  	
  >	
  Δ	
  Cr2O72-­‐	
  
	
  =	
  
3/2*ΔO2	
  =	
  COD	
  
=	
  	
  >	
  	
  8	
  Cr3+	
  
/4	
  Cr2O72-­‐
	
  *	
  4	
  Cr2O72-­‐
/6	
  mole	
  O2	
  	
  =	
  	
  >	
  	
  4	
  mole	
  Cr3+
/3	
  mole	
  O2	
  =	
  	
  >	
  Δ	
  Cr3+
=	
  
¾*	
  ΔO2	
  =	
  COD	
  
Practically,	
   we	
   measure	
   Cr3+
	
   for	
   the	
   high	
   range	
   COD	
   (100	
   and	
   900	
   mg/L).	
   The	
  
relationship	
   between	
   theoretical	
   COD	
   and	
   ΔCr3+
	
   is	
   obtained	
   by	
   a	
   standard	
   curve	
  
calibration.	
  	
  
	
  
Reagents:	
   According	
   to	
   (Association	
   et	
   al.,	
   (1915),	
   different	
   reagents	
   are	
   needed	
  
during	
  the	
  set	
  up	
  of	
  analysis	
  in	
  order	
  to	
  have	
  a	
  complete	
  oxidation	
  reaction	
  and	
  also	
  
to	
   remove	
   any	
   possible	
   interferences.	
  	
   Specifically,	
   these	
   reagents	
   are	
   mercuric	
  
sulphate,	
   sulfuric	
   acid	
   and	
   sulfamic	
   acid.	
  	
   Mercuric	
   sulphate	
   is	
   added	
   to	
   remove	
  
complex	
  chloride	
  ions	
  present	
  in	
  the	
  sample.	
  	
  Without	
  the	
  mercuric	
  sulphate,	
  the	
  
chloride	
   ions	
   would	
   form	
   chlorine	
   compounds	
   in	
   strong	
   acid	
   media	
   used	
   in	
   the	
  
procedure.	
  	
   These	
   chlorine	
   compounds	
   would	
   oxidize	
   the	
   organic	
   matter	
   in	
   the	
  
sample,	
  resulting	
  in	
  a	
  COD	
  value	
  lower	
  than	
  the	
  actual	
  value.	
  Sulfamic	
  acid	
  is	
  added	
  
to	
  remove	
  interferences	
  caused	
  by	
  nitrite	
  ions.	
  	
  Without	
  sulfamic	
  acid,	
  the	
  COD	
  of	
  
the	
   sample	
   would	
   measure	
   higher	
   than	
   the	
   actual	
   value.	
  Potassium	
   dichromate	
   is	
  
used	
  as	
  the	
  oxygen	
  source	
  with	
  concentrated	
  sulfuric	
  acid	
  added	
  to	
  yield	
  a	
  strong	
  
acid	
  medium.	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
	
  
	
  
3.	
  MATERIALS	
  AND	
  METHODS	
  
3.1.	
  Materials	
  
Different	
  materials	
  (devices,	
  chemical	
  and	
  instruments)	
  were	
  used	
  during	
  the	
  
work	
  in	
  a	
  laboratory.	
  These	
  materials	
  are	
  listed	
  in	
  the	
  following	
  table	
  (tab.	
  1).	
  
Table	
  1:	
  list	
  of	
  materials	
  that	
  were	
  used	
  during	
  the	
  experiments,	
  and	
  their	
  functions	
  
	
  
Material	
   Function	
  
Potassium	
  hydrogen	
  phthalate	
  (C8H5KO4)	
   Chemical	
   used	
   to	
   prepare	
   COD	
   standard	
  
solutions	
  
Distilled	
  water	
   Used	
  for	
  dilution	
  	
  
Analytical	
  balance	
  	
   Used	
   to	
   weight	
   the	
   amount	
   of	
   C8H5KO4	
   to	
   be	
  
used	
  
2	
  types	
  of	
  COD	
  test	
  kits:	
  kit	
  with	
  Hg	
  and	
  Kit	
  without	
  Hg	
  
	
  
Contain	
  chemicals	
  needed	
  to	
  react	
  with	
  samples	
  
Pipettes	
   Used	
  to	
  take	
  a	
  precise	
  volume	
  of	
  sample	
  	
  
Flask	
  Erlenmeyer	
   Used	
  for	
  mixing	
  chemicals	
  and	
  solutions	
  
Gloves	
   Hands	
  protection	
  
Glass	
   Yes	
  protection	
  
Incubator	
   Used	
  to	
  cook	
  COD	
  kits	
  containing	
  samples	
  
Spectrophotometer	
   Measures	
   COD	
   concentration	
   of	
   sample	
   as	
   a	
  
function	
  of	
  the	
  color	
  intensity.	
  
Stop	
  watch	
   Record	
  time	
  	
  
	
  
3.2.	
  Methods	
  
First	
  of	
  all,	
  I	
  prepared	
  three	
  known	
  concentrations	
  of	
  COD	
  standard	
  solution	
  
from	
  Potassium	
  hydrogen	
  phthalate	
  (KHP=	
  C8H5KO4).	
  	
  This	
  preparation	
  was	
  done	
  
according	
  the	
  American	
  standard	
  for	
  COD	
  analysis	
  (Association	
  et	
  al.,	
  1915).	
  KHP	
  has	
  
a	
   COD	
   of	
   1.176	
   gO2/g	
   KHP.	
   This	
   value	
   is	
   obtained	
   by	
   the	
   following	
   reaction	
   and	
  
calculations:	
  
 
C8H5KO4	
  	
  	
  	
  +	
  aO2	
  +	
  H+	
  	
  =	
  	
  >	
  	
  8	
  CO2	
  +	
  K+	
  	
  	
  +	
  3	
  H20	
  	
  	
  	
  	
  ===	
  	
  >	
  	
  	
  	
  a=	
  15/2	
  *	
  mole	
  
O2/mole	
  KHP	
  
=	
  	
  >	
  	
  	
  	
  7.5	
  mole	
  O2/mole	
  KHP	
  
=	
  	
  >	
  	
  	
  	
  γO2/KHP	
  =	
  7.5	
  mole	
  O2/mole	
  KHP	
  *	
  (32gO2/moleO2)	
  /	
  (204	
  gKHP/mole	
  
KHP)	
  
=	
  	
  >	
  	
  	
  1.176	
  gO2/gKHP	
  	
  	
  	
  	
  =	
  1.176	
  gCOD/gKHP	
  
	
  
(1	
  gCOD/L)/	
  (1.176	
  gCOD/gKHP)	
  =	
  0,85	
  gKHP/L.	
  
	
  
	
  
Preparation	
  of	
  the	
  three	
  known	
  COD	
  concentrations:	
  
	
  
C1=	
  stock=	
  1500	
  mg/L	
  	
  	
  (add	
  1275mg	
  KHP	
  into	
  1000mL	
  distilled	
  water)	
  
C2=	
  525	
  mg/L	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (add	
  35	
  mL	
  stock	
  into	
  100	
  mL	
  volumetric	
  flask	
  
containing	
  distilled	
  water)	
  
C3=	
  150	
  mg/L	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (add	
  10	
  mL	
  stock	
  into	
  100	
  mL	
  volumetric	
  flask	
  
containing	
  distilled	
  water)	
  
	
  
The	
  second	
  part	
  of	
  this	
  work	
  was	
  to	
  measure	
  the	
  COD	
  of	
  these	
  three	
  known	
  
COD	
  concentrations	
  and	
  measure	
  the	
  COD	
  of	
  wastewater	
  samples.	
  	
  The	
  procedures	
  
for	
  COD	
  measurement	
  are	
  explained	
  in	
  the	
  appendix	
  i.	
  	
  
The	
  third	
  part	
  of	
  this	
  work	
  was	
  to	
  analyse	
  the	
  data	
  obtained	
  from	
  the	
  COD	
  
measurement.	
   Mean	
   and	
   standard	
   deviation	
   were	
   the	
   two	
   main	
   statistical	
  
parameters	
  analysed	
  to	
  compare	
  the	
  data	
  obtained	
  from	
  both	
  Kits.	
  This	
  analysis	
  was	
  
done	
  under	
  Excel	
  software.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
	
  
	
  
	
  
	
  
4.	
  Results	
  and	
  discussion	
  
4.1.	
  Raw	
  data	
  
The	
  raw	
  data	
  obtained	
  from	
  all	
  measurement	
  during	
  this	
  work	
  is	
  presented	
  in	
  table	
  
2.	
  
For	
  simplification,	
  let´s	
  use	
  the	
  terms	
  “Hg”	
  and	
  “Hg	
  free”	
  respectively	
  for	
  kit	
  with	
  Hg	
  
and	
  kit	
  without	
  hg.	
  
Table	
  2:	
  Raw	
  COD	
  data	
  obtained	
  from	
  the	
  two	
  kits.	
  
	
  
Expected	
  concentrations	
  of	
  the	
  three	
  known	
  COD	
  standard	
  solutions	
  (mg	
  COD/L)	
  
C1	
   C2	
   C3	
  
1500	
   525	
   150	
  
	
  	
  
COD	
  concentrations	
  of	
  blanks	
  (CODmg/L)	
  
	
  	
   Blank	
  1	
   Blank	
  2	
  
	
   	
   	
  
	
  	
  
Hg	
   83	
   65	
  
	
   	
   	
  
	
  	
  
Hg	
  free	
   49	
   0	
  
	
   	
   	
  
	
  	
  
	
  	
  
COD	
  concentrations	
  of	
  COD	
  standard	
  solution	
  after	
  the	
  measurement	
  (mgCOD/L)	
  
	
  	
   C1	
   C1	
   C1	
  
	
   	
  
	
  	
  
Hg	
   1556	
   1569	
   1551	
  
	
   	
  
	
  	
  
Hg	
  free	
   1528	
   1561	
   1515	
  
	
   	
  
	
  	
  
	
  	
   	
  	
  
	
  	
   C2	
   C2	
   C2	
   C2	
   C2	
   C2	
  
Hg	
   569	
   571	
   573	
   571	
   577	
   570	
  
Hg	
  free	
   530	
   533	
   537	
   531	
   534	
   530	
  
	
  	
  
	
   	
   	
   	
   	
  
	
  	
  
	
  	
   C3	
   C3	
   C3	
  
	
   	
  
	
  	
  
Hg	
   205	
   202	
   200	
  
	
   	
  
	
  	
  
Hg	
  free	
   153	
   158	
   157	
  
	
   	
  
	
  	
  
	
  	
  
	
   	
   	
   	
   	
  
	
  	
  
	
  	
  
COD	
  concentrations	
  of	
  wastewater	
  samples	
  (mgCOD/L)	
  
	
  	
   sample	
  1	
   sample	
  2	
   sample	
  3	
   sample	
  4	
   sample	
  5	
   sample	
  6	
  
Hg	
   1304	
   409	
   388	
   400	
   354	
   392	
  
Hg	
  free	
   441	
   422	
   637	
   465	
   354	
   	
  	
  
	
  
	
  
 
	
  
	
  
4.2.	
  Analysed	
  data	
  
4.2.1.	
  Mean	
  (X)	
  and	
  standard	
  deviation	
  (σx)	
  
During	
   the	
   statistical	
   analysis,	
   parameter	
   mean	
   X	
   and	
   standard	
   deviation	
   σ	
   were	
  
calculated.	
  Table	
  3	
  and	
  4	
  show	
  respectively	
  the	
  mean	
  and	
  the	
  standard	
  deviation	
  of	
  
COD	
  values	
  obtained	
  from	
  the	
  two	
  kits.	
  The	
  average	
  COD	
  concentrations	
  of	
  standard	
  
solutions	
  and	
  wastewater	
  samples	
  were	
  subtracted	
  by	
  COD	
  content	
  of	
  blanks.	
  	
  
Table	
  3:	
  Average	
  COD	
  concentrations	
  of	
  standard	
  solutions	
  (C1,	
  C2,	
  C3)	
  and	
  
wastewater	
  samples	
  
	
  
	
   COD	
  concentrations	
  (	
  mgCOD/L)	
  
	
  
Blank	
   C1	
   C2	
   C3	
   Wastewater	
  
Hg	
   74	
   1485	
   498	
   128	
   467	
  
Hg	
  free	
   26	
   1510	
   508	
   131	
   439	
  
	
  
Table	
  4:	
  Standard	
  deviation	
  of	
  COD	
  values	
  (σx)	
  
	
  
	
  
C1	
   C2	
   C3	
   Wastewater	
  
Hg	
  	
   9	
   3	
   3	
   374	
  
Hg	
  free	
   24	
   3	
   3	
   105	
  
	
  
	
  
4.2.2.	
  Rejection	
  of	
  data	
  
By	
  looking	
  at	
  the	
  table	
  2,	
  we	
  can	
  see	
  that	
  some	
  of	
  the	
  COD	
  concentrations	
  of	
  
wastewater	
  samples	
  look	
  specious.	
  The	
  value	
  1303	
  mgCOD/L	
  (from	
  kit	
  with	
  Hg)	
  and	
  
the	
  value	
  637	
  mgCOD/L	
  (from	
  kit	
  without	
  Hg)	
  seem	
  anomalously	
  large.	
  By	
  applying	
  
the	
  Chauvenet´s	
  criterion,	
  we	
  can	
  decide	
  the	
  rejection	
  of	
  these	
  two	
  values.	
  
Assuming	
   provisionally	
   all	
   COD	
   measurement	
   of	
   wastewater	
   samples	
   is	
  
legitimate.	
  	
  
a.	
  N=6	
  (1303,	
  409,	
  388,	
  400,	
  354,	
  392);	
  the	
  mean	
  X	
  is	
  here	
  467	
  and	
  the	
  standard	
  
deviation	
  σx	
  	
  is	
  374.	
  	
  The	
  difference	
  between	
  the	
  suspect	
  Xsus=1303	
  and	
  the	
  mean	
  X=	
  
467	
  is	
  836,	
  or	
  2.2	
  standard	
  deviations;	
  that	
  is,	
  
Tsus=	
  (xsus-­‐x)/	
  σx	
  	
  =	
  (1303-­‐467)/374	
  	
  =	
  2.2	
  
Referring	
  to	
  the	
  table	
  in	
  Appendix	
  ii,	
  the	
  probability	
  that	
  a	
  measurement	
  will	
  differ	
  
from	
  X	
  by	
  2.2σx	
  or	
  more	
  is:	
  
Prob(outside	
  2.2σx)	
  	
  	
  =	
  1-­‐	
  Prob(inside	
  2.2σx)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  =	
  1-­‐	
  0.972	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  =	
  0.028	
  
In	
  6	
  measurements,	
  I	
  would	
  expect	
  to	
  find	
  0.168	
  of	
  one	
  measurement	
  as	
  deviant	
  as	
  
the	
   suspect	
   result.	
   Since	
   0.168	
   is	
   less	
   than	
   the	
   0.5	
   set	
   by	
   Chauvenet´s	
   criterion,	
   I	
  
should	
   reject	
   the	
   suspect	
   Xsus=	
   1303	
   mgCOD/L.	
   So,	
   the	
   new	
   mean	
   and	
   standard	
  
deviation	
   for	
   COD	
   of	
   wastewater,	
   which	
   was	
   measured	
   by	
   kit	
   with	
   Hg,	
   would	
   be	
  
respectively	
  315	
  mgCOD/L	
  and	
  21.	
  	
  
	
  
b.	
  N=5	
  (441,	
  422,	
  637,	
  456,	
  354);	
  the	
  mean	
  X	
  here	
  is	
  439	
  and	
  standard	
  deviation	
  σx	
  is	
  
105.	
  The	
  difference	
  between	
  the	
  suspect	
  Xsus=637	
  and	
  the	
  mean	
  X=	
  439	
  is	
  198,	
  or	
  
1.88	
  standard	
  deviations;	
  that	
  is,	
  
Tsus=	
  (xsus-­‐x)/	
  σx	
  	
  =	
  (637-­‐439)/105	
  	
  =	
  1.88	
  
Referring	
  to	
  the	
  table	
  in	
  Appendix	
  ii,	
  the	
  probability	
  that	
  a	
  measurement	
  will	
  differ	
  
from	
  X	
  by	
  1.88σx	
  or	
  more	
  is	
  
Prob(outside	
  1.88σx)	
  	
  	
  =	
  1-­‐	
  Prob(inside	
  1.88σx)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  =	
  1-­‐	
  0.939	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  =	
  0.061	
  
In	
  5	
  measurements,	
  I	
  would	
  expect	
  to	
  find	
  0.305	
  of	
  one	
  measurement	
  as	
  deviant	
  as	
  
the	
   suspect	
   result.	
   Since	
   0.305	
   is	
   less	
   than	
   the	
   0.5	
   set	
   by	
   Chauvenet´s	
   criterion,	
   I	
  
should	
   reject	
   the	
   suspect	
   Xsus=	
   637	
   mgCOD/L.	
   So,	
   the	
   new	
   mean	
   and	
   standard	
  
deviation	
  for	
  COD	
  of	
  wastewater,	
  which	
  was	
  measured	
  by	
  kit	
  without	
  Hg,	
  would	
  be	
  
respectively	
  421	
  mgCOD/L	
  and	
  48.	
  	
  
4.2.3.	
  Correct	
  estimator	
  for	
  all	
  measurements	
  
If	
  we	
  assume	
  95	
  %	
  confidence	
  for	
  our	
  measurements,	
  the	
  average	
  COD	
  for	
  
our	
  samples	
  would	
  be:	
  	
  
COD=	
  X	
  ±	
  (σx/√n)*tα/2,n-­‐1	
  
where:	
  
	
  
x:	
  mean	
  
σx	
  :	
  standard	
  deviation	
  	
  
	
  n:	
  number	
  of	
  measurements	
  
	
  α:	
  accepted	
  error=	
  5%=	
  0.05	
  
 
For	
  95%	
  confidence,	
  the	
  real	
  mean	
  of	
  COD	
  (mg/L)	
  for	
  the	
  standard	
  solutions	
  and	
  the	
  
wastewater	
  sample	
  are	
  the	
  following:	
  
	
  
	
  
Conclusion:	
  By	
  looking	
  at	
  the	
  real	
  mean	
  of	
  COD	
  for	
  standard	
  solutions,	
  we	
  can	
  see	
  
that	
  the	
  two	
  test	
  kits	
  overlap.	
  Therefore,	
  we	
  can	
  say	
  that	
  the	
  two	
  tests	
  are	
  the	
  same.	
  	
  
For	
   the	
   wastewater	
   samples,	
   we	
   can	
   see	
   that	
   the	
   two	
   kits	
   almost	
   overlap.	
   The	
  
reason,	
  why	
  they	
  do	
  not	
  exactly	
  overlap	
  for	
  wastewater	
  samples,	
  could	
  be	
  from	
  the	
  
subtraction	
  of	
  the	
  COD	
  concentrations	
  of	
  samples	
  by	
  the	
  mean	
  of	
  the	
  COD	
  of	
  blanks	
  
that	
  seem	
  incorrect.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Reference:	
  
	
  
Al-­‐Momani,	
  F.	
  (2003).	
  Combination	
  of	
  photo-­‐oxidation	
  processes	
  with	
  biological	
  
treatment:	
  Universitat	
  de	
  Barcelona.	
  
Association,	
  A.	
  P.	
  H.,	
  Association,	
  A.	
  W.	
  W.,	
  Federation,	
  W.	
  P.	
  C.,	
  &	
  Federation,	
  W.	
  
E.	
  (1915).	
  Standard	
  methods	
  for	
  the	
  examination	
  of	
  water	
  and	
  wastewater	
  
(Vol.	
  2):	
  American	
  Public	
  Health	
  Association.	
  
Taylor,	
  J.	
  (1997).	
  Introduction	
  to	
  error	
  analysis,	
  the	
  study	
  of	
  uncertainties	
  in	
  
physical	
  measurements	
  (Vol.	
  1).	
  
	
  
	
  
	
  
C1	
   C2	
   C3	
   wastewater	
  
Hg	
   1485±	
  22	
   498±	
  3	
   128±	
  7	
   315±	
  26	
  
Hg	
  free	
   1510±	
  60	
   508±	
  3	
   131±	
  7	
   421±	
  77	
  
 
Appendix	
  i	
  
	
  
a.	
  Procedures	
  for	
  COD	
  analysis	
  using	
  Kit	
  with	
  Hg	
  
	
  
Source:	
  
http://www.google.no/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CB8QFjAB&url=http%3A%2F%2Fenvirotest.com.my%2Fproductsup
port%2Fdownload%2F57&ei=LGKuVLKWLYLyaNyegig&usg=AFQjCNESMTZBXvJApC7q3eBZfUkcSuhTvg&sig2=88DGxtDdmga_9a9tpWl1EA	
  
	
  	
  	
  
	
  
b.	
  Procedures	
  for	
  COD	
  analysis	
  using	
  Kit	
  without	
  Hg	
  (Hg	
  free)	
  
	
  
	
  
	
  
Source:	
  
http://www.google.no/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CB8QFjAB&url=http%3A%2F%2Fenvirotest.com.my%2Fproductsup
port%2Fdownload%2F57&ei=LGKuVLKWLYLyaNyegig&usg=AFQjCNESMTZBXvJApC7q3eBZfUkcSuhTvg&sig2=88DGxtDdmga_9a9tpWl1EA	
  
	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
Source:	
  (Taylor,	
  1997)	
  
Appendix	
  ii	
  

More Related Content

What's hot

Precipitation of indium using sodium tripolyphosphate
Precipitation of indium using sodium tripolyphosphatePrecipitation of indium using sodium tripolyphosphate
Precipitation of indium using sodium tripolyphosphateJorge Alexander Rocha Alvarez
 
6 ch02 01_que_20110120 chem pp
6 ch02 01_que_20110120 chem pp6 ch02 01_que_20110120 chem pp
6 ch02 01_que_20110120 chem ppTashmar Davis
 
Gravimetric method of analysis
Gravimetric method of analysis Gravimetric method of analysis
Gravimetric method of analysis Sajjad Ullah
 
Equilibrium and Kinetics Adsorption of Cadmium and Lead Ions from Aqueous Sol...
Equilibrium and Kinetics Adsorption of Cadmium and Lead Ions from Aqueous Sol...Equilibrium and Kinetics Adsorption of Cadmium and Lead Ions from Aqueous Sol...
Equilibrium and Kinetics Adsorption of Cadmium and Lead Ions from Aqueous Sol...theijes
 
F.Sc. Part 1 Chemistry Paper Faisalabad Board 2010 (Malik Xufyan)
F.Sc. Part 1 Chemistry Paper Faisalabad Board 2010 (Malik Xufyan)F.Sc. Part 1 Chemistry Paper Faisalabad Board 2010 (Malik Xufyan)
F.Sc. Part 1 Chemistry Paper Faisalabad Board 2010 (Malik Xufyan)Malik Xufyan
 
SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...
SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...
SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...EDITOR IJCRCPS
 
Effective Adsorption of Cadmium (II) Ion on Orange Peels (Citrus Sinensis)
Effective Adsorption of Cadmium (II) Ion on Orange Peels (Citrus Sinensis)Effective Adsorption of Cadmium (II) Ion on Orange Peels (Citrus Sinensis)
Effective Adsorption of Cadmium (II) Ion on Orange Peels (Citrus Sinensis)IRJET Journal
 
Absorption of Nitrogen Dioxide into Sodium Carbonate Solution in Packed Column
Absorption of Nitrogen Dioxide into Sodium Carbonate Solution  in Packed Column Absorption of Nitrogen Dioxide into Sodium Carbonate Solution  in Packed Column
Absorption of Nitrogen Dioxide into Sodium Carbonate Solution in Packed Column IJMER
 
Chem1020 examples for chapters 8-9-10
Chem1020 examples for chapters 8-9-10Chem1020 examples for chapters 8-9-10
Chem1020 examples for chapters 8-9-10Ahmad Al-Dallal
 
Activation of hydrogen peroxide by chemical reagent to reduce cod in petroche...
Activation of hydrogen peroxide by chemical reagent to reduce cod in petroche...Activation of hydrogen peroxide by chemical reagent to reduce cod in petroche...
Activation of hydrogen peroxide by chemical reagent to reduce cod in petroche...MOHAMED SAAD BALA
 
M.Sc. Organic Chemistry Student Project Presentation
M.Sc. Organic Chemistry Student Project PresentationM.Sc. Organic Chemistry Student Project Presentation
M.Sc. Organic Chemistry Student Project PresentationDr. Krishna Swamy. G
 

What's hot (18)

Project Work
Project WorkProject Work
Project Work
 
SYNTHESIS, PHYSICO-CHEMICAL AND ANTIMICROBIAL PROPERTIES OF SOME METAL (II) -...
SYNTHESIS, PHYSICO-CHEMICAL AND ANTIMICROBIAL PROPERTIES OF SOME METAL (II) -...SYNTHESIS, PHYSICO-CHEMICAL AND ANTIMICROBIAL PROPERTIES OF SOME METAL (II) -...
SYNTHESIS, PHYSICO-CHEMICAL AND ANTIMICROBIAL PROPERTIES OF SOME METAL (II) -...
 
Practice Test 3
Practice Test 3Practice Test 3
Practice Test 3
 
Environmental analysis
Environmental analysisEnvironmental analysis
Environmental analysis
 
Precipitation of indium using sodium tripolyphosphate
Precipitation of indium using sodium tripolyphosphatePrecipitation of indium using sodium tripolyphosphate
Precipitation of indium using sodium tripolyphosphate
 
6 ch02 01_que_20110120 chem pp
6 ch02 01_que_20110120 chem pp6 ch02 01_que_20110120 chem pp
6 ch02 01_que_20110120 chem pp
 
Practice Exam 2
Practice Exam 2Practice Exam 2
Practice Exam 2
 
Gravimetric method of analysis
Gravimetric method of analysis Gravimetric method of analysis
Gravimetric method of analysis
 
Water analysis from Metrohm
Water analysis from MetrohmWater analysis from Metrohm
Water analysis from Metrohm
 
Equilibrium and Kinetics Adsorption of Cadmium and Lead Ions from Aqueous Sol...
Equilibrium and Kinetics Adsorption of Cadmium and Lead Ions from Aqueous Sol...Equilibrium and Kinetics Adsorption of Cadmium and Lead Ions from Aqueous Sol...
Equilibrium and Kinetics Adsorption of Cadmium and Lead Ions from Aqueous Sol...
 
F.Sc. Part 1 Chemistry Paper Faisalabad Board 2010 (Malik Xufyan)
F.Sc. Part 1 Chemistry Paper Faisalabad Board 2010 (Malik Xufyan)F.Sc. Part 1 Chemistry Paper Faisalabad Board 2010 (Malik Xufyan)
F.Sc. Part 1 Chemistry Paper Faisalabad Board 2010 (Malik Xufyan)
 
SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...
SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...
SYNTHESIS AND CHARACTERIZATION OF SOME TRANSITION METAL COMPLEXES WITH A NEW ...
 
Effective Adsorption of Cadmium (II) Ion on Orange Peels (Citrus Sinensis)
Effective Adsorption of Cadmium (II) Ion on Orange Peels (Citrus Sinensis)Effective Adsorption of Cadmium (II) Ion on Orange Peels (Citrus Sinensis)
Effective Adsorption of Cadmium (II) Ion on Orange Peels (Citrus Sinensis)
 
Absorption of Nitrogen Dioxide into Sodium Carbonate Solution in Packed Column
Absorption of Nitrogen Dioxide into Sodium Carbonate Solution  in Packed Column Absorption of Nitrogen Dioxide into Sodium Carbonate Solution  in Packed Column
Absorption of Nitrogen Dioxide into Sodium Carbonate Solution in Packed Column
 
Chem1020 examples for chapters 8-9-10
Chem1020 examples for chapters 8-9-10Chem1020 examples for chapters 8-9-10
Chem1020 examples for chapters 8-9-10
 
David singapore
David singaporeDavid singapore
David singapore
 
Activation of hydrogen peroxide by chemical reagent to reduce cod in petroche...
Activation of hydrogen peroxide by chemical reagent to reduce cod in petroche...Activation of hydrogen peroxide by chemical reagent to reduce cod in petroche...
Activation of hydrogen peroxide by chemical reagent to reduce cod in petroche...
 
M.Sc. Organic Chemistry Student Project Presentation
M.Sc. Organic Chemistry Student Project PresentationM.Sc. Organic Chemistry Student Project Presentation
M.Sc. Organic Chemistry Student Project Presentation
 

Similar to Module 3 in Methodology course

chemical oxygen demand -analysis using APHA manual
chemical oxygen demand -analysis using APHA manualchemical oxygen demand -analysis using APHA manual
chemical oxygen demand -analysis using APHA manualSHERIN RAHMAN
 
Ruh2 Synthesis Lab Report
Ruh2 Synthesis Lab ReportRuh2 Synthesis Lab Report
Ruh2 Synthesis Lab ReportPaula Smith
 
Improved method for analysis of dic in natural water samples
Improved method for analysis of dic in natural water samplesImproved method for analysis of dic in natural water samples
Improved method for analysis of dic in natural water samplesMahbubul Hassan
 
Exp. 4 & 5 COD and BOD..pptx
Exp. 4 & 5 COD and BOD..pptxExp. 4 & 5 COD and BOD..pptx
Exp. 4 & 5 COD and BOD..pptxssuserb2c0be
 
Analytical instruments week 1
Analytical instruments week 1Analytical instruments week 1
Analytical instruments week 1andreapearce
 
do, bod dan cod ppt ENVIRONMENTAL ENGINEERING
do, bod dan cod ppt ENVIRONMENTAL ENGINEERINGdo, bod dan cod ppt ENVIRONMENTAL ENGINEERING
do, bod dan cod ppt ENVIRONMENTAL ENGINEERINGRizkaAmalia730856
 
Method of sampling and analysis of 13 c dic in groundwaters
Method of sampling and analysis of 13 c dic in groundwatersMethod of sampling and analysis of 13 c dic in groundwaters
Method of sampling and analysis of 13 c dic in groundwatersMahbubul Hassan
 
Chemical Looping Combustion
Chemical Looping CombustionChemical Looping Combustion
Chemical Looping CombustionRajan Lanjekar
 
Atoms and molecules
Atoms and moleculesAtoms and molecules
Atoms and moleculessomu rajesh
 
Applied chemistry practical manual session 12 13
Applied chemistry practical manual session 12 13Applied chemistry practical manual session 12 13
Applied chemistry practical manual session 12 13Krishna Gali
 
Download-manuals-water quality-wq-training-18understandingcodtest
 Download-manuals-water quality-wq-training-18understandingcodtest Download-manuals-water quality-wq-training-18understandingcodtest
Download-manuals-water quality-wq-training-18understandingcodtesthydrologyproject0
 
Science 10th Class
Science 10th Class Science 10th Class
Science 10th Class Rahul Thakur
 
B sc_I_General chemistry U-III(B)Molecular formula and empirical formula
B sc_I_General chemistry U-III(B)Molecular formula and empirical formula B sc_I_General chemistry U-III(B)Molecular formula and empirical formula
B sc_I_General chemistry U-III(B)Molecular formula and empirical formula Rai University
 

Similar to Module 3 in Methodology course (20)

chemical oxygen demand -analysis using APHA manual
chemical oxygen demand -analysis using APHA manualchemical oxygen demand -analysis using APHA manual
chemical oxygen demand -analysis using APHA manual
 
C6 Revision
C6 RevisionC6 Revision
C6 Revision
 
Ruh2 Synthesis Lab Report
Ruh2 Synthesis Lab ReportRuh2 Synthesis Lab Report
Ruh2 Synthesis Lab Report
 
Improved method for analysis of dic in natural water samples
Improved method for analysis of dic in natural water samplesImproved method for analysis of dic in natural water samples
Improved method for analysis of dic in natural water samples
 
Exp. 4 & 5 COD and BOD..pptx
Exp. 4 & 5 COD and BOD..pptxExp. 4 & 5 COD and BOD..pptx
Exp. 4 & 5 COD and BOD..pptx
 
DO, BOD and COD
DO, BOD and CODDO, BOD and COD
DO, BOD and COD
 
Physical Chemistry
Physical Chemistry Physical Chemistry
Physical Chemistry
 
Analytical instruments week 1
Analytical instruments week 1Analytical instruments week 1
Analytical instruments week 1
 
Practical on COD
Practical on CODPractical on COD
Practical on COD
 
do, bod dan cod ppt ENVIRONMENTAL ENGINEERING
do, bod dan cod ppt ENVIRONMENTAL ENGINEERINGdo, bod dan cod ppt ENVIRONMENTAL ENGINEERING
do, bod dan cod ppt ENVIRONMENTAL ENGINEERING
 
Method of sampling and analysis of 13 c dic in groundwaters
Method of sampling and analysis of 13 c dic in groundwatersMethod of sampling and analysis of 13 c dic in groundwaters
Method of sampling and analysis of 13 c dic in groundwaters
 
Stoichiometry
StoichiometryStoichiometry
Stoichiometry
 
Chemical Looping Combustion
Chemical Looping CombustionChemical Looping Combustion
Chemical Looping Combustion
 
CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATION
CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONCALCULATIONS WITH CHEMICAL FORMULAS AND EQUATION
CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATION
 
Chapter 12.ppt
Chapter 12.pptChapter 12.ppt
Chapter 12.ppt
 
Atoms and molecules
Atoms and moleculesAtoms and molecules
Atoms and molecules
 
Applied chemistry practical manual session 12 13
Applied chemistry practical manual session 12 13Applied chemistry practical manual session 12 13
Applied chemistry practical manual session 12 13
 
Download-manuals-water quality-wq-training-18understandingcodtest
 Download-manuals-water quality-wq-training-18understandingcodtest Download-manuals-water quality-wq-training-18understandingcodtest
Download-manuals-water quality-wq-training-18understandingcodtest
 
Science 10th Class
Science 10th Class Science 10th Class
Science 10th Class
 
B sc_I_General chemistry U-III(B)Molecular formula and empirical formula
B sc_I_General chemistry U-III(B)Molecular formula and empirical formula B sc_I_General chemistry U-III(B)Molecular formula and empirical formula
B sc_I_General chemistry U-III(B)Molecular formula and empirical formula
 

Module 3 in Methodology course

  • 1.                     Methods  in  Water  Science  and  Technology       Scientific  research     Cross  validation  of  two  different  COD  test  kits     (Kit  with  Hg  and  kit  without  Hg)               Written by: Eric Clayderman CAZOLI December 2014 University  of  Stavanger   Department  of  Mathematics  and  Natural  Sciences   4036  Stavanger  
  • 2. Abstract:    COD  measurements  on  COD  standard  solutions  and  wastewater  samples   were  done  by  using  two  different  COD  test  kits  (kit  with  Hg  and  kit  without  Hg).  Data   obtained  from  both  kits  were  analyzed  by  looking  essentially  at  statistical  parameter   mean  X  and  standard  deviation  σ.  The  objective  of  this  work  was  to  compare  the   analyzed  data  in  order  to  check  the  cross  validation  of  the  two  kits.  Results  of  this   work   showed   that   the   two   kits   are   the   same   when   measuring   COD   standard   solutions,  while  they  do  not  really  overlap  when  measuring  wastewater  samples.     Key  words:  COD,  wastewater,  test  kits,  mean,  cross  validation     1.  Introduction:     Chemical   Oxygen   Demand   (COD)   is   a   term   used   in   both   water   and   wastewater  treatment  to  measure  the  amount  of  a  specified  oxidant  reacting  with  a   given  sample  under  controlled  conditions  (Al-­‐Momani,  2003).  The  diochromate  ion   (Cr2O72-­‐)   is   the   specified   oxidant   in   colorimetric   method   and   its   amount   is   expressed  in  terms  of  its  oxygen  equivalence.   Under  the  presence  of  catalysts  (sulphuric  acid  H2SO4,  mercuric  sulphate  AgSO4  and   sulfamic   acid   H3NSO3),   the   dichromate   (Cr2O72-­‐)   oxidizes   organic   material   in   a   sample  after  incubation  of  2h  at  150°C.  This  oxidation  reduces  Cr2O72-­‐  (hexavalent)   into  Cr3+  (trivalent).  Each  of  these  chromium  species  has  a  direct  relationship  with   oxygen  consumed  (Association,  Association,  Federation,  &  Federation,  1915).     Colorimetric  method  for  COD  analysis  is  a  time  consuming  since  you  have  to   prepare  both  digestion  and  catalyst  solutions.  Nowadays,  COD  test  kits  are  available   for  an  easy  and  quick  COD  analysis.  A  COD  test  kit  is  like  a  small  glass  tube  (vial)  on   which   there   is   a   unique   barcode   label   that   is   automatically   read   by   a   spectrophotometer   to   identify   the   appropriate   method   and   take   the   COD   measurement.  COD  test  kits  also  contain  both  digestion  and  catalyst  solutions  (like  in   the  colorimetric  method)  that  react  with  samples  to  be  measured.  A  COD  test  kit   may  present  a  risk  for  the  environment  when  it  contains  harmful  chemicals.  A  kit  
  • 3. containing  Hg  is  harmful  for  the  environment  compared  to  the  one  that  has  Hg  free.   Regarding  the  environmental  aspect  and  the  price  of  kits,  it  would  be  recommended   to  use  the  one  with  Hg  free  and  the  one  that  is  less  costly.    For  this  reason,  I  did   some  COD  analysis  on  COD  standard  solutions  and  wastewater  samples  by  using  two   types  of  COD  test  kits  (kit  with  Hg  and  kit  without  Hg).  For  this  COD  analysis,  three   known   COD   concentrations   of   standard   solution   were   prepared   from   Potassium   hydrogen  phthalate  (C8H5KO4).     The  objective  of  this  work  was  to  check  the  cross  validation  of  the  two  kits  by   analyzing  the  statistical  parameter  mean  and  standard  deviation  of  obtained  data.   Data  obtained  from  this  work  and  the  results  of  statistical  analysis  are  presented  and   explained  in  the  result  section  of  this  paper.       2.Theory   A  COD  test  kit  contains  all  necessary  chemicals  that  digest  organic  matters  in   a   given   sample   and   catalyse   reactions   that   happen   inside.   The   following   stoichiometry  shows  these  reactions  and  the  relationship  as  well  as  the  theoretical   ratios  between  chromium  species  and  O2.     Oxidation:                  C6H12O6  +  6  H2O                  ===    >          6  CO2    +  24  e-­‐     +  24  H+   Reduction:              24  e-­‐     +  24H+   +  32  H+  +  4  Cr2O72-­‐    ===    >          8  Cr3+    +  28  H2O       Redox  reaction:  C6H12O6    +  +  32  H+  +  4  Cr2O72-­‐                      ===    >                        8  Cr3+    +  6  CO2    +    22   H2O         In  reality,  O2  is  the  electron  acceptor:    C6H12O6  +  6  H2O    ===    >        6  CO2    +  24  e-­‐     +  24  H+                                      24  e-­‐     +  24  H+   +  6  O2      ===    >  12  H2O   From  the  reactions  above,  we  can  see  that  1  mole  of    O2    takes  up  4  e-­‐      and  1  mole  of   Cr2O72-­‐    takes  up  6  e-­‐   .   =    >    4  e-­‐      /6  e-­‐    *  mole  Cr2O72-­‐ /  mole  O2  =  4  mole  Cr2O72-­‐ /  6  mole  O2  =    >  Δ  Cr2O72-­‐    =   3/2*ΔO2  =  COD  
  • 4. =    >    8  Cr3+   /4  Cr2O72-­‐  *  4  Cr2O72-­‐ /6  mole  O2    =    >    4  mole  Cr3+ /3  mole  O2  =    >  Δ  Cr3+ =   ¾*  ΔO2  =  COD   Practically,   we   measure   Cr3+   for   the   high   range   COD   (100   and   900   mg/L).   The   relationship   between   theoretical   COD   and   ΔCr3+   is   obtained   by   a   standard   curve   calibration.       Reagents:   According   to   (Association   et   al.,   (1915),   different   reagents   are   needed   during  the  set  up  of  analysis  in  order  to  have  a  complete  oxidation  reaction  and  also   to   remove   any   possible   interferences.     Specifically,   these   reagents   are   mercuric   sulphate,   sulfuric   acid   and   sulfamic   acid.     Mercuric   sulphate   is   added   to   remove   complex  chloride  ions  present  in  the  sample.    Without  the  mercuric  sulphate,  the   chloride   ions   would   form   chlorine   compounds   in   strong   acid   media   used   in   the   procedure.     These   chlorine   compounds   would   oxidize   the   organic   matter   in   the   sample,  resulting  in  a  COD  value  lower  than  the  actual  value.  Sulfamic  acid  is  added   to  remove  interferences  caused  by  nitrite  ions.    Without  sulfamic  acid,  the  COD  of   the   sample   would   measure   higher   than   the   actual   value.  Potassium   dichromate   is   used  as  the  oxygen  source  with  concentrated  sulfuric  acid  added  to  yield  a  strong   acid  medium.                                  
  • 5.       3.  MATERIALS  AND  METHODS   3.1.  Materials   Different  materials  (devices,  chemical  and  instruments)  were  used  during  the   work  in  a  laboratory.  These  materials  are  listed  in  the  following  table  (tab.  1).   Table  1:  list  of  materials  that  were  used  during  the  experiments,  and  their  functions     Material   Function   Potassium  hydrogen  phthalate  (C8H5KO4)   Chemical   used   to   prepare   COD   standard   solutions   Distilled  water   Used  for  dilution     Analytical  balance     Used   to   weight   the   amount   of   C8H5KO4   to   be   used   2  types  of  COD  test  kits:  kit  with  Hg  and  Kit  without  Hg     Contain  chemicals  needed  to  react  with  samples   Pipettes   Used  to  take  a  precise  volume  of  sample     Flask  Erlenmeyer   Used  for  mixing  chemicals  and  solutions   Gloves   Hands  protection   Glass   Yes  protection   Incubator   Used  to  cook  COD  kits  containing  samples   Spectrophotometer   Measures   COD   concentration   of   sample   as   a   function  of  the  color  intensity.   Stop  watch   Record  time       3.2.  Methods   First  of  all,  I  prepared  three  known  concentrations  of  COD  standard  solution   from  Potassium  hydrogen  phthalate  (KHP=  C8H5KO4).    This  preparation  was  done   according  the  American  standard  for  COD  analysis  (Association  et  al.,  1915).  KHP  has   a   COD   of   1.176   gO2/g   KHP.   This   value   is   obtained   by   the   following   reaction   and   calculations:  
  • 6.   C8H5KO4        +  aO2  +  H+    =    >    8  CO2  +  K+      +  3  H20          ===    >        a=  15/2  *  mole   O2/mole  KHP   =    >        7.5  mole  O2/mole  KHP   =    >        γO2/KHP  =  7.5  mole  O2/mole  KHP  *  (32gO2/moleO2)  /  (204  gKHP/mole   KHP)   =    >      1.176  gO2/gKHP          =  1.176  gCOD/gKHP     (1  gCOD/L)/  (1.176  gCOD/gKHP)  =  0,85  gKHP/L.       Preparation  of  the  three  known  COD  concentrations:     C1=  stock=  1500  mg/L      (add  1275mg  KHP  into  1000mL  distilled  water)   C2=  525  mg/L                                      (add  35  mL  stock  into  100  mL  volumetric  flask   containing  distilled  water)   C3=  150  mg/L                                      (add  10  mL  stock  into  100  mL  volumetric  flask   containing  distilled  water)     The  second  part  of  this  work  was  to  measure  the  COD  of  these  three  known   COD  concentrations  and  measure  the  COD  of  wastewater  samples.    The  procedures   for  COD  measurement  are  explained  in  the  appendix  i.     The  third  part  of  this  work  was  to  analyse  the  data  obtained  from  the  COD   measurement.   Mean   and   standard   deviation   were   the   two   main   statistical   parameters  analysed  to  compare  the  data  obtained  from  both  Kits.  This  analysis  was   done  under  Excel  software.                    
  • 7.           4.  Results  and  discussion   4.1.  Raw  data   The  raw  data  obtained  from  all  measurement  during  this  work  is  presented  in  table   2.   For  simplification,  let´s  use  the  terms  “Hg”  and  “Hg  free”  respectively  for  kit  with  Hg   and  kit  without  hg.   Table  2:  Raw  COD  data  obtained  from  the  two  kits.     Expected  concentrations  of  the  three  known  COD  standard  solutions  (mg  COD/L)   C1   C2   C3   1500   525   150       COD  concentrations  of  blanks  (CODmg/L)       Blank  1   Blank  2             Hg   83   65             Hg  free   49   0                 COD  concentrations  of  COD  standard  solution  after  the  measurement  (mgCOD/L)       C1   C1   C1           Hg   1556   1569   1551           Hg  free   1528   1561   1515                       C2   C2   C2   C2   C2   C2   Hg   569   571   573   571   577   570   Hg  free   530   533   537   531   534   530                         C3   C3   C3           Hg   205   202   200           Hg  free   153   158   157                                 COD  concentrations  of  wastewater  samples  (mgCOD/L)       sample  1   sample  2   sample  3   sample  4   sample  5   sample  6   Hg   1304   409   388   400   354   392   Hg  free   441   422   637   465   354          
  • 8.       4.2.  Analysed  data   4.2.1.  Mean  (X)  and  standard  deviation  (σx)   During   the   statistical   analysis,   parameter   mean   X   and   standard   deviation   σ   were   calculated.  Table  3  and  4  show  respectively  the  mean  and  the  standard  deviation  of   COD  values  obtained  from  the  two  kits.  The  average  COD  concentrations  of  standard   solutions  and  wastewater  samples  were  subtracted  by  COD  content  of  blanks.     Table  3:  Average  COD  concentrations  of  standard  solutions  (C1,  C2,  C3)  and   wastewater  samples       COD  concentrations  (  mgCOD/L)     Blank   C1   C2   C3   Wastewater   Hg   74   1485   498   128   467   Hg  free   26   1510   508   131   439     Table  4:  Standard  deviation  of  COD  values  (σx)       C1   C2   C3   Wastewater   Hg     9   3   3   374   Hg  free   24   3   3   105       4.2.2.  Rejection  of  data   By  looking  at  the  table  2,  we  can  see  that  some  of  the  COD  concentrations  of   wastewater  samples  look  specious.  The  value  1303  mgCOD/L  (from  kit  with  Hg)  and   the  value  637  mgCOD/L  (from  kit  without  Hg)  seem  anomalously  large.  By  applying   the  Chauvenet´s  criterion,  we  can  decide  the  rejection  of  these  two  values.   Assuming   provisionally   all   COD   measurement   of   wastewater   samples   is   legitimate.     a.  N=6  (1303,  409,  388,  400,  354,  392);  the  mean  X  is  here  467  and  the  standard   deviation  σx    is  374.    The  difference  between  the  suspect  Xsus=1303  and  the  mean  X=   467  is  836,  or  2.2  standard  deviations;  that  is,   Tsus=  (xsus-­‐x)/  σx    =  (1303-­‐467)/374    =  2.2  
  • 9. Referring  to  the  table  in  Appendix  ii,  the  probability  that  a  measurement  will  differ   from  X  by  2.2σx  or  more  is:   Prob(outside  2.2σx)      =  1-­‐  Prob(inside  2.2σx)                        =  1-­‐  0.972                        =  0.028   In  6  measurements,  I  would  expect  to  find  0.168  of  one  measurement  as  deviant  as   the   suspect   result.   Since   0.168   is   less   than   the   0.5   set   by   Chauvenet´s   criterion,   I   should   reject   the   suspect   Xsus=   1303   mgCOD/L.   So,   the   new   mean   and   standard   deviation   for   COD   of   wastewater,   which   was   measured   by   kit   with   Hg,   would   be   respectively  315  mgCOD/L  and  21.       b.  N=5  (441,  422,  637,  456,  354);  the  mean  X  here  is  439  and  standard  deviation  σx  is   105.  The  difference  between  the  suspect  Xsus=637  and  the  mean  X=  439  is  198,  or   1.88  standard  deviations;  that  is,   Tsus=  (xsus-­‐x)/  σx    =  (637-­‐439)/105    =  1.88   Referring  to  the  table  in  Appendix  ii,  the  probability  that  a  measurement  will  differ   from  X  by  1.88σx  or  more  is   Prob(outside  1.88σx)      =  1-­‐  Prob(inside  1.88σx)                            =  1-­‐  0.939                            =  0.061   In  5  measurements,  I  would  expect  to  find  0.305  of  one  measurement  as  deviant  as   the   suspect   result.   Since   0.305   is   less   than   the   0.5   set   by   Chauvenet´s   criterion,   I   should   reject   the   suspect   Xsus=   637   mgCOD/L.   So,   the   new   mean   and   standard   deviation  for  COD  of  wastewater,  which  was  measured  by  kit  without  Hg,  would  be   respectively  421  mgCOD/L  and  48.     4.2.3.  Correct  estimator  for  all  measurements   If  we  assume  95  %  confidence  for  our  measurements,  the  average  COD  for   our  samples  would  be:     COD=  X  ±  (σx/√n)*tα/2,n-­‐1   where:     x:  mean   σx  :  standard  deviation      n:  number  of  measurements    α:  accepted  error=  5%=  0.05  
  • 10.   For  95%  confidence,  the  real  mean  of  COD  (mg/L)  for  the  standard  solutions  and  the   wastewater  sample  are  the  following:       Conclusion:  By  looking  at  the  real  mean  of  COD  for  standard  solutions,  we  can  see   that  the  two  test  kits  overlap.  Therefore,  we  can  say  that  the  two  tests  are  the  same.     For   the   wastewater   samples,   we   can   see   that   the   two   kits   almost   overlap.   The   reason,  why  they  do  not  exactly  overlap  for  wastewater  samples,  could  be  from  the   subtraction  of  the  COD  concentrations  of  samples  by  the  mean  of  the  COD  of  blanks   that  seem  incorrect.                       Reference:     Al-­‐Momani,  F.  (2003).  Combination  of  photo-­‐oxidation  processes  with  biological   treatment:  Universitat  de  Barcelona.   Association,  A.  P.  H.,  Association,  A.  W.  W.,  Federation,  W.  P.  C.,  &  Federation,  W.   E.  (1915).  Standard  methods  for  the  examination  of  water  and  wastewater   (Vol.  2):  American  Public  Health  Association.   Taylor,  J.  (1997).  Introduction  to  error  analysis,  the  study  of  uncertainties  in   physical  measurements  (Vol.  1).         C1   C2   C3   wastewater   Hg   1485±  22   498±  3   128±  7   315±  26   Hg  free   1510±  60   508±  3   131±  7   421±  77  
  • 11.   Appendix  i     a.  Procedures  for  COD  analysis  using  Kit  with  Hg