Publicité
Ericsson Technology Review: Versatile Video Coding explained – the future of video in a 5G world
Ericsson Technology Review: Versatile Video Coding explained – the future of video in a 5G world
Ericsson Technology Review: Versatile Video Coding explained – the future of video in a 5G world
Ericsson Technology Review: Versatile Video Coding explained – the future of video in a 5G world
Publicité
Ericsson Technology Review: Versatile Video Coding explained – the future of video in a 5G world
Ericsson Technology Review: Versatile Video Coding explained – the future of video in a 5G world
Ericsson Technology Review: Versatile Video Coding explained – the future of video in a 5G world
Ericsson Technology Review: Versatile Video Coding explained – the future of video in a 5G world
Ericsson Technology Review: Versatile Video Coding explained – the future of video in a 5G world
Publicité
Ericsson Technology Review: Versatile Video Coding explained – the future of video in a 5G world
Ericsson Technology Review: Versatile Video Coding explained – the future of video in a 5G world
Ericsson Technology Review: Versatile Video Coding explained – the future of video in a 5G world
Ericsson Technology Review: Versatile Video Coding explained – the future of video in a 5G world
Prochain SlideShare
Turn on 5G with Ericsson 5G PlatformTurn on 5G with Ericsson 5G Platform
Chargement dans ... 3
1 sur 13
Publicité

Contenu connexe

Publicité

Plus de Ericsson(17)

Publicité

Ericsson Technology Review: Versatile Video Coding explained – the future of video in a 5G world

  1. Machine-type detection Observed KPI values Expected KPI values M-QoE prediction Gaps (M-QoE quantification) Induced subscriber/vertical KPI gaps Device traffic Vertical KPI Subscriber KPI Application-type inference Machine learning ERICSSON TECHNOLOGY C H A R T I N G T H E F U T U R E O F I N N O V A T I O N I # 1 0 ∙ 2 0 2 0 VERSATILE VIDEO CODING EXPLAINED
  2. Many new and emerging 5G use cases will soon require video compression efficiency and functionality that are beyond the capabilities of today’s leading video codecs. Versatile Video Coding – the new video compression coding standard recently approved by the Moving Picture Experts Group and the International Telecommunication Union – includes both improved compression efficiency and new features to enhance support for immersive video and low-delay video coding. RICKARD SJÖBERG, JACOB STRÖM, ŁUKASZ LITWIC, KENNETH ANDERSSON The latest Ericsson Mobility Report estimates that video accounted for 63 percent of the traffic in mobile networks during 2019 and that this share will increase to 76 percent by 2025 [1]. Enabled by continuously improving network performance, this growth is driven by the ever-increasing availability of video content in streaming services and online apps, and by changing consumer behavior toward consumption of the content on mobile devices. The evolution toward large screens with high resolutions beyond HD on mobile devices further raises consumer expectations regarding the quality of delivered video content. Video codecs play a critical role in coping with these expectations. ■ While the quality of video content depends on several characteristics such as high pixel bit depth, high frame rate, wide color gamut (WCG) and high dynamic range (HDR), it is the resolution (the number of pixels in a video picture) that is most directly associated with the bandwidth required for transmission. Other key factors determining the required bandwidth are related to the type of the video content and the latency with which the content is delivered to the end user. Atthesametime,innovationsin5Gnetworks offernewopportunitiesforvideo-enabledservices forbothconsumers(remotelyrenderedvirtual/ extendedrealityandcloudgaming,forexample) andindustries,particularlywithrespecttothe InternetofThings(IoT)andtheautomotivesector. VersatileVideo Codingexplained – THE FUTURE OF VIDEO IN A 5G WORLD ✱ VERSATILE VIDEO CODING 2 ERICSSON TECHNOLOGY REVIEW ✱ OCTOBER 14, 2020
  3. Thesenewservicesareexpectedtorelyon continuedvideoevolutiontoward8Kresolutions andbeyond,andonnewstrictrequirementssuchas lowend-to-endlatencyforvideodelivery.Sincethe datarateofsuchvideo-enabledservicesisextremely high,thecostwouldbeprohibitive–eveninthemost modernnetworks–unlessthevideowascarried inacompressedformat,withthehelpofanext generationvideocodec. VersatileVideoCoding(VVC),thenewvideo compressioncodingstandardthatwillbepublished asISO/IEC23090-3andITU-Trecommendation H.266,offersthehighestcompressionefficiency availabletodayandisthereforethecodecthatis bestsuitedtoofferasuitableperformancelevelfor newmediaservicesover5Gnetworks.Itcanalso enhancetheuserexperienceforexistingvideo servicesbydeliveringsubstantiallyhigherquality atthesamebitrate. Alternatively,itcanbeusedtoreducethebitrate (roughlybyhalf)whilemaintainingthesamequality. Forsomelegacyapplications,thecostofreplacingan oldercodecsuchasH.264withaneweronesuchas HEVChasnotbeeneconomicallybeneficial, sincethereductioninbitrateof40percenthasnot compensatedforthecostofreplacingalargenumber ofsettopboxes.Eveninsomeofthesecases,the introductionofVVCmaychangethiscalculation sincethebitratereductioncomparedtotheolder codecissomuchgreater.Figure1providesan overviewofpotentialapplicationareas. Videocompressionoptionsavailabletoday Avideocodec,whichcanbeimplementedin hardwareorsoftware,encodesand/ordecodes digitalvideo.Modernvideocodecscanreducethe bitrateofuncompressedvideotolessthanone percentoftheoriginalratewithoutanynoticeable visualqualitydegradations.Themajorityofthese videocodecshavebeenstandardizedandpublished byastandardsdevelopmentorganization(SDO). Themostpopularandwidelydeployedcodecs includetheMPEG(MovingPictureExpertsGroup) seriesfromISO/IEC(InternationalOrganization forStandardization/InternationalElectrotechnical Commission)andthecorrespondingH.26xseries Figure 1 VVC application areas Versatile Video Coding High-quality HD and 4K video streaming Enhancing existing services Enabling new services Telepresence and screen sharing 8K HDR video streaming Low-latency cloud gaming Immersive XR and telepresence IoT and automative 360-video VR streaming VERSATILE VIDEO CODING ✱ OCTOBER 14, 2020 ✱ ERICSSON TECHNOLOGY REVIEW 3
  4. fromtheITU-T(ITUTelecommunication StandardizationSector),whichweredeveloped jointly.Thenamingconventionforthesecodecsis MPEG-2/H.262,AVC/H.264(AdvancedVideo Coding)andHEVC/H.265(HighEfficiencyVideo Coding).Othervideocodecoptionsinclude Google’sVP8andVP9,andtheAllianceforOpen Media’sAV1. MPEG-2/H.262 TheMPEG-2videocodecwaspublishedin1994 andisstillinwideusetodayinstandarddefinition digitalTVservices.Itscompressionefficiencyislow whencomparedwithmorerecentvideocodecs. ThemainreasonforusingMPEG-2todayisto supportexistingset-top-boxes,asthecostof replacingthesemaybehigherthananypotential savingsfromanewvideocodec. AdvancedVideoCoding AVC/H.264waspublishedin2003andiscurrently themostwidelyusedvideocodec.Itissupportedby practicallyallmobiledevices,isheavilyusedfor videocarriedovertheinternet,andisthepreferred videocodecforHDTV. HighEfficiencyVideoCoding HEVC/H.265[2]isthesuccessortoH.264andwas publishedin2013.ComparedwithH.264,itdelivers thesamevisualqualityatroughly40percentlower bitrate.ThereiswidespreadsupportforHEVC acrossTVsandmobiledevices.HEVChasbeen selectedbytheDVB(DigitalVideoBroadcasting) andATSC(AdvancedTelevisionSystems Committee)standardsorganizationsfor4K broadcastservicesandisrecommendedby3GPP forHD(HDR)and4Kmobilestreaming. VP8andVP9 On2Technologies,whichwasacquiredbyGoogle in2010,releasedtheVP8videocodecin2008, whichthenbecameaproposedroyalty-freeoption in2013.Ithasmostlybeenusedasanalternative toH.264inWebRTC,aframeworkforreal-time webcommunication.VP9,asuccessortoVP8, wasdevelopedinternallyatGoogleandreleasedas opensourceinlate2012.TheuseofVP9for4K YouTubevideoshasledtoTVmanufacturers incorporatingVP9decodingintovirtuallyall4K TVsets,therebyspreadingsupportofVP9 toasubstantialnumberofdevices. AV1 In2015,agroupofcompaniesincludingAmazon, Facebook,Google,Intel,MicrosoftandNetflix foundedtheAllianceforOpenMedia(AOMedia) withtheaimofdevelopinganewroyalty-freevideo codec.Thespecificationforthatcodec,AV1,was publishedonJanuary8,2019.Althoughpatent reviewswereconductedduringthedevelopmentto avoidinfringingonthird-partyintellectualproperty rights,thepatentlicensingorganizationSisvel announcedinMarch2019thatitwouldforma patentpoolforAV1.Asaresult,theroyalty-free statusofAV1isuncertain. VersatileVideoCoding–thedevelopment process VersatileVideoCoding(H.266)wasstandardized inajointeffortbytheVideoCodingExperts GroupoftheITU-TandMPEGoftheISO/IECand isthereforethelatestmemberofasuccessfulfamily ofvideocodecsthatincludesMPEG-2, H.264andHEVC.Incontrasttoproprietary alternatives,allfourofthesevideocodingstandards weredevelopedinanopenandcollaborative fashionwithagreedrequirementsandtimelines. ThedevelopmentofVVCfolloweda well-establishedstandardizationprocess, whichstartedwithatechnologyexplorationactivity in2015,includedaformalcallforproposalsin2018 andconcludedinJuly2020asatechnicallyfrozen standard.Thedevelopmentprocessinvolved internationalstakeholdersacrosstheentiremedia ecosystem:contentproducers,manufacturers, VVCISTHELATEST MEMBEROFASUCCESSFUL FAMILYOFVIDEOCODECS ✱ VERSATILE VIDEO CODING 4 ERICSSON TECHNOLOGY REVIEW ✱ OCTOBER 14, 2020
  5. operators,broadcasters,chipsetvendorsand academics.Throughouttheprocess,all documentationincludingtechnicalcontributions, draftspecificationtext,referencesoftwareand conformancebitstreamsweremadeavailable publicly. Ericssonhasbeenanactiveparticipantinvideo standardizationformorethan20yearsandwas closelyinvolvedinthedevelopmentoftheVVC standard.Throughouttheprocess,weledseveral ofthecoreexperiments,chairedad-hocworking groupsandmadesignificantcontributionstothe developmentofthetechnologybehindthevideo codec,mostnotablyintheareasofdeblocking filtering,referencepicturemanagement,low-delay videocodingandoptimizedencoderconfigurations. Wealsoparticipatedineffortsthatmadeanimpact inotherareasofthevideocodecsuchasintra andinterpredictionandadaptiveloopfiltering. Keybenefitsofversatilevideocoding Asthelatestandmostsophisticatedvideocodecto date,VVCoffersthehighestcompressionefficiency ofallvideocodecs,anditisparticularlyappropriate forhigherresolutionvideostreamsduetoits codingtools,whichcanoperateonblocksizes ofupto128x128pixelsandwith64x64samplesize transforms.VVCcanachieveareductioninbitrate ofaround40percentforexistingHDand4K servicesdeployedwithHEVC,atthesame visualquality. Figure2providesaperformancecomparison betweenVVCandfourothervideocodecs. ThecomparisonwasdonebyEricssonResearch usingvarioussourcesofinformationincluding in-housetesting[3,4].Thefigureshowsthe approximaterelativebitraterequirementforeach videocodecinordertoreachthesamevideopicture qualityforHDand4Kcontent,benchmarked againsttheHEVCvideocodec,whichisnormalized to100percent.VVCperformssignificantlybetter, requiringonly60percentoftherelativebitrate comparedwith bothHEVCandAV1. Ontopofitssuperiorcompressionperformance, theversatilityofVVCalsomakesitanattractive choicebeyondmainstream2Dvideoservices. VVChasbeendesignedtohandlebothtraditional camera-capturedcontentaswellastheincreasingly VERSATILE VIDEO CODING ✱ OCTOBER 14, 2020 ✱ ERICSSON TECHNOLOGY REVIEW 5 Figure 2 Relative bitrates for the same video quality 180% 160% 140% 120% 100% 80% 60% 40% 20% 0% 170% Relative bitrates for the same video quality (lower is better) H.264 VP9 HEVC AV1 VVC 120% 100% 100% 60%
  6. prevalentcomputer-generatedimageryusedin applicationssuchasonlinegaming,e-sportsvideo streamingandscreen-sharingapplications. Immersivevideo Incontrasttotraditionaltwo-dimensionalvideo, whereoneparticularviewiscapturedbyacamera, immersivevideoisvideoinwhicheveryangleis recorded.Duringplayback,whichatpresent typicallyoccursonavirtualreality(VR)headset, theuserisnotconstrainedtoaparticularviewbut canlookaroundfreely.Whentheviewerdoesnot changeposition,thisiscalledthreedegreesof freedom(3DoF)immersivevideo,ormore commonly360-degreevideo. 360-degreevideoistypicallystoredina projectionformat.Onesuchformatis equirectangularprojection,whichissimilar tohowtheearthispicturedonaworldmap. Amorepopularformat,however,iscubemap projection.Here,eachfaceofthecuberepresents one-sixthofthespherearea,andthesixfaces arearrangedinonerectangularvideopicture. Thisenablestheuseoftwo-dimensionalvideo codecstohandletheimmersivecontent. Duetothenatureofthehumanvisualsystem, ahigh-qualityrepresentationofthefull360-degree videosphereisonlyneededfortheuser’scurrent gazedirection.Awell-knowntechniquefor exploitingthispropertyistosplitthefull360-degree videocontentintomultiplesmallrectangularregions andonlyconveyandrenderregionsinhighquality thatcovertheareatheuseriscurrentlylookingat, calledtheviewport.Toaccommodatefasthead motion,videoisalsotransmittedforthe non-viewportarea,butthequalityofthat videoismuchlower. Tothatend,andtohelpwithotherimmersive videoapplicationssuchasremotelyrenderedVR, VVCintroducestheconceptofsubpictures,which allowsfortheefficientextractionandmerging ofpiecesofvideoofdifferentqualitythatisa requirementforlargerresolutionimmersiveformats. Asubpictureisarectanglewithinthefullvideo picturethatisfullyindependentofothersubpictures anddesignedtobeeasytoextractandmergewith othersubpictures.Previousvideocodecsprovided similarfunctionalityusingmotion-constrainedtile sets,butsubpicturesarebothmuchmoreefficient andeasiertomanage. Theefficiencyofthesubpicturedesigncomes frombuilt-inadjustmentsoflow-levelcodingtools, wherepreviousdesignsrequiretheencoderstobe veryrestrictive.Previousdesignsalsorequire rewritingofsubstantialamountsofcodeddata– aburdenthatislargelyalleviatedbytheuseof subpicturesinVVC.TheuseofsubpicturesinVVC significantlyreducesthecomplexityofapplication systems.Thiscapability,togetherwithitssuperior compressionefficiency,makesVVCthebestvideo codecchoiceforimmersivevideoapplications. Low-delayvideocoding Low-delayvideocodingisakeytechnologyfor certaintime-criticalvideoapplicationssuchas videoconferencing,cloudgamingandremote controlofroadvehiclesanddrones.Toreducethe latencycausedbyexcessivedatabuffering,thevideo encodertypicallyaimstogenerateassmoothadata rateaspossible.Onewell-knownvideocodec featureisgradualdecodingrefresh(GDR), whichprovidessmoothtune-inpointsinthe bitstreamwithouttheneedtoencodesingle refreshpictures(intrapictures)thatresultin bitratespikesandhighlatencies.Instead,smooth tune-inpointsaregeneratedbyspreadingthe refreshacrossmultiplepictures. GDRhasbeensupportedinmanyoldervideo codingstandardssuchasH.264andHEVC,butin thosecasesthefeatureisconveyedinasupplemental enhancementinformation(SEI)message,which makesGDRoptional.Thismeansthatanencoder cannotbecertainthatthedecodersarecapable THEUSEOFSUBPICTURES INVVCSIGNIFICANTLY REDUCESTHECOMPLEXITY OFAPPLICATIONSYSTEMS ✱ VERSATILE VIDEO CODING 6 ERICSSON TECHNOLOGY REVIEW ✱ OCTOBER 14, 2020
  7. oftuninginatGDRpositions.However,during standardizationofVVC,anEricssonproposalto addaGDRpicture-typeindicatortothestandard wasadopted.ThismakesGDRsupportmandatory inVVC,whichensuresdecoderinteroperability forsuchlow-delayapplications. BesidestheGDRfeature,VVCalsoinherited decodingunit(DU)baseddecoderoperationfrom itspredecessor,HEVC.DUsenableanencoderto outputafirstpartofapicture,inaspecified controlledmanner,withoutrequiringtheentire picturetofirstbeencoded.DUsandmandatory GDRsupportmakeVVCtheprimevideocodec choiceforlow-delayvideoapplications. HowVVCworks Itisimportanttonotethatthesuperiorcoding efficiencyofVVCisnotduetoanysingle compressiontool.Rather,itistheresultofcombining manytools,eachcontributingwithasmall compressionimprovement.Themostsignificant ofthesetoolsareblockpartitioning,advancedinter prediction,dependentquantization,adaptive loopfilteringandimproveddeblockingfiltering. Theadditionofsophisticatednewcodingtools hasalsohadanimpactoncomputationalcomplexity. Asaresultofthesedevelopments,itisexpectedthat VVCdecodercomplexitywillbearoundtwicethat ofHEVC. Blockpartitioning Similartoitspredecessors,VVCusesablock-based hybridcodingarchitecture.Avideocodecbasedon suchanarchitecturedoesnotcodepixelvalues directlybutinsteadpredictsandcodesonlyerror informationtocompensatefortheinaccurate prediction.Theprocessrunsonblocksofpixels ratherthantheentirepicture,sincethismakesit possibletoadjusttolocalvideopicture characteristics,minimizingthepredictionerror. Forvideocodecsbasedonsuchanarchitecture, anefficientpicturepartitioningschemeispivotal toachievinghighcompressionefficiency. InVVC,eachpictureissplitintonon-overlapping squarescalledcoding-treeunits(CTUs).Thelargest CTUsizeallowedinVVCis128x128pixels,larger thanthe64x64maximumsizeallowedinHEVC. Largeblocksimprovetheefficiencyofcoding flatareassuchasbackgrounds,especiallyfor high-resolutionvideossuchasHDand4K. Inordertoefficientlyrepresenthighlydetailed areassuchastexturesandedges,VVCemploys aflexiblepartitioningschemethatcanpartition 128x128-sizedCTUsdowntocodingunits(CUs) assmallas4x4pixels. Theschemeisbasedontwoparts.Thefirstisthe quaternarytree(quadtree)splitthatisalsoavailable inHEVC,whichcanrecursivelysplitCTUinto squaredCUsdownto4x4pixels,smallerthanthe 8x8minimumCUsizeinHEVC.Thesecondpart consistsofbinary-treeandternary-treesplitsthat partitionablockintotwoandthreerectangles respectively.Bothbinaryandternarytreesplits canoperateineitherhorizontalorvertical directions,berecursivelyappliedandmixed togetherinanestedmulti-typetree. Terms and abbreviations 3DOF – Three Degrees of Freedom | ALF – Adaptive Loop Filter | CTU – Coding-Tree Unit | CU – Coding Unit | DU – Decoding Unit | DVB – Digital Video Broadcasting | GDR – Gradual Decoding Refresh | HDR – High Dynamic Range | HEVC – High Efficiency Video Coding | IEC – International Electrotechnical Commission | IETF – Internet Engineering Task Force | ISO – International Organization for Standardization | ITU– International Telecommunication Union | ITU-T – ITU Telecommunication Standardization Sector | MPEG – Moving Picture Experts Group | SDO – Standards Development Organization | UHD – Ultra High Definition | VR – Virtual Reality | VVC – Versatile Video Coding | XR – Extended Reality VERSATILE VIDEO CODING ✱ OCTOBER 14, 2020 ✱ ERICSSON TECHNOLOGY REVIEW 7
  8. Figure3providesanexampleofthepartitioning ofaclose-upsectionofapicture.HEVCblock partitioning(attopright)usesquaternary-treesplit withcodingblocksupto64x64pixels.VVCblock partitioning(atbottomright)usesquaternary-tree splitwithcodingblocksupto128x128pixelsand nestedmulti-typetreesplitemployingbinaryand ternarytreesplits. TheblockpartitioninginVVCishighlyflexible andprovidesabout8percentbitratereductionover HEVC[5].However,thisflexibilitycomesata computationalcost,especiallyontheencoderside, wheremanymorepermutationsneedtobe evaluatedtoselecttheoptimalpartition. Advancedinterprediction Oneofthemostefficientbit-savingtechniquesin videocompressionisinter-pictureprediction(more commonlyreferredtoasinterprediction),which simplymeanscopyingsamplevaluesfrompreviously codedpictures.Theinformationaboutwhereto copyfrom–thehorizontalandverticaldisplacement forablock–isstoredinwhatiscalledamotion vector.Techniquesthatimproveinterpredictionare responsibleforasubstantialpartofthebitrate reductionbetweenVVCandHEVC. Whilemanytechniqueshavebeenusedtoachieve theadvancedinterpredictioninVVC,fiveofthem areparticularlynoteworthy:theaffinemotion model,adaptivemotionvectorresolution, bi-directionalopticalflow,decoderside-motion vectorrefinementandgeometricpartitioningmode. Theprecisionofthemotionvectorshasalsobeen increasedto1/16pixelcomparedtothequarterpixel resolutionofHEVC. Inpreviousvideocodingstandards,ithasbeen possibletocompensatefortranslationalmotion; thatis,thedecodercanbeinstructedtofetchsample valuesnotfromthesameplaceinapreviousimage butratherfromanotherposition(1.75pixelstothe left,forexample).InVVC,theaffinemotionmodel toolmakesitpossibletospecifynotonlydistance 180% 160% 140% 120% 100% 80% 60% 40% 20% 0% 170% Relative bitrates for the same video quality (lower is better) H.264 VP9 HEVC AV1 VVC 120% 100% 100% 60% Figure 3 Comparison of the partitioning of a close-up section of a video picture in HEVC and VVC ✱ VERSATILE VIDEO CODING 8 ERICSSON TECHNOLOGY REVIEW ✱ OCTOBER 14, 2020
  9. butalsorotationandzoom,whichcansavealotof bitsforsequencescontainingsuchmotion. Anotherbit-savingtechniqueinVVCisthe abilitytovarytheprecisionofthemotionvectors. Forexample,theencodercansignaltothedecoder thattheincomingmotionvectorsareinintegeror four-times-integerresolution.Thiscansavebits whenpredictingsmoothareaswheretheexact sub-pixelprecisiondoesnotgivemuchimage improvementoverintegerprecisionandalso whenrepresentinglargemotionvectors. TheadvancedinterpredictioninVVCfurther exploitsthefactthatinsomecasesmotion informationdoesnothavetobeexplicitly transmitted(asmotionvectors)butcaninsteadbe inferredfromsimilarlymovingpartsofthepicture. Forexample,thebi-directionalopticalflowtool inVVCcaninfermotionvectorsbymeasuring theopticalflowinreferencepicturesandthe decoderside-motionvectorrefinementcaninfer motionvectorsbyminimizingdifferencesbetween referencepictures. Finally,theadvancedinterpredictioninVVC alsoexploitsmotionsofnon-rectangularshapes tobetteralignwiththeshapeofmovingobjects. Thismeansthatonehalfoftheblockcanhave onemotionvectorandtheotherhalfoftheblock canhaveanotherwiththehalvesseparatedbya singlegeometricallinethatisdeterminedbyan angleandanoffset. Dependentquantization Thequantizerisacorepartofavideocodecthat isdirectlylinkedtooperationalcontrolofvideo bitrateandvisualquality.Byadjustingthe quantizationstep,theencodercontrolsthefidelity oftheerrorsignal(transformcoefficients),whichis thencodedwithanentropycoderandsentinthe videobitstream. PreviousstandardssuchasHEVChaveused ascalarquantizerbutsincetheentropycoder processeseachtransformcoefficientinacoding blockinsequentialorder,therewasaninherent inefficiencyifthequantizationlevelofeach coefficientweretobedeterminedindependently. Tooptimizethedeterminationofquantization levelswithinablock,sophisticatedencoders useanalgorithmcalledtrellisquantization. InVVC,dependentquantizationhasbeen introduced,wherethecodeccanswitchbetween twoshiftedquantizersandtherebyreducethe quantizationerror.IntheVVCdesign,the quantizationlevelsforagiventransformcoefficient dependonthevaluesoftheprecedingquantized coefficients.Tousethistooleffectively,anencoder thereforeneedstoevaluatehowthedetermined quantizationlevelforeachcoefficientimpacts boththebitcountandthetotalreconstruction errorforthewholeblock.Inthisway,thedependent quantizationremovestheinefficiencyofquantizing coefficientsindependentlyandtherebyprovides asubstantialbit-reductionoverHEVC. Adaptiveloopfiltering Theadaptiveloopfilter(ALF)isanewin-loopfilter inVVC.ALFscansthepictureafterithasbeen decodedandselectivelyapplies(onaCTUbasis) oneofseveraltwo-dimensionalfiniteimpulse responsefiltersbeforethepicturebecomesoutput orisusedforprediction.Thevideoencoder calculatesthesetsoffiltercoefficientsthatwill leadtothesmallesterrorandtransmitsthoseto thevideodecoder.ALFhastheabilitytocleanup artifactsinthepictureandalsocontributestoa substantialbit-reductionoverHEVC. Improveddeblockingfiltering VVCanditspredecessorsHEVCandH.264 areallblock-basedvideocodecs.Thedownside oftheblock-basedapproachisthatitcangiverise to“blockartifacts”–visibleedgesatsomeblock borders.Deblockingfilteringisanapproachto reducetheseartifactsbyselectivelysmoothing DEPENDENTQUANTIZATION REMOVESTHEINEFFICIENCY OFQUANTIZINGCOEFFICIENTS INDEPENDENTLY VERSATILE VIDEO CODING ✱ OCTOBER 14, 2020 ✱ ERICSSON TECHNOLOGY REVIEW 9
  10. acrosstheblockboundaries.Thedeblocking filteringinVVCisbasedontheHEVCdeblocking filtering,forwhichEricssonwastheleading contributor.Ontopofthisalreadystrongbase, VVCiscapableofusinglongerdeblockingfilters, wheremajorpartsweredesignedbyEricsson. Thelongdeblockingfiltersallowforstronger deblockingthatcanbemoreeffectiveinhiding blockartifacts,especiallyforlargerblocks (128x128sizedblocks,forexample)inrelatively smoothareas.Thelongdeblockingfilterscontribute significantlytotheimprovedsubjectivequality ofVVCcomparedtoHEVC. What’snextforVVC? Intoday’scompetitivevideocodeclandscape,video compressionperformanceiskeytosuccessful marketadoption,butitisnotthesoledetermining factor.Availabilityofthetechnologyiscritical, especiallytheavailabilityofhardware-accelerated decodersinchipsetsandprocessors.Arecent predictionfromamajorchipsetvendorstatedthat firstcommercialVVCshipmentscouldstartassoon as2021.Software-basedsolutionsaretypicallyfaster torolloutandareessentialespeciallyintheearly phasesofdeploymentacrosstheecosystem.Inthe caseofVVC,thefirstdemonstrationsofreal-time softwaredecoderstookplaceshortlybeforethe standardwascompleted. Sincevideocodecsdonotoperateinasilo, supportandinteroperabilityacrosstheecosystem intermsofmediadeliveryprotocolsandapplication specificationsarerequired.SomeoftheSDOs suchasMPEGandIETFarelookingintoproviding supportforcarriageofVVCintheirrespective mediatransportspecifications.Organizations suchas3GPPandDVBareinvestigatingVVC inthecontextofnext-generationservicesincluding 5G-enabledonessuchas8K(7680x4320video) and360-degreevideoVRstreaming.Unlikeits predecessors,thefirstversionoftheVVCstandard includessupportforabroadrangeofapplications acrossthemediaecosystem,whichislikelytohave apositiveimpactonthecostofdeploymentand interoperabilityofVVC-basedsolutionsand services. Inordertofacilitatecross-industrydiscussion aroundnon-technicalaspectsofVVCdeployment suchaslicensing,marketingandinteroperability activities,Ericssonandotherindustryleaders launchedtheMediaCodingIndustryForum (MC-IF)in2018.Sincethen,MC-IFhashosteda seriesofworkshopsandeventstogatherwider industryinputoncommercialaspectsthatmay furtherearlyVVCadoption.Inparticular,timely availabilityoflicensingtermsforVVCwas establishedasoneofthekeyfactorsforVVC deployment.Tothisend,shortlyafterthefinalization ofVVCdevelopment,MC-IFinitiatedfostering effortsforapatentpoolprogramessentialtoVVC. Conclusion VersatileVideoCodingrepresentsstate-of-the artvideocodingandiscertaintoplayanimportant roleinsupportingawiderangeof5Gusecases. Designedtomanagethehighdemandthat increasingamountsofvideoposesonnetworks, ourresearchrevealsthatVVCachievesthebest availablecompressionperformanceata computationalcomplexitysuitablefor implementationinbothsoftwareandhardware. AsoneofthemaincontributorstoVVC,webelieve itsdeploymentwillsignificantlyreducethe dataratesofexistingvideoservicesaswellas servingasaprimaryenablerfornext-generation mediaservices. THELONGDEBLOCKING FILTERSCONTRIBUTE SIGNIFICANTLYTOTHE IMPROVEDSUBJECTIVE QUALITYOFVVCCOMPARED TOHEVC ✱ VERSATILE VIDEO CODING 10 ERICSSON TECHNOLOGY REVIEW ✱ OCTOBER 14, 2020
  11. Further reading ❭ Ericsson blog, Cutting the bitrate with Versatile Video Coding, available at: https://www.ericsson.com/en/ blog/2019/7/mpeg-cut-the-bitrate-versatile-video-coding ❭ Ericsson blog, Industry Forum to promote Versatile Video Coding, available at: https://www.ericsson.com/ en/blog/2018/9/industry-forum-to-promote-versatile-video-coding References 1. Ericsson Mobility Report, June 2020, available at: https://www.ericsson.com/en/mobility-report/reports/ june-2020 2. Ericsson Technology Review, Next generation video compression, April 24, 2013, Fröjdh, P; Norkin, A; Sjöberg, R, available at: https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/ articles/next-generation-video-compression 3. 2019 Picture Coding Symposium (PCS), Ningbo, China, 2019, pp. 1-5, Compression Performance of the Versatile Video Coding: HD and UHD Visual Quality Monitoring, Sidaty, N. et al., available at: https://ieeexplore.ieee.org/document/8954562/authors#authors 4. ResearchGate, SMPTE Motion Imaging Journal, vol. 128, no. 10, pp. 14-24, Nov.-Dec. 2019, Analysis of Emerging Video Codecs: Coding Tools, Compression Efficiency and Complexity, J. L. Tanou and M. Blestel, available at: https://www.researchgate.net/publication/332073033_Analysis_of_Emerging_Video_ Codecs_Coding_Tools_Compression_Efficiency_and_Complexity 5. IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, issue 5, pp. 1311-1325, May 2020, doi: 10.1109/TCSVT.2019.2945048, A VVC Proposal With Quaternary Tree Plus Binary-Ternary Tree Coding Block Structure and Advanced Coding Techniques, Y. Huang et al., available at: https://ieeexplore.ieee.org/document/8859290 VERSATILE VIDEO CODING ✱ OCTOBER 14, 2020 ✱ ERICSSON TECHNOLOGY REVIEW 11
  12. theauthors ✱ VERSATILE VIDEO CODING 12 ERICSSON TECHNOLOGY REVIEW ✱ OCTOBER 14, 2020 Rickard Sjöberg ◆ is an expert in video compression at Ericsson Research where he currently works as a technical lead in video coding research. He joined Ericsson in 1996 and has contributed several hundred proposals for the ITU-T and MPEG video-coding standards. In addition, he has worked in product development related to video coding at Ericsson, including six months at Ericsson Television in Southampton in the UK. Sjöberg holds an M.S. in computer science from KTH Royal Institute of Technology in Stockholm, Sweden. Jacob Ström ◆ is a principal researcher at Ericsson Research with a focus on video compression. He joined Ericsson in 2001 and has contributed to standardization in the area of high dynamic range video as well as to the standardization of both HEVC and VVC. He is coauthor of more than 120 granted patents and has a similar number of patents pending. Ström holds a Ph.D. in image coding from Linköping University, Sweden, and has been a visiting Ph.D. student at the University of California San Diego and the Massachusetts Institute of Technology (MIT) in the US. Łukasz Litwic ◆ is a research leader at Ericsson Research. He joined Ericsson Television in 2007, where he worked on various aspects of image processing and video compression research, which formed the foundation of Ericsson real-time broadcast encoding products. In 2017, he joined Ericsson Research in Stockholm, Sweden, where he leads the Visual Technology team. He holds an M.S. from Gdansk University of Technology, Poland, and a Ph.D. from the University of Surrey, in Guildford in the UK. Kenneth Andersson ◆ is a senior specialist in video coding at Ericsson Research. He joined Ericsson in 1994 to work on speech coding and since 2005 has been active in video coding standardization in ITU-T and ISO/IEC for development of HEVC and VVC. He holds an M.Sc. in computer science and engineering from Luleå University in Sweden and a Ph.D. from Linköping University.
  13. ISSN 0014-0171 284 23-3349 | Uen © Ericsson AB 2020 Ericsson SE-164 83 Stockholm, Sweden Phone: +46 10 719 0000
Publicité