SlideShare une entreprise Scribd logo
1  sur  19
Télécharger pour lire hors ligne
Delivering Transformation. Together.
*Réussirlatransformation.Ensemble.
Apprentissage Automatique
10/03/2017
Règles et équations sont trop complexes - comme dans le
reconnaissance facial ou vocale.
Les règles d'une tâche sont en constante évolution - comme
dans la détection des fraudes à partir des enregistrements de
transactions.
La nature des données ne cesse de changer et le programme doit
s'adapter, comme dans le commerce automatisé.
L'APPRENTISSAGE AUTOMATIQUE
Références commerciales2
QUAND FAUT-IL L’UTILISER?
Avec l'apprentissage de la machine, il y a rarement une ligne droite du
début à la fin - vous vous retrouverez constamment en itération et en
essayant différentes idées et approches.
L'APPRENTISSAGE AUTOMATIQUE
RAREMENT UNE LIGNE DROITE
Références commerciales3
Références commerciales4
Apprentissage automatique I
Apprentissage supervisé
Classification
Prédire des réponses continues
Régression
Prédire des réponses discrètes
Apprentissage non
supervisé
Clustering
Trouver des structures
intrinsèques dans les données
Support Vector Machines
Discriminant Analysis
Naive Bayes
Nearest Neighbor
Linear Regression, GML
SVR, GFR
Ensemble Methods
Decision Trees
Neural Networks
K-Means, K-Medoids
Hierarchical clustering
Gaussian Mixture
Self Organization Map
Fuzzy C Means
L'APPRENTISSAGE AUTOMATIQUE
MODEL DE COMPLEXITÉ VS POUVOIR DE PREDICTION
Références commerciales5
L'apprentissage non supervisé est utile lorsque vous souhaitez explorer vos
données mais que vous n'avez pas encore un objectif précis ou que vous ne
savez pas quelles informations contiennent les données. C'est aussi un bon
moyen de réduire les dimensions de vos données.
L'APPRENTISSAGE AUTOMATIQUE
APPRENTISSAGE NON SUPERVISÉ
Références commerciales6
Apprentissage
non supervisé
Cluster de
Données
Résultats
Données de
dimension bas
Sélection de
fonctionnalité
Apprentissage
supervisé
Modèle
L'APPRENTISSAGE AUTOMATIQUE
APPRENTISSAGE NON SUPERVISÉ – HARD CLUSTERING
Références commerciales7
Partitionne les données en k nombre de
clusters mutuellement exclusifs. La mesure
dans laquelle un point s'insère dans un
groupe est déterminée par la distance entre
ce point et le centre du cluster.
Fonctionnement
k-Means
Utilisation conseillé
• Lorsque le nombre de clusters est connu
• Pour le regroupement rapide de grands
ensembles de données
Résultat
Similaire à k-moyens, mais avec l'exigence
que les centres de cluster coïncident avec les
points dans les données.
Fonctionnement
k-Medoids
Utilisation conseillé
• Lorsque le nombre de clusters est connu
• Pour le regroupement rapide de données
catégorielles
• Échelle vers de grands ensembles de données
Résultat
Clusters au centre Clusters qui coïncident avec les points de données
L'APPRENTISSAGE AUTOMATIQUE
APPRENTISSAGE NON SUPERVISÉ – HARD CLUSTERING
Références commerciales8
Produit des ensembles imbriqués de grappes
en analysant des similitudes entre des paires
de points et en regroupant des objets en un
arbre hiérarchique binaire.
Fonctionnement
Hierarchical Clustering
Utilisation conseillé
• Si vous ne savez pas à l'avance le nombre de
clusters dans vos données
• Vous souhaitez que la visualisation guide
votre sélection
Résultat
Mise en cluster basée sur le réseau neuronal
qui transforme un ensemble de données en
une carte 2D en préservation de la topologie.
Fonctionnement
Self-Organizing Map
Utilisation conseillé
• Visualiser des données tridimensionnelles en
2D ou 3D
• Déduire la dimensionnalité des données en
préservant sa topologie (forme)
Résultat
Relation hiérarchique
entre clusters Représentation en 2D / 3D
L'APPRENTISSAGE AUTOMATIQUE
APPRENTISSAGE NON SUPERVISÉ – SOFT CLUSTERING
Références commerciales9
Mise en cluster par partition lorsque les
points de données peuvent appartenir à plus
d'un cluster.
Fonctionnement
Fuzzy c-Means
Utilisation conseillé
• Lorsque le nombre de clusters est connu
• Pour la reconnaissance des motifs
• Lorsque les clusters se chevauchent
Résultat
Le clustering basé sur la partition où les
points de données proviennent de différentes
distributions normales multivariées avec
certaines probabilités.
Fonctionnement
Gaussian Mixture Model
Utilisation conseillé
• Lorsqu'un point de données peut appartenir à
plus d'un cluster
• Lorsque les grappes ont des tailles et des
structures de corrélation différentes
Résultat
Les centres de grappes
(similaires aux k-
moyens), mais avec un
flou pour que les points
appartiennent à plus
d'un cluster
Un modèle de distributions
gaussiennes qui donnent
des probabilités d'un point
étant dans un cluster
Un algorithme d'apprentissage supervisé prend un ensemble connu de données
d'entrée (l'ensemble d'apprentissage) et des réponses connues aux données
(sortie), et forme un modèle pour générer des prévisions raisonnables pour la
réponse aux nouvelles données d'entrée. Utilisez l'apprentissage supervisé si vous
avez des données existantes pour la sortie que vous essayez de prédire.
L'APPRENTISSAGE AUTOMATIQUE
APPRENTISSAGE SUPERVISÉ
Références commerciales10
Binaire
Multi classe
Sélection des
Algorithmes par
Vitesse de la
formation
Utilisation de
la mémoire
Précision sur
les nouvelles
données
Transparence
d’interprétation
Forme
Classification
Régression
L'APPRENTISSAGE AUTOMATIQUE
APPRENTISSAGE SUPERVISÉ - CLASSIFICATION
Références commerciales11
La régression logistique est couramment
utilisée comme point de départ pour les
problèmes de classification binaire.
Fonctionnement
Logistic Regression
Utilisation conseillé
• Lorsque les données peuvent être clairement
séparées par une seule frontière linéaire
• Line de base pour évaluer des méthodes de
classification plus complexes
Résultat
KNN classe les objets en fonction des classes de
leurs voisins les plus proches dans l'ensemble de
données. KNN prédisent que les objets proches les
uns des autres sont similaires.
Fonctionnement
k Nearest Neighbor (kNN)
Utilisation conseillé
• Lorsque vous avez besoin d'un algorithme simple pour
établir des règles d'apprentissage de référence
• Lorsque l'utilisation de la mémoire du modèle formé est
une préoccupation moindre
• Lorsque la vitesse de prédiction du modèle formé est une
préoccupation moindre
Résultat
L'APPRENTISSAGE AUTOMATIQUE
APPRENTISSAGE SUPERVISÉ - CLASSIFICATION
Références commerciales12
Une arborescence de décision vous permet
de prédire les réponses aux données en
suivant les décisions dans l'arborescence,
depuis la racine (début) jusqu'à la feuille.
Fonctionnement
Decision Tree
Utilisation conseillé
• Lorsque vous avez besoin d'un algorithme facile
à interpréter et à ajuster rapidement
• Pour minimiser l'utilisation de la mémoire
• Lorsque la précision prédictive élevée n'est pas
une exigence
Résultat
Dans ces méthodes d'ensemble, plusieurs arbres de
décision «plus faibles» sont combinés dans un
ensemble «plus fort». Un arbre de décision ensaché
se compose d'arbres qui sont formés
indépendamment sur les données .
Fonctionnement
Bagged and Boosted Decision Trees
Utilisation conseillé
• Lorsque les prédicteurs sont catégoriques
(discrets) ou se comportent de façon non linéaire
• Combiner simple classificateurs en un autre plus
complexe.
• Lorsqu'on veux un erreur très faible (no overfith)
Résultat
L'APPRENTISSAGE AUTOMATIQUE
APPRENTISSAGE SUPERVISÉ - CLASSIFICATION
Références commerciales13
Classifie les données en trouvant la limite de
décision linéaire (hyperplan) qui sépare tous
les points de données d'une classe de ceux de
l'autre classe
Fonctionnement
Support Vector Machine (SVM)
Utilisation conseillé
• Pour les données qui ont exactement deux classes
• Pour les données à grande dimension et non
linéairement séparables
• Lorsque vous avez besoin d'un classificateur
simple, facile à interpréter et précis
Résultat
L'analyse discriminante classe les données en
trouvant des combinaisons linéaires des
caractéristiques basées sur des distributions
gaussiennes
Fonctionnement
Discriminant Analysis
Utilisation conseillé
• Lorsque l'utilisation de la mémoire est une
problème
• Quand vous avez besoin d'un modèle simple qui
est rapide à prédire et facile à interpréter
Résultat
L'APPRENTISSAGE AUTOMATIQUE
APPRENTISSAGE SUPERVISÉ - CLASSIFICATION
Références commerciales14
Inspiré par le cerveau humain, un réseau de
neurones se compose de réseaux hautement
connectés de neurones qui relient les entrées
aux sorties désirées.
Fonctionnement
Neural Network
Utilisation conseillé
• Pour la modélisation de systèmes non linéaires
• Lorsque les données sont disponibles de façon
incrémentielle et que vous souhaitez constamment
mettre à jour le modèle
• Lorsqu'il peut y avoir des changements inattendus
dans vos données d'entrée
Résultat
Il classe les nouvelles données sur la base de
la probabilité la plus élevée de son
appartenance à une classe particulière.
Fonctionnement
Naïve Bayes
Utilisation conseillé
• Pour un petit ensemble de données contenant de
nombreux paramètres
• Lorsque le modèle rencontrera des scénarios qui
ne figurent pas dans les données de formation,
comme c'est le cas pour de nombreuses
applications financières et médicales
Résultat
Backpropagation
L'APPRENTISSAGE AUTOMATIQUE
APPRENTISSAGE SUPERVISÉ - RÉGRESSION
Références commerciales15
La régression linéaire est une technique de
modélisation statistique utilisée pour décrire
une variable de réponse continue comme une
fonction linéaire d'une ou plusieurs variables
prédictives.
Fonctionnement
Linear Regression
Utilisation conseillé
• Lorsque vous avez besoin d'un algorithme facile
à interpréter et à ajuster rapidement
• Comme base de référence pour l'évaluation
d'autres modèles de régression plus complexes
Résultat
Aide à décrire les relations non linéaires dans les
données expérimentales. Les modèles de régression
non linéaire sont généralement considérés comme
paramétriques, où le modèle est décrit comme une
équation non linéaire.
Fonctionnement
Nonlinear Regression
Utilisation conseillé
• Lorsque les données ont des tendances non
linéaires fortes et ne peuvent pas être facilement
transformées en un espace linéaire
• Pour l'ajustement de modèles personnalisés aux
données
Résultat
L'APPRENTISSAGE AUTOMATIQUE
APPRENTISSAGE SUPERVISÉ - RÉGRESSION
Références commerciales16
(GPR) sont des modèles non paramétriques qui sont
utilisés pour prédire la valeur d'une variable de
réponse continue. Ils sont largement utilisés dans le
domaine de l'analyse spatiale pour l'interpolation en
présence d'incertitude. GPR est appelé Kriging.
Fonctionnement
Gaussian Process Regression Model
Utilisation conseillé
• Pour l'interpolation des données spatiales, telles que les
données hydrogéologiques pour la répartition des eaux
souterraines
• En tant que modèle de substitution pour faciliter
l'optimisation de conceptions complexes telles que les
moteurs automobiles
Résultat
Les algorithmes de régression SVM fonctionnent comme
des algorithmes de classification SVM, mais sont
modifiés pour pouvoir prédire une réponse continue. Au
lieu de trouver un hyperplan qui sépare les données, les
algorithmes de régression SVM trouvent un modèle qui
s'écarte des données mesurées par une valeur ne
dépassant pas une petite quantité, avec des valeurs de
paramètres aussi petites que possible
Fonctionnement
SVM Regression
Utilisation conseillé
• Pour les données de grande dimension (où il y aura un
grand nombre de variables de prédiction)
Résultat
L'APPRENTISSAGE AUTOMATIQUE
APPRENTISSAGE SUPERVISÉ - RÉGRESSION
Références commerciales17
Un modèle linéaire généralisé est un cas particulier
de modèles non linéaires utilisant des méthodes
linéaires. Il consiste à ajuster une combinaison
linéaire des entrées à une fonction non linéaire (la
fonction de liaison) des sorties.
Fonctionnement
Generalized Linear Model
Utilisation conseillé
• Lorsque les variables de réponse ont des
distributions non normales, comme une
variable de réponse qui est toujours censée
être positive
Résultat
Les arbres de décision pour la régression sont
semblables aux arbres de décision pour la
classification, mais ils sont modifiés pour pouvoir
prédire des réponses continues.
Fonctionnement
Regression Tree
Utilisation conseillé
• Lorsque les prédicteurs sont catégoriques
(discrets) ou se comportent de façon non linéaire
Résultat
Références commerciales18
Apprentissage automatique II
Apprentissage par
renforcement
Processus de décision markovien (MDP)
Prédire les actions pour maximiser la
récompense à long terme
Apprentissage profond
Apprentissage à partir de « Set de
formation »
Apprendre représentations à partir de
données à grande échelle
Q Learning
TD Learning
Gradient descent
Monte Carlo Method
Deep Neural Networks
Convolutional DNN
Deep Belief Networks
Recurrent NN
Deep Reinforcement Learning
(Silver et al., 2016)
MACHINE LEARNING III
DEEP REINFORCEMENT LEARNING
19

Contenu connexe

Tendances

Chp3 - Modélisation Multidimensionnelle
Chp3 - Modélisation MultidimensionnelleChp3 - Modélisation Multidimensionnelle
Chp3 - Modélisation MultidimensionnelleLilia Sfaxi
 
Le Reseau De Neurones
Le Reseau De NeuronesLe Reseau De Neurones
Le Reseau De Neuronesguestf80d95
 
Les arbres de décisions
Les arbres de décisionsLes arbres de décisions
Les arbres de décisionsMariem Chaaben
 
Cours Big Data Chap1
Cours Big Data Chap1Cours Big Data Chap1
Cours Big Data Chap1Amal Abid
 
Introduction au Deep Learning
Introduction au Deep Learning Introduction au Deep Learning
Introduction au Deep Learning Niji
 
Exposé segmentation
Exposé segmentationExposé segmentation
Exposé segmentationDonia Hammami
 
Présentation sur le Data Mining
Présentation sur le Data MiningPrésentation sur le Data Mining
Présentation sur le Data MiningTakfarinas KENOUCHE
 
Chp1 - Introduction à l'Informatique Décisionnelle
Chp1 - Introduction à l'Informatique DécisionnelleChp1 - Introduction à l'Informatique Décisionnelle
Chp1 - Introduction à l'Informatique DécisionnelleLilia Sfaxi
 
Data mining - Classification - arbres de décision
Data mining - Classification - arbres de décisionData mining - Classification - arbres de décision
Data mining - Classification - arbres de décisionMohamed Heny SELMI
 
réseaux de neurones artificiels
réseaux de neurones artificiels réseaux de neurones artificiels
réseaux de neurones artificiels Oussama Werfelli
 
Rapport projet Master 2 - Intelligence Artificielle
Rapport projet Master 2 - Intelligence ArtificielleRapport projet Master 2 - Intelligence Artificielle
Rapport projet Master 2 - Intelligence ArtificielleYanis Marchand
 
Apprentissage supervisé.pdf
Apprentissage supervisé.pdfApprentissage supervisé.pdf
Apprentissage supervisé.pdfhanamettali
 
Techniques du data mining
Techniques du data miningTechniques du data mining
Techniques du data miningDonia Hammami
 
Data mining - Segmentation(k-means, cah)
Data mining - Segmentation(k-means, cah)Data mining - Segmentation(k-means, cah)
Data mining - Segmentation(k-means, cah)Mohamed Heny SELMI
 
Chp2 - Les Entrepôts de Données
Chp2 - Les Entrepôts de DonnéesChp2 - Les Entrepôts de Données
Chp2 - Les Entrepôts de DonnéesLilia Sfaxi
 

Tendances (20)

Chp3 - Modélisation Multidimensionnelle
Chp3 - Modélisation MultidimensionnelleChp3 - Modélisation Multidimensionnelle
Chp3 - Modélisation Multidimensionnelle
 
Le Reseau De Neurones
Le Reseau De NeuronesLe Reseau De Neurones
Le Reseau De Neurones
 
Les arbres de décisions
Les arbres de décisionsLes arbres de décisions
Les arbres de décisions
 
Présentation pfe
Présentation pfePrésentation pfe
Présentation pfe
 
Cours Big Data Chap1
Cours Big Data Chap1Cours Big Data Chap1
Cours Big Data Chap1
 
Introduction au Deep Learning
Introduction au Deep Learning Introduction au Deep Learning
Introduction au Deep Learning
 
clustering
clusteringclustering
clustering
 
Exposé segmentation
Exposé segmentationExposé segmentation
Exposé segmentation
 
Présentation sur le Data Mining
Présentation sur le Data MiningPrésentation sur le Data Mining
Présentation sur le Data Mining
 
Chp1 - Introduction à l'Informatique Décisionnelle
Chp1 - Introduction à l'Informatique DécisionnelleChp1 - Introduction à l'Informatique Décisionnelle
Chp1 - Introduction à l'Informatique Décisionnelle
 
Data mining - Classification - arbres de décision
Data mining - Classification - arbres de décisionData mining - Classification - arbres de décision
Data mining - Classification - arbres de décision
 
réseaux de neurones artificiels
réseaux de neurones artificiels réseaux de neurones artificiels
réseaux de neurones artificiels
 
Réseaux de neurones
Réseaux de neurones Réseaux de neurones
Réseaux de neurones
 
Rapport projet Master 2 - Intelligence Artificielle
Rapport projet Master 2 - Intelligence ArtificielleRapport projet Master 2 - Intelligence Artificielle
Rapport projet Master 2 - Intelligence Artificielle
 
Apprentissage supervisé.pdf
Apprentissage supervisé.pdfApprentissage supervisé.pdf
Apprentissage supervisé.pdf
 
5.5 Clustering
5.5 Clustering5.5 Clustering
5.5 Clustering
 
Techniques du data mining
Techniques du data miningTechniques du data mining
Techniques du data mining
 
Ch 01 poo
Ch 01 pooCh 01 poo
Ch 01 poo
 
Data mining - Segmentation(k-means, cah)
Data mining - Segmentation(k-means, cah)Data mining - Segmentation(k-means, cah)
Data mining - Segmentation(k-means, cah)
 
Chp2 - Les Entrepôts de Données
Chp2 - Les Entrepôts de DonnéesChp2 - Les Entrepôts de Données
Chp2 - Les Entrepôts de Données
 

Similaire à AI Apprentissage Automatique, Machine Learnig

Algorithmes machine learning/ neural network / deep learning
Algorithmes machine learning/ neural network / deep learningAlgorithmes machine learning/ neural network / deep learning
Algorithmes machine learning/ neural network / deep learningBassem Brayek
 
Démystifions le machine learning avec spark par David Martin pour le Salon B...
Démystifions le machine learning avec spark par David Martin pour le Salon B...Démystifions le machine learning avec spark par David Martin pour le Salon B...
Démystifions le machine learning avec spark par David Martin pour le Salon B...Ippon
 
Quel algo ml_pour_mon_probleme
Quel algo ml_pour_mon_problemeQuel algo ml_pour_mon_probleme
Quel algo ml_pour_mon_problemePaul Blondel
 
Quel algo ml_pour_mon_probleme
Quel algo ml_pour_mon_problemeQuel algo ml_pour_mon_probleme
Quel algo ml_pour_mon_problemePaul Blondel
 
Introduction au Machine Learning
Introduction au Machine Learning Introduction au Machine Learning
Introduction au Machine Learning Novagen Conseil
 
Les 10 plus populaires algorithmes du machine learning
Les 10 plus populaires algorithmes du machine learningLes 10 plus populaires algorithmes du machine learning
Les 10 plus populaires algorithmes du machine learningHakim Nasaoui
 
Power BI : les bonnes pratiques - aMS Strasbourg 2021
Power BI : les bonnes pratiques - aMS Strasbourg 2021Power BI : les bonnes pratiques - aMS Strasbourg 2021
Power BI : les bonnes pratiques - aMS Strasbourg 2021Philippe Geiger
 
0 a005g formation-introduction-a-ibm-spss-modeler-et-au-data-mining-v16
0 a005g formation-introduction-a-ibm-spss-modeler-et-au-data-mining-v160 a005g formation-introduction-a-ibm-spss-modeler-et-au-data-mining-v16
0 a005g formation-introduction-a-ibm-spss-modeler-et-au-data-mining-v16CERTyou Formation
 
Business Intelligence : introduction to datawarehouse
Business Intelligence : introduction to datawarehouseBusiness Intelligence : introduction to datawarehouse
Business Intelligence : introduction to datawarehouseAlexandre Equoy
 
analysez-des-donnees-avec-excel documen.pdf
analysez-des-donnees-avec-excel documen.pdfanalysez-des-donnees-avec-excel documen.pdf
analysez-des-donnees-avec-excel documen.pdfLeonLovensky
 
0 a034g formation-modeles-predictifs-avances-avec-ibm-spss-modeler
0 a034g formation-modeles-predictifs-avances-avec-ibm-spss-modeler0 a034g formation-modeles-predictifs-avances-avec-ibm-spss-modeler
0 a034g formation-modeles-predictifs-avances-avec-ibm-spss-modelerCERTyou Formation
 
SQL Server et les développeurs
SQL Server et les développeurs SQL Server et les développeurs
SQL Server et les développeurs Microsoft
 
CHAP 1 PRÉSENTATION GENERALE.pdf
CHAP 1 PRÉSENTATION GENERALE.pdfCHAP 1 PRÉSENTATION GENERALE.pdf
CHAP 1 PRÉSENTATION GENERALE.pdfamine17157
 
Construire un moteur de recommandation avec la Data Science - Aurélie Mutschler
Construire un moteur de recommandation avec la Data Science - Aurélie MutschlerConstruire un moteur de recommandation avec la Data Science - Aurélie Mutschler
Construire un moteur de recommandation avec la Data Science - Aurélie MutschlerJedha Bootcamp
 
Exposé réseaux des neurones (NN) - (RN)
Exposé réseaux des neurones (NN) - (RN)Exposé réseaux des neurones (NN) - (RN)
Exposé réseaux des neurones (NN) - (RN)Soumia Elyakote HERMA
 
Duchess France (Nov 2011) - Atelier Apache Mahout
Duchess France (Nov 2011) - Atelier Apache MahoutDuchess France (Nov 2011) - Atelier Apache Mahout
Duchess France (Nov 2011) - Atelier Apache MahoutMichaël Figuière
 
JSS2015 - Machine Learning like a boss
JSS2015 - Machine Learning like a bossJSS2015 - Machine Learning like a boss
JSS2015 - Machine Learning like a bossGUSS
 

Similaire à AI Apprentissage Automatique, Machine Learnig (20)

Algorithmes machine learning/ neural network / deep learning
Algorithmes machine learning/ neural network / deep learningAlgorithmes machine learning/ neural network / deep learning
Algorithmes machine learning/ neural network / deep learning
 
Démystifions le machine learning avec spark par David Martin pour le Salon B...
Démystifions le machine learning avec spark par David Martin pour le Salon B...Démystifions le machine learning avec spark par David Martin pour le Salon B...
Démystifions le machine learning avec spark par David Martin pour le Salon B...
 
Quel algo ml_pour_mon_probleme
Quel algo ml_pour_mon_problemeQuel algo ml_pour_mon_probleme
Quel algo ml_pour_mon_probleme
 
Quel algo ml_pour_mon_probleme
Quel algo ml_pour_mon_problemeQuel algo ml_pour_mon_probleme
Quel algo ml_pour_mon_probleme
 
test
testtest
test
 
Introduction au Machine Learning
Introduction au Machine Learning Introduction au Machine Learning
Introduction au Machine Learning
 
Les 10 plus populaires algorithmes du machine learning
Les 10 plus populaires algorithmes du machine learningLes 10 plus populaires algorithmes du machine learning
Les 10 plus populaires algorithmes du machine learning
 
Power BI : les bonnes pratiques - aMS Strasbourg 2021
Power BI : les bonnes pratiques - aMS Strasbourg 2021Power BI : les bonnes pratiques - aMS Strasbourg 2021
Power BI : les bonnes pratiques - aMS Strasbourg 2021
 
0 a005g formation-introduction-a-ibm-spss-modeler-et-au-data-mining-v16
0 a005g formation-introduction-a-ibm-spss-modeler-et-au-data-mining-v160 a005g formation-introduction-a-ibm-spss-modeler-et-au-data-mining-v16
0 a005g formation-introduction-a-ibm-spss-modeler-et-au-data-mining-v16
 
Business Intelligence : introduction to datawarehouse
Business Intelligence : introduction to datawarehouseBusiness Intelligence : introduction to datawarehouse
Business Intelligence : introduction to datawarehouse
 
analysez-des-donnees-avec-excel documen.pdf
analysez-des-donnees-avec-excel documen.pdfanalysez-des-donnees-avec-excel documen.pdf
analysez-des-donnees-avec-excel documen.pdf
 
0 a034g formation-modeles-predictifs-avances-avec-ibm-spss-modeler
0 a034g formation-modeles-predictifs-avances-avec-ibm-spss-modeler0 a034g formation-modeles-predictifs-avances-avec-ibm-spss-modeler
0 a034g formation-modeles-predictifs-avances-avec-ibm-spss-modeler
 
SQL Server et les développeurs
SQL Server et les développeurs SQL Server et les développeurs
SQL Server et les développeurs
 
DataMining.pdf
DataMining.pdfDataMining.pdf
DataMining.pdf
 
CHAP 1 PRÉSENTATION GENERALE.pdf
CHAP 1 PRÉSENTATION GENERALE.pdfCHAP 1 PRÉSENTATION GENERALE.pdf
CHAP 1 PRÉSENTATION GENERALE.pdf
 
Construire un moteur de recommandation avec la Data Science - Aurélie Mutschler
Construire un moteur de recommandation avec la Data Science - Aurélie MutschlerConstruire un moteur de recommandation avec la Data Science - Aurélie Mutschler
Construire un moteur de recommandation avec la Data Science - Aurélie Mutschler
 
Exposé réseaux des neurones (NN) - (RN)
Exposé réseaux des neurones (NN) - (RN)Exposé réseaux des neurones (NN) - (RN)
Exposé réseaux des neurones (NN) - (RN)
 
Data Mining
Data MiningData Mining
Data Mining
 
Duchess France (Nov 2011) - Atelier Apache Mahout
Duchess France (Nov 2011) - Atelier Apache MahoutDuchess France (Nov 2011) - Atelier Apache Mahout
Duchess France (Nov 2011) - Atelier Apache Mahout
 
JSS2015 - Machine Learning like a boss
JSS2015 - Machine Learning like a bossJSS2015 - Machine Learning like a boss
JSS2015 - Machine Learning like a boss
 

Dernier

Bidirectional Encoder Representations from Transformers
Bidirectional Encoder Representations from TransformersBidirectional Encoder Representations from Transformers
Bidirectional Encoder Representations from Transformersbahija babzine
 
Le contrôle de la recherche d'emploi en 2023
Le contrôle de la recherche d'emploi en 2023Le contrôle de la recherche d'emploi en 2023
Le contrôle de la recherche d'emploi en 2023France Travail
 
Montant moyen du droit d'allocation chômage versé aux demandeurs d'emploi ind...
Montant moyen du droit d'allocation chômage versé aux demandeurs d'emploi ind...Montant moyen du droit d'allocation chômage versé aux demandeurs d'emploi ind...
Montant moyen du droit d'allocation chômage versé aux demandeurs d'emploi ind...France Travail
 
To_understand_transformers_together presentation
To_understand_transformers_together presentationTo_understand_transformers_together presentation
To_understand_transformers_together presentationbahija babzine
 
analyse husseindey AMIROUCHE Abdeslem.pptx
analyse husseindey AMIROUCHE Abdeslem.pptxanalyse husseindey AMIROUCHE Abdeslem.pptx
analyse husseindey AMIROUCHE Abdeslem.pptxHadJer61
 
ELABE BFMTV L'Opinion en direct - Les Français et les 100 jours de Gabriel Attal
ELABE BFMTV L'Opinion en direct - Les Français et les 100 jours de Gabriel AttalELABE BFMTV L'Opinion en direct - Les Français et les 100 jours de Gabriel Attal
ELABE BFMTV L'Opinion en direct - Les Français et les 100 jours de Gabriel Attalcontact Elabe
 

Dernier (6)

Bidirectional Encoder Representations from Transformers
Bidirectional Encoder Representations from TransformersBidirectional Encoder Representations from Transformers
Bidirectional Encoder Representations from Transformers
 
Le contrôle de la recherche d'emploi en 2023
Le contrôle de la recherche d'emploi en 2023Le contrôle de la recherche d'emploi en 2023
Le contrôle de la recherche d'emploi en 2023
 
Montant moyen du droit d'allocation chômage versé aux demandeurs d'emploi ind...
Montant moyen du droit d'allocation chômage versé aux demandeurs d'emploi ind...Montant moyen du droit d'allocation chômage versé aux demandeurs d'emploi ind...
Montant moyen du droit d'allocation chômage versé aux demandeurs d'emploi ind...
 
To_understand_transformers_together presentation
To_understand_transformers_together presentationTo_understand_transformers_together presentation
To_understand_transformers_together presentation
 
analyse husseindey AMIROUCHE Abdeslem.pptx
analyse husseindey AMIROUCHE Abdeslem.pptxanalyse husseindey AMIROUCHE Abdeslem.pptx
analyse husseindey AMIROUCHE Abdeslem.pptx
 
ELABE BFMTV L'Opinion en direct - Les Français et les 100 jours de Gabriel Attal
ELABE BFMTV L'Opinion en direct - Les Français et les 100 jours de Gabriel AttalELABE BFMTV L'Opinion en direct - Les Français et les 100 jours de Gabriel Attal
ELABE BFMTV L'Opinion en direct - Les Français et les 100 jours de Gabriel Attal
 

AI Apprentissage Automatique, Machine Learnig

  • 2. Règles et équations sont trop complexes - comme dans le reconnaissance facial ou vocale. Les règles d'une tâche sont en constante évolution - comme dans la détection des fraudes à partir des enregistrements de transactions. La nature des données ne cesse de changer et le programme doit s'adapter, comme dans le commerce automatisé. L'APPRENTISSAGE AUTOMATIQUE Références commerciales2 QUAND FAUT-IL L’UTILISER?
  • 3. Avec l'apprentissage de la machine, il y a rarement une ligne droite du début à la fin - vous vous retrouverez constamment en itération et en essayant différentes idées et approches. L'APPRENTISSAGE AUTOMATIQUE RAREMENT UNE LIGNE DROITE Références commerciales3
  • 4. Références commerciales4 Apprentissage automatique I Apprentissage supervisé Classification Prédire des réponses continues Régression Prédire des réponses discrètes Apprentissage non supervisé Clustering Trouver des structures intrinsèques dans les données Support Vector Machines Discriminant Analysis Naive Bayes Nearest Neighbor Linear Regression, GML SVR, GFR Ensemble Methods Decision Trees Neural Networks K-Means, K-Medoids Hierarchical clustering Gaussian Mixture Self Organization Map Fuzzy C Means
  • 5. L'APPRENTISSAGE AUTOMATIQUE MODEL DE COMPLEXITÉ VS POUVOIR DE PREDICTION Références commerciales5
  • 6. L'apprentissage non supervisé est utile lorsque vous souhaitez explorer vos données mais que vous n'avez pas encore un objectif précis ou que vous ne savez pas quelles informations contiennent les données. C'est aussi un bon moyen de réduire les dimensions de vos données. L'APPRENTISSAGE AUTOMATIQUE APPRENTISSAGE NON SUPERVISÉ Références commerciales6 Apprentissage non supervisé Cluster de Données Résultats Données de dimension bas Sélection de fonctionnalité Apprentissage supervisé Modèle
  • 7. L'APPRENTISSAGE AUTOMATIQUE APPRENTISSAGE NON SUPERVISÉ – HARD CLUSTERING Références commerciales7 Partitionne les données en k nombre de clusters mutuellement exclusifs. La mesure dans laquelle un point s'insère dans un groupe est déterminée par la distance entre ce point et le centre du cluster. Fonctionnement k-Means Utilisation conseillé • Lorsque le nombre de clusters est connu • Pour le regroupement rapide de grands ensembles de données Résultat Similaire à k-moyens, mais avec l'exigence que les centres de cluster coïncident avec les points dans les données. Fonctionnement k-Medoids Utilisation conseillé • Lorsque le nombre de clusters est connu • Pour le regroupement rapide de données catégorielles • Échelle vers de grands ensembles de données Résultat Clusters au centre Clusters qui coïncident avec les points de données
  • 8. L'APPRENTISSAGE AUTOMATIQUE APPRENTISSAGE NON SUPERVISÉ – HARD CLUSTERING Références commerciales8 Produit des ensembles imbriqués de grappes en analysant des similitudes entre des paires de points et en regroupant des objets en un arbre hiérarchique binaire. Fonctionnement Hierarchical Clustering Utilisation conseillé • Si vous ne savez pas à l'avance le nombre de clusters dans vos données • Vous souhaitez que la visualisation guide votre sélection Résultat Mise en cluster basée sur le réseau neuronal qui transforme un ensemble de données en une carte 2D en préservation de la topologie. Fonctionnement Self-Organizing Map Utilisation conseillé • Visualiser des données tridimensionnelles en 2D ou 3D • Déduire la dimensionnalité des données en préservant sa topologie (forme) Résultat Relation hiérarchique entre clusters Représentation en 2D / 3D
  • 9. L'APPRENTISSAGE AUTOMATIQUE APPRENTISSAGE NON SUPERVISÉ – SOFT CLUSTERING Références commerciales9 Mise en cluster par partition lorsque les points de données peuvent appartenir à plus d'un cluster. Fonctionnement Fuzzy c-Means Utilisation conseillé • Lorsque le nombre de clusters est connu • Pour la reconnaissance des motifs • Lorsque les clusters se chevauchent Résultat Le clustering basé sur la partition où les points de données proviennent de différentes distributions normales multivariées avec certaines probabilités. Fonctionnement Gaussian Mixture Model Utilisation conseillé • Lorsqu'un point de données peut appartenir à plus d'un cluster • Lorsque les grappes ont des tailles et des structures de corrélation différentes Résultat Les centres de grappes (similaires aux k- moyens), mais avec un flou pour que les points appartiennent à plus d'un cluster Un modèle de distributions gaussiennes qui donnent des probabilités d'un point étant dans un cluster
  • 10. Un algorithme d'apprentissage supervisé prend un ensemble connu de données d'entrée (l'ensemble d'apprentissage) et des réponses connues aux données (sortie), et forme un modèle pour générer des prévisions raisonnables pour la réponse aux nouvelles données d'entrée. Utilisez l'apprentissage supervisé si vous avez des données existantes pour la sortie que vous essayez de prédire. L'APPRENTISSAGE AUTOMATIQUE APPRENTISSAGE SUPERVISÉ Références commerciales10 Binaire Multi classe Sélection des Algorithmes par Vitesse de la formation Utilisation de la mémoire Précision sur les nouvelles données Transparence d’interprétation Forme Classification Régression
  • 11. L'APPRENTISSAGE AUTOMATIQUE APPRENTISSAGE SUPERVISÉ - CLASSIFICATION Références commerciales11 La régression logistique est couramment utilisée comme point de départ pour les problèmes de classification binaire. Fonctionnement Logistic Regression Utilisation conseillé • Lorsque les données peuvent être clairement séparées par une seule frontière linéaire • Line de base pour évaluer des méthodes de classification plus complexes Résultat KNN classe les objets en fonction des classes de leurs voisins les plus proches dans l'ensemble de données. KNN prédisent que les objets proches les uns des autres sont similaires. Fonctionnement k Nearest Neighbor (kNN) Utilisation conseillé • Lorsque vous avez besoin d'un algorithme simple pour établir des règles d'apprentissage de référence • Lorsque l'utilisation de la mémoire du modèle formé est une préoccupation moindre • Lorsque la vitesse de prédiction du modèle formé est une préoccupation moindre Résultat
  • 12. L'APPRENTISSAGE AUTOMATIQUE APPRENTISSAGE SUPERVISÉ - CLASSIFICATION Références commerciales12 Une arborescence de décision vous permet de prédire les réponses aux données en suivant les décisions dans l'arborescence, depuis la racine (début) jusqu'à la feuille. Fonctionnement Decision Tree Utilisation conseillé • Lorsque vous avez besoin d'un algorithme facile à interpréter et à ajuster rapidement • Pour minimiser l'utilisation de la mémoire • Lorsque la précision prédictive élevée n'est pas une exigence Résultat Dans ces méthodes d'ensemble, plusieurs arbres de décision «plus faibles» sont combinés dans un ensemble «plus fort». Un arbre de décision ensaché se compose d'arbres qui sont formés indépendamment sur les données . Fonctionnement Bagged and Boosted Decision Trees Utilisation conseillé • Lorsque les prédicteurs sont catégoriques (discrets) ou se comportent de façon non linéaire • Combiner simple classificateurs en un autre plus complexe. • Lorsqu'on veux un erreur très faible (no overfith) Résultat
  • 13. L'APPRENTISSAGE AUTOMATIQUE APPRENTISSAGE SUPERVISÉ - CLASSIFICATION Références commerciales13 Classifie les données en trouvant la limite de décision linéaire (hyperplan) qui sépare tous les points de données d'une classe de ceux de l'autre classe Fonctionnement Support Vector Machine (SVM) Utilisation conseillé • Pour les données qui ont exactement deux classes • Pour les données à grande dimension et non linéairement séparables • Lorsque vous avez besoin d'un classificateur simple, facile à interpréter et précis Résultat L'analyse discriminante classe les données en trouvant des combinaisons linéaires des caractéristiques basées sur des distributions gaussiennes Fonctionnement Discriminant Analysis Utilisation conseillé • Lorsque l'utilisation de la mémoire est une problème • Quand vous avez besoin d'un modèle simple qui est rapide à prédire et facile à interpréter Résultat
  • 14. L'APPRENTISSAGE AUTOMATIQUE APPRENTISSAGE SUPERVISÉ - CLASSIFICATION Références commerciales14 Inspiré par le cerveau humain, un réseau de neurones se compose de réseaux hautement connectés de neurones qui relient les entrées aux sorties désirées. Fonctionnement Neural Network Utilisation conseillé • Pour la modélisation de systèmes non linéaires • Lorsque les données sont disponibles de façon incrémentielle et que vous souhaitez constamment mettre à jour le modèle • Lorsqu'il peut y avoir des changements inattendus dans vos données d'entrée Résultat Il classe les nouvelles données sur la base de la probabilité la plus élevée de son appartenance à une classe particulière. Fonctionnement Naïve Bayes Utilisation conseillé • Pour un petit ensemble de données contenant de nombreux paramètres • Lorsque le modèle rencontrera des scénarios qui ne figurent pas dans les données de formation, comme c'est le cas pour de nombreuses applications financières et médicales Résultat Backpropagation
  • 15. L'APPRENTISSAGE AUTOMATIQUE APPRENTISSAGE SUPERVISÉ - RÉGRESSION Références commerciales15 La régression linéaire est une technique de modélisation statistique utilisée pour décrire une variable de réponse continue comme une fonction linéaire d'une ou plusieurs variables prédictives. Fonctionnement Linear Regression Utilisation conseillé • Lorsque vous avez besoin d'un algorithme facile à interpréter et à ajuster rapidement • Comme base de référence pour l'évaluation d'autres modèles de régression plus complexes Résultat Aide à décrire les relations non linéaires dans les données expérimentales. Les modèles de régression non linéaire sont généralement considérés comme paramétriques, où le modèle est décrit comme une équation non linéaire. Fonctionnement Nonlinear Regression Utilisation conseillé • Lorsque les données ont des tendances non linéaires fortes et ne peuvent pas être facilement transformées en un espace linéaire • Pour l'ajustement de modèles personnalisés aux données Résultat
  • 16. L'APPRENTISSAGE AUTOMATIQUE APPRENTISSAGE SUPERVISÉ - RÉGRESSION Références commerciales16 (GPR) sont des modèles non paramétriques qui sont utilisés pour prédire la valeur d'une variable de réponse continue. Ils sont largement utilisés dans le domaine de l'analyse spatiale pour l'interpolation en présence d'incertitude. GPR est appelé Kriging. Fonctionnement Gaussian Process Regression Model Utilisation conseillé • Pour l'interpolation des données spatiales, telles que les données hydrogéologiques pour la répartition des eaux souterraines • En tant que modèle de substitution pour faciliter l'optimisation de conceptions complexes telles que les moteurs automobiles Résultat Les algorithmes de régression SVM fonctionnent comme des algorithmes de classification SVM, mais sont modifiés pour pouvoir prédire une réponse continue. Au lieu de trouver un hyperplan qui sépare les données, les algorithmes de régression SVM trouvent un modèle qui s'écarte des données mesurées par une valeur ne dépassant pas une petite quantité, avec des valeurs de paramètres aussi petites que possible Fonctionnement SVM Regression Utilisation conseillé • Pour les données de grande dimension (où il y aura un grand nombre de variables de prédiction) Résultat
  • 17. L'APPRENTISSAGE AUTOMATIQUE APPRENTISSAGE SUPERVISÉ - RÉGRESSION Références commerciales17 Un modèle linéaire généralisé est un cas particulier de modèles non linéaires utilisant des méthodes linéaires. Il consiste à ajuster une combinaison linéaire des entrées à une fonction non linéaire (la fonction de liaison) des sorties. Fonctionnement Generalized Linear Model Utilisation conseillé • Lorsque les variables de réponse ont des distributions non normales, comme une variable de réponse qui est toujours censée être positive Résultat Les arbres de décision pour la régression sont semblables aux arbres de décision pour la classification, mais ils sont modifiés pour pouvoir prédire des réponses continues. Fonctionnement Regression Tree Utilisation conseillé • Lorsque les prédicteurs sont catégoriques (discrets) ou se comportent de façon non linéaire Résultat
  • 18. Références commerciales18 Apprentissage automatique II Apprentissage par renforcement Processus de décision markovien (MDP) Prédire les actions pour maximiser la récompense à long terme Apprentissage profond Apprentissage à partir de « Set de formation » Apprendre représentations à partir de données à grande échelle Q Learning TD Learning Gradient descent Monte Carlo Method Deep Neural Networks Convolutional DNN Deep Belief Networks Recurrent NN Deep Reinforcement Learning (Silver et al., 2016)
  • 19. MACHINE LEARNING III DEEP REINFORCEMENT LEARNING 19