SlideShare une entreprise Scribd logo
1  sur  59
Télécharger pour lire hors ligne
Dédramathisons


                   TFE


Séries de Fourier et applications


        Rédacteurs :
        Antoine Etesse
        Frederic Jacobs
        Jie-Fang Zhang




               1er avril 2011
Sommaire

I    Introduction et théorie                                                                      2

1 Situation problème                                                                              3
     1.1   Approximation de cette sinusoïde . . . . . . . . . . . . . . . . . . . . . . .         6
     1.2   Vers les séries de Fourier . . . . . . . . . . . . . . . . . . . . . . . . . . . .     6

2 Elaborer une théorie à partir de l’exemple                                                      8
     2.1   Construction de la théorie . . . . . . . . . . . . . . . . . . . . . . . . . . .       8
           2.1.1   Périodicité   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    8
           2.1.2   Calcul d’intégrales intéressantes . . . . . . . . . . . . . . . . . . . .     10
           2.1.3   Calcul des coefficients . . . . . . . . . . . . . . . . . . . . . . . . .       11
           2.1.4   Exemple : Fonction carrée . . . . . . . . . . . . . . . . . . . . . . .       14
           2.1.5   Ecriture complexe des séries de Fourier       . . . . . . . . . . . . . . .   20
     2.2   Convergence des séries trigonométriques, des séries de Fourier, et Théorème
           de Dirichlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    25
           2.2.1   Convergence simple . . . . . . . . . . . . . . . . . . . . . . . . . .        25
           2.2.2   Convergence uniforme . . . . . . . . . . . . . . . . . . . . . . . . .        27
           2.2.3   Convergence normale . . . . . . . . . . . . . . . . . . . . . . . . . .       29
           2.2.4   Convergence des séries trigonométriques . . . . . . . . . . . . . . .         29
           2.2.5   Théorème de Dirichlet. . . . . . . . . . . . . . . . . . . . . . . . . .      29
           2.2.6   Analyse d’une fonction qui répond aux hypothèses du théorème de
                   Dirichlet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    34
     2.3   Phénomène de Gibbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        36


II     Applications de l’analyse harmonique                                                      37

1 Synthèse numérique d’un son à partir de l’addition des séries de Fourier 38




                                                 1
2 Applications informatiques                                                                  39
  2.1   FFT : Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . .        39
  2.2   Compression JPEG        . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   42
        2.2.1   Pourquoi Fourier ? . . . . . . . . . . . . . . . . . . . . . . . . . . .      43
        2.2.2   Le JPEG, c’est quoi . . . . . . . . . . . . . . . . . . . . . . . . . .       43
        2.2.3   Quelle couleur ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    43
        2.2.4   Alors quelle avancée l’analyse de Fourier a-t-elle permis ? . . . . .         48

3 Digital Signal Processing, un large domaine d’applications                                  51
  3.1   Applications en télécommunications . . . . . . . . . . . . . . . . . . . . .          51
        3.1.1   Confondre l’information. Sans la mélanger. . . . . . . . . . . . . .          52
        3.1.2   Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       52
        3.1.3   Suppression de l’écho . . . . . . . . . . . . . . . . . . . . . . . . . .     52
        3.1.4   La Blue Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       53

A Joseph Fourier et ses précurseurs                                                           54
  A.1 Les précurseurs de Fourier . . . . . . . . . . . . . . . . . . . . . . . . . . .        54
  A.2 Biographie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      54
  A.3 Son oeuvre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        55




                                              2
Première partie

Introduction et théorie




           3
Chapitre 1

Situation problème

   Comment peut-on produire un son particulier ?
   Tout d’abord, on sait qu’un son est une onde sonore, plus ou moins périodique, qui se
propage dans l’air. C’est d’ailleurs ce qui le différencie de ce qu’on appelle communément
un bruit.




             Figure 1.1 – Un son, caractérisé par une certaine répétition.




                Figure 1.2 – Du bruit, rien n’est ordonné ou répétitif.

   Ainsi, la réponse à notre question initiale se déduit aisément : il nous suffit de créer


                                           4
des déformations périodiques dans l’air. Cependant, la question s’avère être plus complexe
car nous désirons obtenir un son spécifique. Par exemple, le son la 440Hz correspond en
réalité à 440 déformations par seconde.
Pourtant, il existe des milliers de la 440Hz différents, empreints de leur spécificité, et
tout le monde peut, par exemple distinguer un son d’une fréquence de 440Hz issu d’un
diapason de celui provenant d’un piano. Cette différence sonore que l’on perçoit découle
de la dissimilitude du timbre des deux notes.
L’illustration graphique de ces deux sons (amplitude-fréquence), témoigne de la dissemblance
des deux notes en questions. Voici la même note jouée sur des instruments différents.




                  Figure 1.3 – Une note jouée sur un Piano UNSW c




               Figure 1.4 – Même note jouée sur une guitare UNSW c

   Remarquez la forte corrélation entre les deux instruments jouant la même note.
   Ainsi émerge une nouvelle question, de loin plus intéressante : comment peut-on
produire un timbre particulier ?
   La réponse est en fait relativement simple, et facilement imaginable. Pour commencer,
on peut se pencher sur les instruments de musique. Nous savons que lorsqu’on joue une
note sur un instrument, on produit non seulement la note jouée, mais également ce qu’on
appelle les harmoniques de la note. On dira que la note a une fréquence fondamentale f ,


                                            5
et que ses harmoniques possèdent des fréquences multiples de celle-ci, nf avec n ∈ Z. Il va
de soi que l’amplitude des harmoniques peut être nulle, ou non-nulle. On peut représenter
la note sous un graphique (amplitude-fréquence). Comme ceux utilisés pour représenter
les deux sons ci-dessus .
   Nous pouvons facilement déduire que dans ce cas, les notes que l’on peut entendre
correspondent bien à la superposition de l’onde fondamentale et ses harmoniques. La
forme de l’onde, donc son timbre, concorde avec la somme des amplitudes de toutes les
harmoniques de l’onde. Aussi la fréquence de deux sons peut-elle très bien être similaire,
chacun possédant ses harmoniques spécifiques, la forme de l’onde diffèrera clairement.




          Figure 1.5 – Concept d’addition de sinusoïdes par Denis Auquebon

   La méthode expérimentale de représentation d’un son quelconque consiste donc à
ajouter à l’onde sonore fondamentale de fréquence déterminée f , les ondes harmoniques
de fréquence 2f , 3f , 4f ,... et ainsi de suite. La combinaison de la fondamentale et des
harmoniques forment le son, parfois simple, souvent compliqué, dont la fréquence est
évidemment celle du son fondamental. Nous pouvons ainsi créer tout une gamme de sons,
suivant que l’on omette l’harmonique de fréquence 2f , 5f ,... ou que l’on prenne deux fois
l’harmonique de fréquence 3f quatre fois celle de fréquence 8f ,...
   Nous arrivons donc à la conclusion que nous pouvons créer toute une série de son
à l’aide d’une addition d’onde fondamentale et des ses harmoniques. Mais inversement,
peut-on décrire tout son comme la somme d’harmoniques ? Afin d’apporter une réponse,
nous devons nous pencher sur les séries de Fourier.




                                             6
Figure 1.6 – My normal approach is useless here


1.1     Approximation de cette sinusoïde

1.2     Vers les séries de Fourier
   Revenons quelque peu à l’historique, afin d’en savoir un peu plus sur l’émergence de
cette idée géniale.
    Joseph Fourier, qui travaillait sur la propagation de la chaleur sur des corps solides,
a remarqué que la propagation de la chaleur sur un anneau ressemble à un mouvement
harmonique. En physique, nous donnons une expression plus générale à ce phénomène

                                                2πx 2πt
                             y(x, t) = A sin(      −    + φ)
                                                 λ   T

où y est le déplacement périodique de la vibration de l’objet , λ la période dans l’espace,
T la période dans le temps et φ la phase, qui est constante.



En fait, lors d’une expérience simple, il a remarqué que la source de chaleur passe
cycliquement, mais brusquement, d’une valeur extrême à une autre. Il a été ainsi amené
à soupçonner le rôle très important des fonctions trigonométriques et admettre qu’elles
pouvaient être les constituants élémentaires de tout Si nous fixons la variable x, nous avons
ici une fonction f (t) périodique de période T . L’idée de Fourier fut alors d’approximer
le phénomène observé par une somme finie, constituée des harmoniques de la période
fondamentale T .


                                                7
L’approximation est
                                       N
                                                       2πn
                                             An sin(       t + φn )
                                       n=1
                                                        T

où N un naturel et An et φn deux constantes qui varient en fonction de n.
Nous pouvons développer le sinus, ce qui nous donne :


                     2πn                     2πn                    2πn
           An sin(       t + φn ) = An (sin(     t) cos(φn ) + cos(     t) sin(φn ))
                      T                       T                      T
                                                     2πn                       2πn
                                  = An sin(φn ) cos(     t) + An cos(φn ) sin(       t)
                                                      T                         T
                                            2πn              2πn
                                  = an cos(     t) + bn sin(     t)
                                             T                T

puisque An sin(φn ) et An cos(φn ) sont constantes, on peut alors poser que
                                                                         a0
an = An sin(φn ) et bn = An cos(φn ), et si on ajoute un terme constant     , on obtient,
                                                                         2
                                   N
                            a0               2πn              2πn
                               +    (an cos(     t) + bn sin(     t))
                            2    n=1
                                              T                T

                                                         a0
On a choisi le terme constant comme étant                   pour une raison bien précise que l’on
                                                         2
détaillera au moment convenu.




                                                   8
Chapitre 2

Elaborer une théorie à partir de
l’exemple

2.1     Construction de la théorie
2.1.1     Périodicité
   Tout d’abord, nous devons définir ce qu’est la périodicité d’une fonction.
   Une fonction est périodique de période p s’il existe un nombre réel positif le plus petit
possible p tel que f (x) = f (x + p). Le nombre p doit être le plus petit possible parce que
pour satisfaire cette relation, il nous suffit de prendre tous les multiples entiers de p, ce
qui nous donne f (x + np) = f (x) où n ∈ Z.
Penchons-nous à présent sur la somme des fonctions périodiques.
                                                1
Si on a trois fonctions périodiques de période π, 2π et 4π respectivement, alors la somme
                                                4
de ces trois fonctions sera-t-elle périodique ? Si oui, quelle est sa période ?
Afin de faciliter la compréhension, nous pouvons représenter cette fonction somme (s(x) =
                       1
sin(4x) + sin(x) + sin( x)) et ainsi voir facilement que s(x) est périodique de période de
                       4
4π.
Ainsi, nous déduisons que la période de la somme correspond à la plus grande période de
ses fonctions initiales, dans ce cas-ci, 4π.
Cependant, la somme des fonctions périodiques n’est pas toujours périodique. On peut
prendre comme exemple s(x) = sin x+sin(πx). Bien que les deux fonctions initiales soient
périodiques de période respectives 2π et 2, s(x) n’est pas périodique. Pour ce genre de
cas, on peut approximer s(x) par s (x) = sin x + sin(3, 1415x), qui est périodique.
Mais ne nous tracassons pas trop, étant donné que nous allons travailler avec des périodes



                                               9
simples et entières.


Démontrons un lemme sur la périodicité, qui nous sera utile par la suite.
   Soit f une fonction continue par morceau périodique de T .
                  a+T
L’intégrale             f (x) dx ne dépend pas du réel a. Autrement dit,
              a

                                                                                              T
                                  a+T                                T                        2
                                        f (x) dx =                       f (x) dx =               f (x) dx = · · ·
                                                                                             −T
                              a                                  0                            2



   Pour démontrer ceci, nous allons exploiter l’additivité de l’intégrale.

                        a+T                                0                        T                    a+T
                                 f (x) dx =                    f (x) dx +               f (x) dx +             f (x) dx
                    a                                  a                        0                       T

Changeons de variable. Soit x = y + T , ce qui implique dx = dy.
              a+T                              a                                    a
Alors on a              f (x) dx =                 f (y + t) dy =                       f (y) dy puisque f (y + T ) = f (y).
              T                            0                                    0
                             0                             a
On peut voir que                 f (x) dx +                    f (y) dy = 0, ce qui nous donne :
                         a                             0

                                                       a+T                              T
                                                                f (x) dx =                  f (x) dx
                                                   a                                0

Cette dernière expression est indépendante de a
En vue de ce que l’on a pu dire dans l’introduction, peut-on dire qu’une fonction f (x)
périodique de période T peut s’écrire sous la forme d’une somme

                                                           N
                                         a0                2πn              2πn
                          f (x) =           +     (an cos(     x) + bn sin(     )x)?
                                         2    n=1
                                                            T                T

   Certainement pas, car nous n’avons pas encore montré les conditions pour que les
deux membres soient équivalents. De plus, on n’a pas encore trouvé les expressions des
           a0
constantes    , an et bn , qui différencient une série d’une autre.
           2

Pour trouver les expressions de ces constantes, nous allons utiliser les outils d’intégrale
sur la période de la fonction que l’on désire étudier.(Et de par le lemme que nous avons
démontré, on voit bien que la restriction à une période suffit).
Pour faciliter la compréhension, nous allons d’abord faire les démonstrations avec une
fonction f (x) qui a une période 2π, puis ensuite étendre la démonstration pour des
périodes quelconques.




                                                                           10
2.1.2    Calcul d’intégrales intéressantes
   Avant de déterminer les expressions de ces constantes, nous devons déterminer certaines
relations qui nous seront très utiles par la suite.(Mentionnons au préalable que nous
utilisons la parité des fonctions sinus et cosinus dans notre développement.)
                                              π
                                                  cos nx cos kx dx
                                          −π

                                              π
                                                  sin nx sin kx dx
                                          −π

                                                       et
                                 π
                                     cos(nx) sin(kx) dx où n, k ∈ Z
                                −π

Si n = k :
             π                                π
                  cos nx cos kx dx = 2            cos nx cos kx dx
             −π                           0
                                              π
                                            1
                                     =2       (cos((n + k)x) + cos((n − k)x) dx
                                         0 2
                                          1                     1
                                     =(       sin((n + k)x) +       sin((n − k)x))|π
                                                                                   0
                                        n+k                   n−k
                                          1                     1
                                     =(       sin((n + k)π) +       sin((n − k)π)
                                        n+k                   n−k
                                     =0


              π                               π
                  sin nx sin kx dx = 2            sin nx sin kx dx
             −π                           0
                                              π
                                         −1
                                  =2         (cos((n + k)x) − cos((n − k)x) dx
                                          2
                                          0
                                      −1                     −1
                                  =(       sin((n + k)x) −        sin((n − k)x))|π
                                                                                 0
                                     n+k                    n−k
                                      −1                     −1
                                  =(       sin((n + k)π) −        sin((n − k)π)
                                     n+k                    n−k
                                  =0




                                                       11
Si n = k
                          π                                  π
                               cos nx cos kx dx = 2              cos2 nx dx
                         −π                              0
                                                             π
                                                          1 + cos(2nx)
                                                  =2                   dx
                                                         0      2
                                                      1      1
                                                  = 2( x +      sin(2nx))|π
                                                                          0
                                                      2     4n
                                                        1
                                                  =2× π
                                                        2
                                                  =π


                           π                                 π
                               sin nx sin kx dx = 2              sin2 nx dx
                         −π                              0
                                                             π
                                                          1 − cos(2nx)
                                                  =2                   dx
                                                         0      2
                                                      1      1
                                                  = 2( x −      sin(2nx))|π
                                                                          0
                                                      2     4n
                                                        1
                                                  =2× π
                                                        2
                                                  =π

Et enfin, on voit que cos(nx) sin(kx) est impaire car cos(nx) sin(kx) = − cos(−nx) sin(−kx)
                                π
Donc, dans tous les cas,            cos(nx) sin(kx) dx = 0
                               −π

En résumé, (n, k ∈ Z)

                   π
                                                   0    si n = k
                       cos nx cos kx dx =
                  −π                              π     si n = k
                   π
                                                  0     si n = k
                       sin nx sin kx dx =
                  −π                              π     si n = k
                                        π
                                            cos(nx) sin(kx) dx = 0
                                       −π


2.1.3    Calcul des coefficients
   Sans avoir montré l’existence, on suppose qu’une fonction périodique de période 2π,
continue sur R et dérivable sur R est égale à sa série de Fourier. Alors,

                                              N
                                      a0
                         f (x) =         +     (an cos(nx) + bn sin(nx))
                                      2    n=1


                                                   12
Pour trouver a0 , on va prendre l’intégrale de −π à π (une période entière) dans les
deux membres, ce qui nous donne

                   π                        π                 π        N
                                                a0
                       f (x) dx =                  dx +                    (an cos(nx) + bn sin(nx)) dx
                  −π                    −π      2             −π n=1




             π                     π                 π    N
                                       a0
                 f (x) dx =               dx +                    (an cos(nx) + bn sin(nx)) dx
            −π                 −π      2             −π n=1

                         l’intégrale d’une somme est égale à la somme de l’intégrale
                                   π                 N        π                            N    π
                                       a0
                          =               dx +                    an cos(nx) dx +                    bn sin(nx) dx
                               −π      2       n=1        −π                              n=1   −π
                                                 N                                   N
                            a0 π          an                 −bn
                          =    x|−π +        sin(nx)|π +
                                                     −π          cos(nx)|π
                                                                         −π
                             2        n=1
                                          n              n=1
                                                              n
                            a0
                          =     × 2π
                             2
                          = a0 π

On a alors,
                                                                   π
                                                          1
                                                  a0 =                  f (x) dx
                                                          π       −π

Pour trouver an , on va multiplier les deux membres de l’égalité par cos(kx) où k un entier
positif.

                                                                    N
                              a0
           f (x) cos(kx) =       cos(kx) + cos(kx)    (an cos(nx) + bn sin(nx))
                              2                    n=1
                                                     N
                              a0
                          =      cos(kx) +     (an cos(nx) cos(kx) + bn sin(nx) cos(kx))
                              2            n=1



Ensuite, nous prendre l’intégrale de −π à π dans les deux membres, ce qui nous donne

  π                            π                                    π      N
                                       a0
      f (x) cos(kx) dx =                  cos(kx) dx +                          (an cos(nx) cos(kx) + bn sin(nx) cos(kx)) dx
 −π                           −π       2                           −π n=1

                               π                                  N         π                                N         π
                                       a0
                          =               cos(kx) dx +                          an cos(nx) cos(kx) dx +                    bn sin(nx) cos(kx) dx
                              −π       2               n=1                 −π                               n=1    −π

                                       π                          N              π                           N             π
                              a0
                          =                 cos(kx) dx +                an           cos(nx) cos(kx) dx +         bn            sin(nx) cos(kx) dx
                              2        −π                         n=1           −π                          n=1            −π



                                                                  13
parmi les n, il existe un et un seul n égal à k tel que
N              π                                      N                   π                                    π
         an        cos(nx) cos(kx) dx =                        (an            cos(nx) cos(kx) dx) + ak             cos2 (kx) dx
n=1           −π                                  n=1,n=k              −π                                  −π


Par conséquent, la somme s’annule sauf pour terme k qui donne ak π.
                               N
         a0 π                         π
De plus,        cos(kx) dx et     bn    sin(nx) cos(kx) dx donnent aussi 0
         2 −π                 n=1    −π
                              π
On obtient donc                   f (x) cos(kx) dx = ak π pour tout k entier positif ce qui revient à dire
                             −π
                       π
                   1
que ak =                    f (x) cos(kx) dx, et de façon générale nous avons ainsi :
                   π   −π

                                                                π
                                                          1
                                                 an =                f (x) cos(nx) dx
                                                          π    −π


         Pour bn , on va réaliser le même procédé en multipliant les deux membres par sin(kx)
où k est un entier positif.

                                                                         N
                                      a0
               f (x) sin(kx) =           sin(kx) + sin(kx)    (an cos(nx) + bn sin(nx))
                                      2                    n=1
                                                           N
                                      a0
                                  =      sin(kx) +     (an cos(nx) sin(kx) + bn sin(nx) sin(kx))
                                      2            n=1


De même en prenant l’intégrale définie de −π à π, nous avons

     π                                π                                π      N
                                           a0
         f (x) sin(kx) dx =                   sin(kx) dx +                         (an cos(nx) sin(kx) + bn sin(nx) sin(kx)) dx
 −π                                   −π   2                          −π n=1

                                      π                              N         π                               N          π
                                           a0
                               =              sin(kx) dx +                         an cos(nx) sin(kx) dx +                    bn sin(nx) sin(kx) dx
                                      −π   2               n=1                −π                               n=1    −π

                                            π                        N              π                          N              π
                                   a0
                               =                sin(kx) dx +               an           cos(nx) sin(kx) dx +         bn            sin(nx) sin(kx) dx
                                   2       −π                        n=1           −π                          n=1            −π


En considérant les résultats qu’on a montré auparavant, on peut constater que
N              π                                      N                π                                   π
         bn        sin(nx) sin(kx) dx =                        (bn            sin(nx) sin(kx) dx) + bk         sin2 (kx) dx
n=1           −π                                 n=1,n=k              −π                                  −π
                                                   π
                                                        2
la somme s’annule sauf pour bk                            sin (kx) dx qui donne bk π.
                                                  −π
              π                       N           π
     a0
et                 sin(kx) dx et            an        cos(nx) sin(kx) dx donnent 0.
     2        −π                      n=1        −π




                                                                     14
π
                                                                      1
Par conséquent, nous avons pour tout k entier positif, bk =                     f (x) sin(kx) dx
                                                                      π    −π
Et donc                                       π
                                          1
                                   bn =            f (x) sin(nx) dx
                                          π   −π

   Résumons quelque peu. Si une fonction périodique de période 2π peut s’écrire sous
forme de série de Fourier, alors

                                          N
                                   a0
                         f (x) =      +     (an cos(nx) + bn sin(nx))
                                   2    n=1


Alors,
                                                    π
                                              1
                                      a0 =              f (x) dx
                                              π    −π

                                              π
                                          1
                                   an =            f (x) cos(nx) dx
                                          π   −π

                                              π
                                          1
                                   bn =            f (x) sin(nx) dx
                                          π   −π

   On peut tout de suite appliquer ce que l’on vient de voir sur exemple.


2.1.4     Exemple : Fonction carrée
   Prenons l’exemple d’une fonction carrée périodique de période 2π.

                                                        1   si 0 ≤ x < π
Alors sur l’intervalle [−π; π], on a f (x) =
                                                     −1     si −π ≤ x < 0

Puisqu’elle est définie dans R et est périodique de 2π, on peut alors écrire

             1   si 2kπ ≤ x < (2k + 1)π
f (x) =                                        où k ∈ Z
           −1    si (2k + 1)π ≤ x < 2kπ


   Si cette fonction peut être écrite sous la forme de série de Fourier, alors cette série est
               N
        a0
égale à    +      (an cos(nx) + bn sin(nx)).
        2     n=1
Maintenant, il faut qu’on détermine les coefficients a0 , an et bn .
   Pour cela, nous pouvons directement appliquer ce que nous avons trouvé auparavant,
mais on doit traiter les deux parties séparément, puisque f (x) est définie différemment




                                                   15
Figure 2.1 – Graphique de la fonction carrée


sur l’intervalle [−π, π].

                                                0                         π
                                          1
                                 a0 =       (        f (x) dx +               f (x) dx)
                                          π     −π                    0
                                                 0                    π
                                       1
                                      =  (   −1 dx +                      1 dx)
                                       π −π                       0
                                       1
                                      = (π − π) = 0
                                       π

                                 π
                            1
                  an =               f (x) cos(nx) dx
                            π   −π
                                 0             π
                       1
                      =  (   − cos(nx) dx +      cos(nx) dx)
                       π −π                  0
                       1 −1                1
                      = (   sin(nx)|0 + sin(nx)|π )
                                     −π              0
                       π n                 n
                       1 −1                        1
                      = (   (sin(0) − sin(−nπ)) + (sin(nπ) − sin(0)))
                       π n                         n
                      =0


                                π
                          1
                  bn =               f (x) sin(nx) dx
                          π     −π
                                 0                  π
                          1
                     =      (     − sin(nx) dx +      sin(nx) dx)
                          π −π                    0
                          1 1                 −1
                     =      ( cos(nx)|0 +
                                        −π       cos(nx)|π )
                                                           0
                          π n                  n
                          1 1                           −1
                     =      ( (cos(0) − cos(−nπ)) +        (cos(nπ) − cos(0)))
                          π n                            n
                          1 1                    −1
                     =      ( (1 − cos(−nπ)) +        (cos(nπ) − 1))
                          π n                     n
                           2
                     =        (1 − cos(nπ))
                          nπ


                                                        16
On remarque ici que la valeur de bn dépend de la parité de n. Aussi posons-nous soit
n = 2k, soit n = 2k + 1 suivant la parité de k ∈ Z.

                   2                  1
Si n = 2k alors      (1 − cos(nπ)) =    (1 − cos(2kπ)) = 0
                  nπ                 kπ
                        2                     2                                4
Si n = 2k + 1, alors      (1 − cos(nπ)) =           (1 − cos((2k + 1)π)) =
                       nπ                 (2k + 1)π                        (2k + 1)π
                  
                     0     si n est un entier pair
Donc on a bn =       4
                          si n est un entier impair
                    nπ


Nous avons donc trouvé que la série de Fourier de f (x) est
                                 N
                                          4
                                                sin((2k + 1)x)
                                      (2k + 1)π
                                k=0




                  Figure 2.2 – Addition de termes de la fonction carrée
   Mais maintenant, nous pouvons nous poser une question sur le nombre N : de quelle
grandeur doit-il être afin d’obtenir exactement le graphe de la fonction désirée ?
De plus, on rencontre une difficulté lorsqu’on veut construire cette fonction carrée en
l’approchant avec la somme des termes consécutifs de la série que l’on vient de trouver.


                                              17
En effet, comment peut-on construire une fonction discontinue à chaque x = kπ (où k est
un entier) à l’aide de la somme de fonctions continues en tout point dans R et dérivables
dans tous ses degrés (ses fonctions dérivées de degré 1, 2, 3,...,etc. sont toutes continues,
car les fonctions sinus et cosinus sont de classe C n ).
Cependant, nous pouvons observer que plus on ajoute de termes dans cette somme, donc
plus le nombre N croît, plus la fonction a l’air de coller au graphe de la fonction carrée.
   Mais elle ne deviendra jamais carrée puisqu’il existe toujours des courbes aux extrémités.
Par cette idée intuitive, on peut déduire que la série de Fourier associée à cette fonction
                 ∞
                         4
carrée f (x) est               sin((2k + 1)x)
                    (2k + 1)π
                k=0

De même, on peut étendre la série de Fourier vers une écriture plus générale. Si une
fonction f (x) périodique de période 2π peut être écrite sous forme de série de Fourier,
alors cette série est égale à
                                        ∞
                                a0
                                   +     (an cos(nx) + bn sin(nx))
                                2    n=1



Par cet exemple, nous pouvons aussi observer une chose étonnante. Cette fonction carrée
peut être simplement écrite par la somme de sinus. En effet, la raison pour laquelle son
expression est uniquement sous forme de termes en sinus est simplement due à sa parité.

Cette "propriété de parité" nous dit que :
   – si la fonction est paire, alors sa série de Fourier est une somme de cosinus
   – si la fonction est impaire, sa série de Fourier est une somme de sinus

Rappelons-nous d’abord de certaines propriétés liées a la parité d’une fonction.
Si une fonction est paire, alors f (x) = f (−x)
et on peut simplifier l’expression de l’intégrale sur des intervalles symétriques :
                                    π                       π
                                        f (x) dx = 2            f (x) dx.
                                   −π                   0

Si une fonction est impaire alors, f (x) = −f (−x).
                                             π
                                        et        f (x) dx = 0
                                             −π

   Finalement, le produit d’une fonction paire et d’une fonction impaire est impaire, et
le produit de deux fonctions de la même parité est paire.




                                                   18
Ainsi, si f (x) est paire, alors f (x) sin nx est impaire et f (x) cos nx est paire.
                                              π
                                    2
                               a0 =               f (x) dx
                                    π     0
                                              π
                                    2
                               an =               f (x) cos(nx) dx
                                    π     0
                                              π
                                    1
                               bn =               f (x) sin(nx) dx = 0
                                    π     −π




Si f (x) est impaire, alors f (x) sin nx est paire et f (x) cos nx est impaire.
                                             π
                                    1
                               a0 =               f (x) dx = 0
                                    π    −π
                                          π
                                    1
                               an =               f (x) cos(nx) dx = 0
                                    π    −π
                                          π
                                    2
                               bn =               f (x) sin(nx) dx
                                    π    0

Par conséquent, on voit que
                                                                 ∞
                                                          a0
                       Si f (x) paire, la serie =            +     an cos(nx)
                                                          2    n=1

                                                                 ∞
                         Si f (x) impaire, la serie =                bn sin(nx)
                                                              n=1

   Maintenant qu’on est familier avec la série de Fourier pour une fonction de période
2π, on peut se demander quelle sera la forme de la série de Fourier pour une fonction
périodique de période T quelconque. Étudions cela :


Soit f (x) une fonction périodique de période T . On veut la développer en série de Fourier,
mais on ne connait que le la série pour une période de 2π. Nous allons donc effectuer un
                             T               T
changement de variable x =      u tel que f ( u) soit périodique de période 2π.
                             2π              2π
                                        T                        T
On le voit facilement car f (x) = f (      u) et f (x + T ) = f ( (u + 2π)).
                                        2π                       2π
                                      T          T                  T
Et puisque f (x) = f (x + T ) ⇔ f (      u) = f ( (u + 2π)) donc f ( u) est bien périodique
                                      2π         2π                 2π
de 2π.




                                                     19
On connait ainsi la forme de cette série de Fourier et de ses coefficients
                                           ∞
                                 a0
                                    +    (an cos nu + bn sin nu)
                                 2    n=1

                                                              T                    T
Et on applique le changement de variable x =                  2π u   ⇒ dx =        2π du,   ce qui va nous donner
comme expression
                                           π
                                      1              T
                           a0 =                 f(      u) du
                                      π    −π        2π
                                            T
                                      1     2            2π
                                =                f (x)      dx
                                      π    −T
                                            2
                                                         T
                                            T
                                                                         T
                                      2     2                    2
                                =                f (x) dx =                   f (x) dx
                                      T    −T
                                            2
                                                                 T   0



                           π
                       1             T
               an =             f(      u) cos(nu) du
                       π   −π        2π
                            T
                     1      2                   2πnx 2π
                   =            f (x) cos(          )   dx
                     π     −T
                            2
                                                 T    T
                            T
                                                                          T
                       2    2                   2πnx        2                              2πn
                   =            f (x)cos(            ) dx =                   f (x) cos(       ) dx
                       T   −T
                            2
                                                 T          T         0                     T


                           π
                       1             T
               bn =             f(      u) sin(nu) du
                       π   −π        2π
                            T
                       1    2                   2πnx 2π
                   =            f (x) sin(          )   dx
                       π   −T
                            2
                                                 T    T
                            T
                                                                          T
                       2    2                   2πnx        2                              2πn
                   =            f (x) sin(           ) dx =                   f (x) sin(       ) dx
                       T   −T
                            2
                                                 T          T         0                     T

Et la série de Fourier d’une fonction de période quelconque T sera
                                       ∞
                            a0              2πn            2πn
                               +    (an cos     x + bn sin     x)
                            2    n=1
                                             T              T

   Et cela satisfait également toutes les autres propriétés démontrées auparavant.




                                                         20
2.1.5    Ecriture complexe des séries de Fourier
   Cette manière d’écrire la série de Fourier avec la somme de sinus et cosinus n’est pas
l’unique représentation des séries de Fourier : nous pouvons aussi écrire la somme de
Fourier sous la forme exponentielle, ce qui simplifiera l’écriture et les calculs.
   Tout d’abord, nous devons montrer la relation d’Euler qui nous sera très utile pour la
suite.
                                          eiπ + 1 = 0

   Par les séries de Taylor (plus précisément par la série de Maclaurin), on peut écrire la
fonction ex sous la forme suivante :

                                              x2         xn
                              ex = 1 + x +       + ··· +    + ···
                                              2!         n!

Nous pouvons faire la même chose pour sin x et cos x, ce qui nous donne :
                          x2   x4   x6                        x3   x5   x7
            cos x = 1 −      +    −    + · · · et sin x = x −    +    −    + ···
                          2!   4!   6!                        3!   5!   7!
Et vu que

                                 (iθ)2      (iθ)3      (iθ)4           (iθ)n
                 eiθ = 1 + iθ +          +          +          + ··· +       + ···
                                   2!          3!        4!              n!
                                 −θ2       −iθ3       θ4
                     = 1 + iθ +         +          +      + ···
                                   2!         3!      4!
                               2      4
                             θ      θ                       θ3    θ5
                     = (1 −      +      − · · · ) + i(θ −      + )
                             2!     4!                      3!    5!
                     = cos θ + i sin θ

   Nous obtenons alors que
                                      eiθ = cos θ + i sin θ

ce qui veut aussi dire que eiπ = cos π + i sin π = −1 ou encore eiπ + 1 = 0
   Comme corollaire de la relation eiθ = cos θ + i sin θ, nous pouvons déduire que

                                               eiθ + e−iθ
                                       cos θ =
                                                    2
                                               eiθ − e−iθ
                                       sin θ =
                                                   2i
                                                                   a0
   Ainsi, on pourrait, sans se préoccuper du terme constant           , remplacer ces expressions
                                                                   2




                                                 21
dans la série de Fourier trigonométrique.
∞                                 ∞
                                            einx + e−inx      einx − e−inx
    (an cos(nx) + bn sin(nx)) =       (an                + bn              )
n=1                               n=1
                                                  2                2i
                                   ∞
                                          an inx             ibn inx
                             =        (      (e  + e−inx ) −    (e   − e−inx ))
                                  n=1
                                           2                  2
                                   ∞                              ∞
                                                 an   ibn                an   ibn
                             =          einx (      −     )+     e−inx (    +     )
                                  n=1
                                                  2    2     n=1
                                                                          2    2

                             Au lieu de prendre tous les termes n de 1 à ∞, on
                             peut penser qu’on peut inverser ceci sans pour autant changer
                             le sens de la somme en prenant tout les n de−∞ à −1.
                                  ∞                                −1
                                                 an   ibn                a−n   ib−n
                             =          einx (      −     )+      einx (     +      )
                                  n=1
                                                  2    2     n=−∞
                                                                          2      2

    Nous avons envie de grouper les deux sommes, pour ça, il faut qu’on trouve une
relation entre les deux.
Puisque la série trigonométrique donne une fonction réelle, alors la somme de ces deux
sommes doit aussi donner quelque chose de réel. La somme des deux doit donc satisfaire la
symétrie complexe : si on veut que la somme de deux nombres complexes soit un nombre
réel il faut alors que si l’un est z, l’autre soit son conjugué z.
                         an − ibn
Si l’on pose que Cn =              , donc on peut aussi déduire que
                             2
          a−n − ib−n                                                                an + ibn
 C−n =               , alors on a besoin que le terme correspondant de Cn soit Cn =
               2                                                                       2
                                  a−n + ib−n
et que celui de C−n soit C−n =
                                      2
Pour montrer cela nous devons d’abord montrer la relation entre les constantes trigonométriques
et a−n et b−n .
                                                      π
                                             1
                     On a vu que an =                     f (x) cos(nx) dx alors,
                                             π       −π


                                                 π
                                     1
                             a−n =                   f (x) cos(−nx) dx
                                     π       −π
                                              π
                                     1
                                   =                 f (x) cos(nx) dx
                                     π       −π

                                   = an




                                                     22
π
                                        1
                                 bn =                f (x) sin(nx) dx
                                        π       −π


                                                π
                                        1
                               b−n =                 f (x) sin(−nx) dx
                                        π       −π
                                                     π
                                            1
                                    =−                   f (x) sin(nx) dx
                                            π    −π

                                    = −bn

   Par ces deux relations, nous pouvons constater que,

                                                  a−n − ib−n
                                     C−n =
                                                       2
                                                  an + ibn
                                                =
                                                     2
                                                  an − ibn
                                                =
                                                     2
                                                = Cn

Ceci nous montre bien que la somme des deux est bien réelle puisqu’elles satisfont Cn =
C−n . Par la même procédure, on peut aussi montrer que C−n = Cn .
Mais avant de pouvoir les écrire sous une seule somme, on peut constater qu’il nous
manque le terme n = 0.
Puisqu’on sait que Cn = C−n , alors C0 = C−0 = C0 . Ca montre que C0 est un terme
                                                 a0
particulier car il est toujours réel est égale a    . C’est la raison pour laquelle on a choisi,
                                                 2
                                                                                       a0
dans la série de Fourier trigonométrique, d’introduire la constante comme étant           .
                                                                                        2
   Finalement, nous pouvons continuer notre raisonnement, et poser que
                                   an − ibn         a−n + ib−n
                            Cn =            et Cn =
                                      2                 2

       ∞                                                 ∞                   −1
a0                                  a0              an − ibn                a−n + ib−n
   +    (an cos(nx) + bn sin(nx)) =    +     einx (          )+      einx (            )
2    n=1
                                    2    n=1
                                                       2        n=−∞
                                                                                2
                                                         ∞              −1
                                        a0
                                      =    +     Cn einx +      Cn einx
                                        2    n=1           n=−∞

                                     et Cn = C−n et C0 = C−0 = C0 , donc
                                            ∞
                                      =          Cn einx
                                            −∞


Nous avons donc que si une fonction peut être écrite sous forme de série de Fourier


                                                     23
exponentielle, alors sa série de Fourier sera
                                                ∞
                                                     Cn einx
                                             n=−∞




Il nous faut maintenant trouver les expressions du coefficient Cn , à l’instar de ce qu’on a
pu réalisé précédemment.
                                             an − ibn          a−n − ib−n
   N’oublions pas qu’on a défini que Cn =              , C−n =               et C−0 = C0 .
                                                 2                   2
Par ailleurs, nous avons aussi montré les expressions de an et bn , donc pour trouver Cn ,
il nous suffit de substituer les expressions.

        an − ibn
  Cn =
           2
        1 1 π                       i π
      = (        f (x) cos(nx) dx −       f (x) sin(nx) dx)
        2 π −π                      π −π
             π
         1
      =        f (x)(cos(nx) − isin(nx)) dx
        2π −π
     Par la relation d’Euler, on peut voir directement que cos(nx) − isin(nx) = e−inx
               π
           1
      =             f (x)e−inx dx
          2π   −π


   Cependant, cette méthode pour trouver le coefficient Cn dépend fortement de an et
bn qu’on a trouvé auparavant. Donc cette méthode n’est pas très pratique.


Dans ce cas, nous pouvons aussi montrer un autre moyen pour trouver l’expression du
coefficient Cn . Supposons que
                                                    ∞
                                         f (x) =          Cn einx
                                                   n=−∞


alors si on multiplie les deux côtés par e−ikx ou k est un entier quelconque, on obtient
                                                           ∞
                                  f (x)e−ikx = e−ikx            Cn einx
                                                         n=−∞


Pour la partie de droite, on a
               ∞
     e−ikx           Cn einx = e−ikx (· · · + C−2 e−2ix + · · · + C1 eix + · · · + Ck eikx + · · · )
             n=−∞

nous remarquons qu’il existe un et un seul terme où n = k qui nous donnera


                                                    24
Ck eix(k−k) = Ck
donc nous pouvons écrire de façon équivalente :
                                    ∞                          ∞
                       e−ikx            Cn einx =                       Cn ei(n−k)x + Ck
                                n=−∞                   n=−∞,n=k

                                               ∞
      Donc on a Ck = f (x)e−ikx −                       Cn ei(n−k)x
                                         n=−∞n=k
On peut intégrer sur une période des deux côtés,
  π           π                         π          ∞
      Ck =        f (x)e−ikx dx −                           Cn ei(n−k)x dx
 −π          −π                         −π n=−∞,n=k

Prenons un terme dans la somme que nous devons intégrer,
  π                             π
      Cn eix(n−k) dx = Cn            eix(n−k) dx
 −π                             −π
                           Cn
                      =          ei(n−k)x |π
                                           −π
                        i(n − k)
                           Cn
                      =          (eiπ(n−k) − e−iπ(n−k) )
                        i(n − k)
                     par la relation d’Euler, on sait que pour m entier, eiπm = 1
                     Puisque n et k sont tous les deux entiers, leur différence l’est également
                      =0

                           π                   π
      Finalement, on a          Ck dx =            f (x)e−ikx dx
                           −π               −π
                                                       π
                                        2πCk =              f (x)e−ikx dx
                                                       −π
                                                                   π
                                                         1
      Pour tout k entier, on peut avoir Ck =                           f (x)e−ikx dx.
                                                        2π      −π
Donc si on peut écrire
                                                           ∞
                                            f (x) =            Cn einx
                                                        −∞

alors,
                                                        π
                                                1
                                        Cn =                f (x)e−inx dx
                                               2π      −π



On obtient bien le même expression que ce qu’on a trouve par la première méthode.


Tout comme les séries de Fourier trigonométriques, on peut écrire les séries de Fourier
exponentielles d’une fonction f (x) de période quelconque T .


                                                        25
T                  T
On utilisera aussi le changement de variable x =    u pour rendre f ( u).
                                                 2π                  2π
Finalement on obtient que la série de Fourier d’une fonction périodique de T est
                                                 ∞
                                                                 2πinx
                                    f (x) =               Cn e     T

                                               n=−∞


où le coefficient de Fourier
                               T
                                                                       T
                         1     2            −2πinx          1                       −2πinx
                  Cn =             f (x)e     T      dx =                  f (x)e     T      dx
                         T   −T
                              2
                                                            T      0



2.2     Convergence des séries trigonométriques, des séries
        de Fourier, et Théorème de Dirichlet
   Jusqu’à présent, nous avons toujours utilisé soit l’hypothèse "si la fonction égale à
sa série" ou soit le terme "la série de Fourier d’une fonction" parce qu’on a pas encore
montre de manière rigoureuse, l’équivalence entre la fonction et sa série de Fourier. Pour
cela, nous devons montrer la convergence de la série de Fourier vers la fonction.
   La convergence est sans conteste l’aspect le plus compliqué dans la description mathématique
des séries de Fourier. Aussi pouvons-nous seulement, avec notre modeste niveau, en
aborder qu’une mince partie.
   Avant toute chose, il convient d’introduire certaines notions en ce qui concerne la
convergence, afin que le vocabulaire utilisé, qui peut somme toute paraître anodin, prenne
tout son sens. En premier lieu, nous devons distinguer les différentes formes de convergence :
la convergence simple, la convergente uniforme, la convergence en norme ainsi que la
convergence "presque partout". Nous ne nous occuperons pas des deux derniers cas, car
trop complexes.


2.2.1    Convergence simple
   Définition :
   Soient I un intervalle de R, (fn )n∈Z une suite de fonctions définies sur I, et f définie
sur I. On dit que (fn ) converge simplement vers f sur I si ∀x ∈ I, la suite (fn (x))
converge vers f (x). Autrement dit :

              ∀x ∈ I, ∀ > 0, ∃n0 ( , x) ∈ N, ∀n ≥ n0 ⇒ |fn (x) − f (x)| <

   Où la notation ( , x) signifie que le choix du n0 dépend et de , et du x déterminé.
   Exemple : Soit sur [0, 1], fn (x) = xn . Il est clair que la fonction fn converge
simplement vers la fonction définie par f (x) = 0 si x est dans [0,1[ et f (1) = 1.


                                                     26
Figure 2.3 – Illustration de la convergence simple


   On constate dèjà ici l’insuffisance de la convergence simple pour les fonctions continues :
chaque fonction (fn ) est continue, la suite (fn ) converge simplement vers f , et pourtant
f n’est pas continue. Ainsi la continuité n’est pas toujours préservée par la convergence
simple, d’où par la suite l’idée de convergence uniforme.
   Une autre insuffisance d’une telle notion est que l’intégrale de la limite d’une suite
fonctions intégrables n’est pas forcément égale à la limite de l’intégrale de la suite de
fonctions intégrables.
   Soit la suite de fonctions définie sur [0,1] par
                                 
                                                                                          1
                                  fn (x) = n2 x,
                                                                              0≤x≤      2n
                                                1                              1          1
                                   f (x) = n2 ( n − x),                            ≤x   ≤n
                                  n                                          2n
                                                                                   1
                                   fn (x) = 0,                                x≥
                                 
                                                                                   n


   Montrons la convergence simple de la suite fn (x) sur [0,1].
            1                                                                                              1
Soit x>0.   n   →0              lorsque n → ∞, donc à partir d’un certain rang N , on a :                  n   < x.
On en déduit donc qu’à partir du même rang N , fn (x) = 0 et donc fn (x) → 0 lorsque
n → ∞. Ainsi, la suite (fn (x)) converge simplement vers la fonction nulle sur [0,1].
                                                1                1
                            1                  2n                n
D’un autre côté,                fn (x) =            n2 xdx +         n − n2 xdx = 1/4 (L’intégrale est donc
                                                                 1
                        0                  0                    2n
                                                                          1
indépendante de n). Ceci prouve que la suite (                                fn ) ne tend pas vers 0. Aussi cette
                                                                      0
intégrale n’est-elle pas égale à l’intégrale de la fonction nulle, qui est bien entendu nulle,
                    1                      1                              1
et donc, lim            fn (x)dx =             lim fn (x)dx =                 f (x)dx = 0.
         n→∞    0                          0 n→∞                      0
Ces insuffisances motivent donc une nouvelle notion de convergence.


                                                           27
Figure 2.4 – Illustration de la convergence uniforme


2.2.2     Convergence uniforme
   Définition :
   Soient I un intervalle de R, (fn )n∈Z une suite de fonctions définies sur I, et f définie
sur I. On dit que (fn ) converge uniformément vers f sur I si :

                   ∀ > 0, ∃n0 ( ) ∈ N, ∀x ∈ I, ∀n ≥ n0 , |fn (x) − f (x)| < .

   La convergence uniforme est donc une forme de convergence beaucoup plus exigeante
que la convergence simple, qui ne demandait que, pour chaque point x, la suite (fn (x)) ait
une limite. La convergence uniforme veut que toutes les suites (fn (x)) avancent vers leur
limite respectives avec un certain mouvement d’ensemble, autrement dit, la convergence
a lieu à la même vitesse pour chaque point x, d’où le fait que l’on puisse déterminer une
valeur unique n0 à partir de laquelle toutes les fn (x) dont le n est supérieur à n0 soient
inférieures à un    donné, ce indépendamment de x. A l’inverse, pour la convergence
simple, le rang à partir duquel la distance devient très petite peut fortement varier d’un x à
l’autre. De façon imagée, on peut dire que pour que la convergence uniforme, il est possible,
selon le n0 , de former un tube plus ou moins petit autour de la fonction vers laquelle la
suite converge dans lequel tous les fn , n > n0 se trouvent. Pour la convergence simple,
on aurait, toujours de façon imagée, certaines fonctions qui ferait des pics, dépassant ce
tube imaginaire, pour ensuite revenir vers la fonction vers laquelle la suite tend. Ceci se
retrouve bien entendu dans la définition ci-dessus avec |fn (x) − f (x)| < .



                                              28
Figure 2.5 – Exemple de convergence uniforme vers la fonction y = |x|


   Il semble assez intuitif que toute suite de fonction qui converge uniformément converge
simplement. Nous n’allons pas le démontrer formellement. La réciproque est en général
fausse, sauf cas exceptionnels.
   Réglons de suite la seconde insuffisance pour les fonctions intégrables : la définition de
convergence uniforme nous permet une majoration indépendante de x, d’où nous obtenons
l’inégalité suivante :
          b
              |fn (x) − f (x)|dx ≤ (b − a)max|fn − f |
      a
Ceci nous permet dès lors de permuter la position de limite sans affecter le résultat, et la
limite de l’intégrale est bien égale à l’intégrale de la limite. (Quand n tend vers l’infini, le
second membre tend vers 0, d’où le premier également - du fait de la valeur absolu - et
              b                    b
lim               fn (x)dx =           f (x)dx )
n→∞       a                    a
   Mais qu’en est-il de la première insuffisance en ce qui concerne les fonctions continues :
si une suite de fonction (fn ) continues sur I converge uniformément vers f , f est-elle
continue sur I ? La réponse est oui (on s’en doute), en voici la preuve :
   Nous savons que :
∀ > 0, ∃n0 ( ) ∈ N, ∀x ∈ I, ∀n ≥ n0 ⇒ |fn (x) − f (x)| < .
   Prenons x0 ∈ I, qui répond donc à l’inégalité, et fixons un nombre entier N qui
caractérise la fonction fN . Nous savons d’autre part que (fN ) est continue en x0 , donc :
   ∀x ∈ I, ∃δ( , x) > 0, |x − x0 | < δ ⇒ |fN (x) − fN (x0 )| <
   Et l’inégalité triangulaire achève la démonstration puisque
|f (x) − f (x0 )| < |f (x) − fN (x)| + |fN (x) − fN (x0 )| + |fN x0 − f (x0 )| < 3 .




                                                   29
2.2.3     Convergence normale
   Soient I un intervalle de R et (fn )n∈Z une suite de fonctions définies sur I. On dit que
                                                 ∞
(fn ) converge normalement sur I si la série          sup|fn (x)|, x ∈ I est convergente.
                                                n≥0
   La convergence normale est encore plus exigeante que la convergence uniforme, dans
le sens où toute fonction qui converge normalement converge uniformément. Nous ne le
démontrerons pas.


2.2.4     Convergence des séries trigonométriques
Proposition 1

   Si les séries numériques      |an | et    |bn | co,nvergent, alors la série trigonométriques
                    2πn              2πn
S(t) =      an cos(     t) + bn sin(      t) converge normalement (et donc uniformément)
                     T                 T
        n≥0
sur R
   Preuve
   Cela découle directement de l’inégalité : |an cos( 2πn t) + bn sin( 2πn )t)| ≤ |an | + |bn |
                                                       T                T
   Corollaire
   Si les séries numériques       |an | et   |bn | convergent, alors la série trigonométrique
S(t) est continue sur R.
   Si les séries n |an | et n      |bn | convergent, alors la somme S(t) est continue sur R,
à dérivée continue.

Proposition 2

   Si les suites numériques (an ) et (bn ) sont décroissantes et tendent vers 0, alors la série
trigonométrique S(t) est convergente pour t = k.T où k ∈ Z
   Nous ne démontrons pas cette proposition.


2.2.5     Théorème de Dirichlet.
   Avant d’entamer la démonstration, il convient de repréciser les différents types de
convergence qui interviennent dans le cadre des séries de Fourier : la convergence simple,
que traite le théorème de Dirichlet, la convergence uniforme, la convergence en norme,
et la convergence presque partout. Chacune de ces notions de convergence requiert des
hypothèses différentes sur la fonction f (x), ainsi que différents types de preuves. Les
preuves des trois derniers cas de convergence cités sont inabordables car elles nécessitent
des notions d’analyse fonctionnelle très avancées.
   Quelques notations et définitions


                                               30
Notation
   Nous noterons pour la suite f (a+ ) la limite à droite en a et f (b− ) la limite à gauche
en b.
   Fonction continue par morceau
   Une fonction f : [a, b] → C est dite continue par morceau sur [a,b] si f est continue sur
[a,b] sauf éventuellement en un nombre fini de points qui admettent des limites à gauche
et à droite. En particulier, f (a+ ) et f (b− ) existent.
   Fonction lisse par morceaux
   Une fonction f : [a, b] → C est dite lisse par morceau sur [a,b] si f et f sont continues
par morceaux sur [a,b]. En particulier, f (a+ ) et f (b− ) existent.
   Extension sur R
   Une fonction f : R → C est continue (respectivement lisse) par morceau sur R si elle
est continue (respectivement lisse) par morceaux sur tout intervalle borné [a,b]∈ R


   Introduction au théorème
                                                              n
   Expression du noyau de Dirichlet : Dn (x) =                        eikx
                                                          k=−n
   Nous allons calculer cette somme dans un cas général afin d’alléger l’écriture. Soit
donc la somme symétrique (car allant de −n à n) de termes d’une suite géométrique de
raison q. Nous allons utiliser la symétrie de la somme afin de modifier l’écriture :
                                n           2n
                                                                       q 2n+1
                                     qk =         q −n q k = q −n
                                                                       q−1
                              k=−n          k=0
                                                                                          1
Pour obtenir un terme plus homogène, multiplions numérateur et dénominateur par q − 2 ,
                          1                   1         1
                    q −n− 2 q 2n+1 − 1   q n+ 2 − q −n− 2
ce qui nous donne :    −1              =      1     −1
                      q 2      q−1          q2 − q 2
    En remplaçant maintenant q par eix , nous trouvons :
                                            1                     1
                                     ei(n+ 2 )x − e−i(n+ 2 )x
                                            1             1
                                     ei( 2 )x − e−i( 2 )x
   Et en utilisant les formules d’Euler, nous pouvons transformer l’expression en :
                                         sin((n + 1 )x)
                                                   2
                                            sin( x )
                                                 2
   Cependant, nous aurons besoin pour notre démonstration de l’intégrale de −π à π
(qui équivaut soit disant passant au double de l’intégrale de 0 à π, la fonction déterminé
par le noyau étant paire) de la fonction Dn (x). La primitive de l’expression trouvée étant
extrêmement ardue, nous devons trouver une autre expression du noyau.
   Sachant que le noyau est une fonction réelle, il nous suffit en fait de prendre en compte
                                                      n
uniquement les parties réelles de la somme                eikx , ce qui nous donne :
                                                   k=−n


                                                   31
k=n
                                    Dn (x) = 1 + 2               cos(kx)
                                                           k=1

(Deux fois la somme car cosx est paire, 1 car nous considérons à part le cas où k=0)
                                                 π
   Aussi trouvons-nous aisément que :                 Dn (x)dx = 2π, les termes en cosinus devenant
                                                 −π
des sinus, qui s’annulent pour x = k.π.
   En résumé,
                               n                       n                             1
                                                                           sin((n + 2 )x)
                 Dn (x) =           eikx = 1 + 2            cos(kx) =
                                                                              sin( x )
                                                                                   2
                             k=−n                     k=1

Et son intégrale de 0 à π équivaut à π. Passons maintenant au théorème de Dirichlet en
lui-même.


   Théorème(Dirichlet, 1824) Si f : R → C est 2π-périodique et lisse par morceau sur
R, alors :
         f           1
    lim SN (x) =       (f (x+ ) + f (x− ))       pour tout x.
   N →∞              2
   En particulier,
                                             f
                                        lim SN (x) = f (x)
                                       N →∞

                                     f
pour tout x où f est continue, avec SN (x) la série de Fourier correspondant à la fonction.


   Nous pouvons dès lors dire qu’une fonction qui vérifie les hypothèses du théorème de
Dirichlet converge simplement. Remarque :Il peut exister des fonctions continues dont la
série de Fourier associée diverge pour certaines valeurs de x.

   Preuve
   Nous allons utiliser la notation complexe, et choisir le cas particulier T = 2π afin
                                             p
d’alléger l’écriture. Notons Sp (x) =             ck eikx la somme partielle de la série de Fourier
                                         k=−p
en un point x fixé.

                        1
   1. Calcul de Sp (x) − (f (x+ ) + f (x− ))
                        2


   Calculons la somme partielle Sp (x), et précisons que f (t) correspond à la fonction que
l’on a représenté sous forme de série. x étant fixé, nous utilisons la variable t afin de ne
pas prêter à confusion ; il ne s’agit en quelque sorte que d’une variable muette :
              p              2π
                       1
   Sp (x) =      eikx           e−ikt f (t)dt
                      2π 0
             k=−p


                                                      32
2π     p
          1
     =                               eik(x−t) f (t)dt
         2π       0        k=−p
            2π
        1
     =         Dp (x − t)f (t)dt
       2π 0
            2π−x
        1
     =           Dp (u)f (u + x)du
       2π −x
     [Changement de variable (t=u+x) + utilisation du fait que le noyau de Dirichlet est
pair.]
                      π
          1
     =                     Dp (u)f (u + x)du
         2π       −π
                                                                                                                          2π          π           k+2π
f périodique de période 2π, donc, comme on a pu le démontrer,                                                                  =          =
                                                                                                                      0              −π       k

     Ceci nous permet dès lors d’écrire en se souvenant que l’intégrale du noyau sur la
période est π :
                                                                          π                                                    π
                      1                        1                                                                     1
     Sp (x) −           (f (x+ ) + f (x− )) =                                 Dp (u)f (u + x)du −                                  Dp (u)f (x+ )du −
                      2                       2π                         −π                                         4π     −π
         π
 1                               −
             Dp (u)f (x )du
4π    −π

     Ce qui nous donne en utilisant la parité du noyau de Dirichlet :

              π                                                     π                                          0
      1                                                1                                                1
                  Dp (u)f (u + x)du −                                   Dp (u)f (x+ )du −                           Dp (u)f (x− )du
     2π      −π                                       2π        0                                      2π      −π
                            0                                                                  π
     =
          1
         2π
              (            −π
                                 Dp (u)(f (u + x) − f (x− ))du +
                                                                                           0
                                                                                                   Dp (u)((f (u + x) − f (x+ ))du             )

     Il ne nous reste donc plus qu’à prouver que ces deux intégrales tendent vers 0 lorsque
p tend vers l’infini, et nous aurons gagné. La démonstration étant quasi identique pour
chaque intégrale, nous ne le démontrerons que pour une seule.
                                            π
     2. Calcul de lim                           Dp (u)((f (u + x) − f (x+ ))du
                                p→∞     0


                                                                               1
                                                                   sin((p + 2 )x)
     Nous avons vu dans l’introduction au théorème que Dp (x) =              x
                                                                        sin( 2 )
     Choisissons α, 0 < α < π, tel que f soit lisse par morceau sur ]x; x + α[ (sans oublier
                                                            π                 α        π
que x est fixé), et décomposons                                  en                +
                                                        0                 0            α
                                                                                                           α
     2.1 Traitons d’abord le cas de la première intégrale
                                                                                                       0




                                                                                  33
Notons M la borne supérieure de f sur [0; α] et remarquons que u ≤ πsin( u ) pour
                                                                             2
tout u ∈ [0, π] Nous appliquons le théorème des accroissements finis à f sur [x; x + u] :
|f (u + x) − f (x+ )| ≤ M u.


    Et donc, en réinjectant dans l”intégrale dont on a pris la valeur absolu, tout en se
rappelant que u ≤ πsin( u ) , nous obtenons :
                            2
      α
        |sin((p + 1 )u)|                                α
                                                          |sin((p + 1 )u)|
                    2
                         |((f (u + x) − f (x+ ))|du ≤                2
                                                                           M udu ≤ M πα
    0        sin( u )
                  2                                   0       sin( u )
                                                                   2
   Ainsi, l’intégrale peut être rendue arbitrairement petite pour autant que l’on choisisse
bien α.
                                                   π
    2.2 Cas de la seconde intégrale
                                                  α

    Nous allons utiliser le lemme suivant afin de démontrer cela (remarquons que ce lemme
marche tout aussi bien pour le premier cas) :


    Lemme
    Toute fonction f lisse par morceau sur [a, b] vérifie :
                  b
     lim              f (x)sin(nx)dx = 0
    n→∞       a
                  b
     lim              f (x)cos(nx)dx = 0
    n→∞       a

    Preuve
                                                                b                      n−1   αk+1
    Il nous suffit d’intégrer par partie :                            f (x)sin(nx)dx =                f (x)sinxdx =
                                                            a                          k=0   αk
    n−1                                                αk+1 n−1
1              +                  −                1
          (f (αk )cos(nαk ) − f (αk+1 )) +                                f (x)cos(nx)dx
n                                                  n   αk
    k=0                                                             k=0

    Et l’on constate bien que lorsque n → ∞, l’expression → 0 (Rappelons-nous bien que
l’hypothèse de départ est que f est lisse par morceau, d’où le fait que sa dérivée soit
continue, et a fortiori bornée, ce qui justifie le fait que la seconde partie de l’expression
tende vers 0.)


    Revenons-en au traitement de notre second cas.
                         f (x+u)−f (x+ )
Posons g(u) =                sin( u )    .   Il suffit maintenant simplement de constater que g(u) est
                                  2
lisse par morceau sur [α; π], ce qui implique que
        π
                       1
 lim      g(u)sin((p + )u) = 0 d’après le lemme précédent, ce que l’on cherchait à
p→∞ α                  2


                                                            34
démontrer.


    3.Synthèse de la démonstration du théorème de Dirichlet.
                                                1
    Nous avons donc démontré que lim Sp (x) − (f (x+ ) + f (x− )) = 0, pour une fonction
                                   p→∞          2
f lisse par morceau, ce qui nous assure que qu’en tout point de discontinuité, la fonction
converge vers une valeur, et qu’en tout autre point où f est continue, la limite de la série
de Fourier correspondant à la fonction pour p très grand tend vers la fonction.


2.2.6    Analyse d’une fonction qui répond aux hypothèses du théorème
         de Dirichlet.
   On se propose d’étudier la fonction f (x) = ex si x ∈] − π; π[, fonction qu’on étend par
la suite sur l’ensemble des réels. D’après ce qu’on a pu démontrer sur la périodicité, nous
pouvons nous contenter d’étudier la fonction sur ] − π; π[




Figure 2.6 – Graphique de f (x) = ex si x ∈] − π; π[, fonction qu’on étend par la suite
sur l’ensemble des réels.

   Remarquons tout de suite que la fonction est discontinue aux points x = π + k.2π,
qu’elle est de période de 2π et qu’elle vérifie les hypothèses du théorème de Dirichlet
puisqu’elle est clairement lisse par morceau. Ainsi, nous pouvons légitimement écrire
                                                                                    ∞
                                                                           a0
cette fonction sous forme de série de Fourier, c’est-à-dire f (x) =        2    +       (an cos(nx) +
                                                                                    n=0
bn sin(nx))


   Calcul de a0
        1 π x         eπ − e−π
   a0 =        e dx =
        π −π              π
   Calcul de an
        1 π x
   an =        e cos(nx)dx.
        π −π
                π
Pour trouver        ex cos(nx)dx, deux méthodes-entre autres- s’offrent à nous : la double
               −π
                             π
intégration par partie, ou        ex(ni+1) , en considérant ensuite la partie réelle de l’intégrale.
                             −π
Nous allons utiliser la première pour la recherche de an et la seconde pour la recherche de


                                                 35
bn . ( A la seule différence près que cos(nx) étant subsitué par sin(nx) pour la recherhce
de bn , nous devrons considérer la partie imaginaire de l’intégrale.)
Soit I =     ex cos(nx)dx. Après la première intégration par partie, nous trouvons :
     ex sin(nx)   1
I=              −      ex sin(nx)
          n       n
Intégrons maintenant par partie J =          ex sin(nx) ; nous trouvons :
     −ex cos(nx)      1 π x
J=                 +         e cos(nx)
           n          n −π
            ex sin(nx)     1 −ex cos(nx)    1
Ainsi, I =              − (               + I)
                 nx        n        n       n
          1       e sin(nx) ex cos(nx)
⇔ I(1 + 2 ) =                 +
          nx           n x           n2
        n.e sin(nx) + e cos(nx)
⇔I=
                   n2 + 1
             π
                                eπ .cos(nπ) e−π .cos(nπ)  cos(nπ) π
Dès lors,      ex cos(nx)dx =        2+1
                                           −     2+1
                                                         = 2     (e − e−π )
            −π                    n            n           n +1
                         1 cos(nπ) π
   Et finalement, an =     (       (e − e−π ))
                         π n2 + 1

   Calcul de bn
     1 π x                 1        π
bn =       e sin(nx)dx = (               ex(ni+1) )
     π −π                  π        −π



    1 π x(ni+1)    eπ(ni+1)   e−π(ni+1)
   ⇒      e     =           −
    π −π            ni + 1     ni + 1
 −ni + 1 π nπi   −π −nπi
= 2     (e e   −e e      )
  n +1

   En prenant uniquement la partie imaginaire, en considérant bien que sin(nπ) est de
toute façon nul, nous trouvons :
      1 −n
bn = ( 2       (eπ cos(nπ) − e−π cos(nx)))
     π n +1
                         1 ncos(nπ) −π
   Et finalement, bn =     (        (e − eπ ))
                         π n2 + 1

   Et en groupant le tout, nous trouvons l’expression de la série. (En considérant bien
que suivant que n est pair ou impair, cos(nπ) équivaudra à 1 ou -1)


   Série de Fourier associée à la fonction

                         ∞
             eπ − e−π        (−1)n
   f (x) =            +               (eπ − e−π )(cos(nx) − nsin(nx))
                2π      n=1
                            π(n2 + 1)


                                                36
∞
    eπ − e−π               (−1)n
=
        π
               (1 +
                2         π(n2 + 1)
                                                      )
                                    (cos(nx) − nsin(nx)
                      n=1


2.3      Phénomène de Gibbs
    Nous avons vu lors de l’analyse de la fonction carrée qu’au plus on additionne des
termes trigonométriques, au plus la fonction tend vers une forme carrée. Mais nous
remarquons aussi que sur les points anguleux de la fonction, bien qu’on puisse ajouter un
grand nombre de termes, défaut d’approximation persistera.




                       Figure 2.7 – Illustration du phénomène de Gibbs


    Etant donné que tout terme de la série de Fourier est une fonction continue, il
est normal que la série ne puisse approcher uniformément la fonction aux points de
discontinuité. Des études ont déjà montré que l’amplitude d’oscillation autour des discontinuités
est toujours plus importante. Quantitativement, il en ressort que très régulièrement,
l’oscillation y est 18% plus importante que sur le reste la fonction continue. C’est le cas
dans la fonction carrée. Nous verrons dans la partie traitant des applications l’importance
de cette fonction carrée qui est incontournable en électronique lorsque l’on manipule des
informations binaires qui ne s’expriment qu’à l’aide de deux valeurs uniques.




                                              37
Deuxième partie

Applications de l’analyse
      harmonique




            38
Chapitre 1

Synthèse numérique d’un son à
partir de l’addition des séries de
Fourier

   Nous allons voir comment l’on peut modéliser des signaux à l’aide des séries de Fourier
par addition de termes en sinus et cosinus. Nous avons développé une application qui
montre visuellement et auditivement l’importance de l’addition de termes dans les séries
de Fourier pour modéliser par exemple la fonction carrée. Il faut cependant différencier
plusieurs types de signaux. Les signaux harmoniques, les signaux périodiques qui correspondent
à la composition de différents signaux harmoniques et les signaux non périodiques. Chacun
de ces signaux seront analysés à l’aide d’outils différents. Pour les signaux harmoniques,
une analyse sinusoïdale suffit. Pour des signaux composés de plusieurs harmoniques, on
utilisera les séries de Fourier. Et finalement pour les signaux non périodiques on peut
utiliser les transformées de Fourier.




                                           39
Chapitre 2

Applications informatiques

2.1      FFT : Fast Fourier Transform
    Nous avons vu que les séries de Fourier sont des outils très pratiques afin de pouvoir
modéliser des signaux sous forme d’addition de sinusoïdes et cosinuoïdes. Il est donc
pratique de disposer de ces séries mais le calcul n’est pas toujours simple et efficace.
C’est pourquoi avec le développement de l’informatique sont apparus des algorithmes qui
permettent de calculer les coefficients selon une méthode linéaire. Ainsi, nos processeurs
binaires savent traiter bien plus rapidement l’information. Jusqu’ici on s’était intéressé
à l’approche temporelle du son, c’est-à-dire que l’on se contentait de considérer le signal
comme une grandeur évoluant au fil du temps. C’est la vision la plus directe mais pas
nécessairement la plus intuitive. Lorsque l’on écoute un son, l’analyse la plus simple,
la plus primitive c’est, d’une part, de savoir s’il est fort ou faible en terme de volume
sonore et par ailleurs s’il est grave ou aigu. 1 Nos oreilles sont essentiellement sensibles à
la fréquence et à l’amplitude du son. A partir de là, il parait évident que la représentation
temporelle n’est pas la plus triviale pour “visualiser” un son de la même manière qu’on
l’écoute. Nous allons donc recourir à une opération qui suit cette logique, la transformée de
Fourier. Une transformée est une opération consistant à faire correspondre une fonction
à une autre pour représenter la même information d’une façon différente. Dans le cas
de Fourier, l’idée est d’exprimer le son comme dépendant de la fréquence et non plus
du temps le tout à partir de l’hypothèse que tout signal est fondamentalement composé
d’une somme de sinusoïdes de fréquences différentes. On peut distinguer assez clairement
l’évolution du volume sonore mais on n’a aucune information visible sur la hauteur du
son joué.
   1. Pour l’oreille humaine, des sons très graves oscillent autour des 16Hz alors que des sons très aigus
oscillent autour des 16kHz



                                                   40
Figure 2.1 – Représentation temporelle d’un son




                  Figure 2.2 – Représentation fréquentielle d’un son


   Comparons les graphes.
   Sur la Figure 2.2 on a donc plus le temps comme abscisse mais la fréquence. Tout
de suite, le graphique est nettement moins massif. Pourquoi ? On distingue clairement
que le son est très simple car composé essentiellement d’une seule fréquence (788, 5Hz,
c’est presque un sol) plus deux petits pics à dans les hautes fréquences ( 3000Hz et
7000Hz). Par contre il est difficile de savoir comment le son évolue au fil du temps.


                                          41
Les deux représentations ont clairement leurs avantages respectifs en fonction de ce que
l’on recherche. Nous allons maintenant énoncer la formule de base de la transformée de
Fourier, sans la démontrer.
                                         ˆ             +∞
                            F (f ) : ν → f (ν) =       −∞
                                                            f (t) e−i2πνt dt

   La transformée ainsi calculée est un signal complexe, c’est à dire en deux dimensions.
Là où chaque échantillon du signal d’origine était composé d’une grandeur (l’amplitude),
sa transformée associe à chaque fréquence à la fois l’amplitude 2 et la phase. 3
   Nous allons maintenant analyser ce qu’il se passe lorsque nous composons un son d’un
la (440Hz) et d’un ré (294Hz), respectivement déphasés de 0.7 et -0.2. L’équation de ce
son est :

                  x(t) = 0.5 cos((2π)500t + 0.7) + 0.25 cos((2π)294t − 0.2)

   Voici ce que donne cette addition graphiquement :




                      Figure 2.3 – Addition du signal du La et du Ré

   Traçons le graphe de la transformée de cette fonction maintenant. Deux traits sont à
nouveau présents sur le graphe de la transformée. En lisant le graphique nous pouvons
donc retrouver les deux fréquences avec leur amplitude et phase respective. Il est important
de remarquer que l’amplitude nous donne une indication sur le volume sonore de chaque
fréquence alors que la phase nous renseigne sur le positionnement dans le temps. Nous
  2. L’amplitude c’est le volume sonore associé à chaque fréquence
  3. La phase est un concept un peu plus abstrait, il s’agit du “retard” de chaque fréquence.


                                                  42
Les Séries de Fourier
Les Séries de Fourier
Les Séries de Fourier
Les Séries de Fourier
Les Séries de Fourier
Les Séries de Fourier
Les Séries de Fourier
Les Séries de Fourier
Les Séries de Fourier
Les Séries de Fourier
Les Séries de Fourier
Les Séries de Fourier
Les Séries de Fourier
Les Séries de Fourier
Les Séries de Fourier
Les Séries de Fourier

Contenu connexe

Tendances

Chapitre 3 robotique e
Chapitre 3 robotique eChapitre 3 robotique e
Chapitre 3 robotique eMouna Souissi
 
123545746 pfe-2012-corrige
123545746 pfe-2012-corrige123545746 pfe-2012-corrige
123545746 pfe-2012-corrigeIsraël Mabiala
 
Manuel.de.technologie.mã©canique
Manuel.de.technologie.mã©caniqueManuel.de.technologie.mã©canique
Manuel.de.technologie.mã©caniquescorpios92
 
Résumé Cours Génie Mécanique 4ST
Résumé Cours Génie Mécanique 4STRésumé Cours Génie Mécanique 4ST
Résumé Cours Génie Mécanique 4STMohamed Mtaallah
 
Hydraulique en Charge
Hydraulique en ChargeHydraulique en Charge
Hydraulique en ChargeRoland Yonaba
 
Culture in vitro des plantes
Culture in vitro des plantesCulture in vitro des plantes
Culture in vitro des plantesAhmed Dellaa
 
Exposé topographie
Exposé topographieExposé topographie
Exposé topographieRofi Cad
 
Anatomie osteologie du membre superieur
Anatomie  osteologie du membre superieurAnatomie  osteologie du membre superieur
Anatomie osteologie du membre superieurnoraeah med
 
35039817-elements-finis.pdf
35039817-elements-finis.pdf35039817-elements-finis.pdf
35039817-elements-finis.pdffabrice dilukila
 
Cours Hydraulique licence
Cours Hydraulique  licenceCours Hydraulique  licence
Cours Hydraulique licenceSouhila Benkaci
 
Devoir+corrigé+de+synthèse+n°3+ +génie+mécanique+unité+flexible+d'usinage+-+b...
Devoir+corrigé+de+synthèse+n°3+ +génie+mécanique+unité+flexible+d'usinage+-+b...Devoir+corrigé+de+synthèse+n°3+ +génie+mécanique+unité+flexible+d'usinage+-+b...
Devoir+corrigé+de+synthèse+n°3+ +génie+mécanique+unité+flexible+d'usinage+-+b...Majda El Aouni
 
Td dimensionnenemt d'arbre
Td dimensionnenemt d'arbreTd dimensionnenemt d'arbre
Td dimensionnenemt d'arbreYoussef Trimech
 

Tendances (20)

Chapitre 3 robotique e
Chapitre 3 robotique eChapitre 3 robotique e
Chapitre 3 robotique e
 
123545746 pfe-2012-corrige
123545746 pfe-2012-corrige123545746 pfe-2012-corrige
123545746 pfe-2012-corrige
 
Exercices onduleur
Exercices onduleurExercices onduleur
Exercices onduleur
 
Elements fini
Elements finiElements fini
Elements fini
 
Manuel.de.technologie.mã©canique
Manuel.de.technologie.mã©caniqueManuel.de.technologie.mã©canique
Manuel.de.technologie.mã©canique
 
Cahier Meca 4 ST Part 1/2
Cahier Meca 4 ST Part 1/2Cahier Meca 4 ST Part 1/2
Cahier Meca 4 ST Part 1/2
 
Cahier Meca 4ST
Cahier Meca 4STCahier Meca 4ST
Cahier Meca 4ST
 
Cahier Meca 4 ST Part 2/2
Cahier Meca 4 ST Part 2/2Cahier Meca 4 ST Part 2/2
Cahier Meca 4 ST Part 2/2
 
Résumé Cours Génie Mécanique 4ST
Résumé Cours Génie Mécanique 4STRésumé Cours Génie Mécanique 4ST
Résumé Cours Génie Mécanique 4ST
 
Hydraulique en Charge
Hydraulique en ChargeHydraulique en Charge
Hydraulique en Charge
 
Chapitre 0 introduction
Chapitre 0 introductionChapitre 0 introduction
Chapitre 0 introduction
 
Culture in vitro des plantes
Culture in vitro des plantesCulture in vitro des plantes
Culture in vitro des plantes
 
Exposé topographie
Exposé topographieExposé topographie
Exposé topographie
 
Cotation fonctionnelle
Cotation fonctionnelleCotation fonctionnelle
Cotation fonctionnelle
 
Anatomie osteologie du membre superieur
Anatomie  osteologie du membre superieurAnatomie  osteologie du membre superieur
Anatomie osteologie du membre superieur
 
35039817-elements-finis.pdf
35039817-elements-finis.pdf35039817-elements-finis.pdf
35039817-elements-finis.pdf
 
Cours Hydraulique licence
Cours Hydraulique  licenceCours Hydraulique  licence
Cours Hydraulique licence
 
Grafcet cours
Grafcet coursGrafcet cours
Grafcet cours
 
Devoir+corrigé+de+synthèse+n°3+ +génie+mécanique+unité+flexible+d'usinage+-+b...
Devoir+corrigé+de+synthèse+n°3+ +génie+mécanique+unité+flexible+d'usinage+-+b...Devoir+corrigé+de+synthèse+n°3+ +génie+mécanique+unité+flexible+d'usinage+-+b...
Devoir+corrigé+de+synthèse+n°3+ +génie+mécanique+unité+flexible+d'usinage+-+b...
 
Td dimensionnenemt d'arbre
Td dimensionnenemt d'arbreTd dimensionnenemt d'arbre
Td dimensionnenemt d'arbre
 

En vedette

fourier series
fourier seriesfourier series
fourier series8laddu8
 
CM3 - Transformée de Fourier
CM3 - Transformée de FourierCM3 - Transformée de Fourier
CM3 - Transformée de FourierPierre Maréchal
 
Lamini&farsane traitement de_signale
Lamini&farsane traitement de_signaleLamini&farsane traitement de_signale
Lamini&farsane traitement de_signaleAsmae Lamini
 
Cours series fourier
Cours series fourierCours series fourier
Cours series fourierMehdi Maroun
 
chap3 numerisation_des_signaux
chap3 numerisation_des_signauxchap3 numerisation_des_signaux
chap3 numerisation_des_signauxBAKKOURY Jamila
 
Ener1 - CM4 - Distribution électrique
Ener1 - CM4 - Distribution électriqueEner1 - CM4 - Distribution électrique
Ener1 - CM4 - Distribution électriquePierre Maréchal
 

En vedette (9)

fourier series
fourier seriesfourier series
fourier series
 
CM3 - Transformée de Fourier
CM3 - Transformée de FourierCM3 - Transformée de Fourier
CM3 - Transformée de Fourier
 
Lamini&farsane traitement de_signale
Lamini&farsane traitement de_signaleLamini&farsane traitement de_signale
Lamini&farsane traitement de_signale
 
Cours series fourier
Cours series fourierCours series fourier
Cours series fourier
 
CM4 - Transformée en z
CM4 - Transformée en zCM4 - Transformée en z
CM4 - Transformée en z
 
chap3 numerisation_des_signaux
chap3 numerisation_des_signauxchap3 numerisation_des_signaux
chap3 numerisation_des_signaux
 
Séries de Fourier
Séries de FourierSéries de Fourier
Séries de Fourier
 
Ener1 - CM4 - Distribution électrique
Ener1 - CM4 - Distribution électriqueEner1 - CM4 - Distribution électrique
Ener1 - CM4 - Distribution électrique
 
Fourier series
Fourier seriesFourier series
Fourier series
 

Similaire à Les Séries de Fourier

signal f_sur
signal f_sursignal f_sur
signal f_surWafa Ben
 
Résolution numérique de l'équation de Black Scholes en python
Résolution numérique de l'équation de Black Scholes en pythonRésolution numérique de l'équation de Black Scholes en python
Résolution numérique de l'équation de Black Scholes en pythonAli SIDIBE
 
Chap04 1213
Chap04 1213Chap04 1213
Chap04 1213bades12
 
Petit traite d'harmonie jazz - mickael pechaud
Petit traite d'harmonie jazz - mickael pechaudPetit traite d'harmonie jazz - mickael pechaud
Petit traite d'harmonie jazz - mickael pechauddavid bonnin
 
Simulation de systèmes quantiques sur un ordinateur quantique réaliste
Simulation de systèmes quantiques sur un ordinateur quantique réalisteSimulation de systèmes quantiques sur un ordinateur quantique réaliste
Simulation de systèmes quantiques sur un ordinateur quantique réalisteJulien33x
 
Cours-maths3-2eme-Annee-ST.pdf
Cours-maths3-2eme-Annee-ST.pdfCours-maths3-2eme-Annee-ST.pdf
Cours-maths3-2eme-Annee-ST.pdfArsalanTlm
 
Analyse2 00 (1)
Analyse2 00 (1)Analyse2 00 (1)
Analyse2 00 (1)Dj-malik
 
(Mathématiques) Jacques Dixmier (Topologie générale-PUF (1981) [générale-PUF ...
(Mathématiques) Jacques Dixmier (Topologie générale-PUF (1981) [générale-PUF ...(Mathématiques) Jacques Dixmier (Topologie générale-PUF (1981) [générale-PUF ...
(Mathématiques) Jacques Dixmier (Topologie générale-PUF (1981) [générale-PUF ...VrazylandGuekou1
 
Cours derive d'une fonctions
Cours  derive d'une fonctionsCours  derive d'une fonctions
Cours derive d'une fonctionsbades12
 
Cours ensembles
Cours ensemblesCours ensembles
Cours ensemblesbades12
 

Similaire à Les Séries de Fourier (20)

signal f_sur
signal f_sursignal f_sur
signal f_sur
 
SIGNAL
SIGNAL SIGNAL
SIGNAL
 
Résolution numérique de l'équation de Black Scholes en python
Résolution numérique de l'équation de Black Scholes en pythonRésolution numérique de l'équation de Black Scholes en python
Résolution numérique de l'équation de Black Scholes en python
 
Chap04 1213
Chap04 1213Chap04 1213
Chap04 1213
 
Spectro
SpectroSpectro
Spectro
 
Petit traite d'harmonie jazz - mickael pechaud
Petit traite d'harmonie jazz - mickael pechaudPetit traite d'harmonie jazz - mickael pechaud
Petit traite d'harmonie jazz - mickael pechaud
 
Simulation de systèmes quantiques sur un ordinateur quantique réaliste
Simulation de systèmes quantiques sur un ordinateur quantique réalisteSimulation de systèmes quantiques sur un ordinateur quantique réaliste
Simulation de systèmes quantiques sur un ordinateur quantique réaliste
 
Cours-maths3-2eme-Annee-ST.pdf
Cours-maths3-2eme-Annee-ST.pdfCours-maths3-2eme-Annee-ST.pdf
Cours-maths3-2eme-Annee-ST.pdf
 
Ondes stationnaires
Ondes stationnairesOndes stationnaires
Ondes stationnaires
 
PhD Thesis
PhD ThesisPhD Thesis
PhD Thesis
 
These_final
These_finalThese_final
These_final
 
Analyse2 00 (1)
Analyse2 00 (1)Analyse2 00 (1)
Analyse2 00 (1)
 
(Mathématiques) Jacques Dixmier (Topologie générale-PUF (1981) [générale-PUF ...
(Mathématiques) Jacques Dixmier (Topologie générale-PUF (1981) [générale-PUF ...(Mathématiques) Jacques Dixmier (Topologie générale-PUF (1981) [générale-PUF ...
(Mathématiques) Jacques Dixmier (Topologie générale-PUF (1981) [générale-PUF ...
 
compte
comptecompte
compte
 
RapportComplet
RapportCompletRapportComplet
RapportComplet
 
Sujettdtds
SujettdtdsSujettdtds
Sujettdtds
 
Maths
MathsMaths
Maths
 
Cours derive d'une fonctions
Cours  derive d'une fonctionsCours  derive d'une fonctions
Cours derive d'une fonctions
 
FRESNEL_Quentin_Rapport
FRESNEL_Quentin_RapportFRESNEL_Quentin_Rapport
FRESNEL_Quentin_Rapport
 
Cours ensembles
Cours ensemblesCours ensembles
Cours ensembles
 

Dernier

Àma Gloria.pptx Un film tourné au Cap Vert et en France
Àma Gloria.pptx   Un film tourné au Cap Vert et en FranceÀma Gloria.pptx   Un film tourné au Cap Vert et en France
Àma Gloria.pptx Un film tourné au Cap Vert et en FranceTxaruka
 
PLANNING HEBDO ET CR LYCEE COUDON 21 MAI2024
PLANNING HEBDO ET CR LYCEE COUDON 21 MAI2024PLANNING HEBDO ET CR LYCEE COUDON 21 MAI2024
PLANNING HEBDO ET CR LYCEE COUDON 21 MAI2024frizzole
 
Exemple de grille d'audit 5S, check liste Audit
Exemple de grille d'audit 5S, check liste AuditExemple de grille d'audit 5S, check liste Audit
Exemple de grille d'audit 5S, check liste Audittechwinconsulting
 
Nathanaëlle Herbelin.pptx Peintre française
Nathanaëlle Herbelin.pptx Peintre françaiseNathanaëlle Herbelin.pptx Peintre française
Nathanaëlle Herbelin.pptx Peintre françaiseTxaruka
 
Texte avec différentes critiques positives, négatives ou mitigées
Texte avec différentes critiques positives, négatives ou mitigéesTexte avec différentes critiques positives, négatives ou mitigées
Texte avec différentes critiques positives, négatives ou mitigéesLeBaobabBleu1
 
Quitter la nuit. pptx
Quitter          la        nuit.    pptxQuitter          la        nuit.    pptx
Quitter la nuit. pptxTxaruka
 
Un petit coin etwinning- Au fil des cultures urbaines
Un petit coin  etwinning- Au fil des cultures urbainesUn petit coin  etwinning- Au fil des cultures urbaines
Un petit coin etwinning- Au fil des cultures urbainesSocratis Vasiopoulos
 
PowerPoint-de-Soutenance-de-TFE-infirmier.pdf
PowerPoint-de-Soutenance-de-TFE-infirmier.pdfPowerPoint-de-Soutenance-de-TFE-infirmier.pdf
PowerPoint-de-Soutenance-de-TFE-infirmier.pdfDafWafia
 
rapport de stage gros oeuvre_compressed.pdf
rapport de stage gros oeuvre_compressed.pdfrapport de stage gros oeuvre_compressed.pdf
rapport de stage gros oeuvre_compressed.pdfOssamaLachheb
 
GHASSOUB _Seance 4_ measurement and evaluation in education_-.pptx
GHASSOUB _Seance 4_ measurement and evaluation in education_-.pptxGHASSOUB _Seance 4_ measurement and evaluation in education_-.pptx
GHASSOUB _Seance 4_ measurement and evaluation in education_-.pptxAbderrahim GHASSOUB
 
Réunion des directeurs de Jonzac - 15 mai 2024
Réunion des directeurs de Jonzac - 15 mai 2024Réunion des directeurs de Jonzac - 15 mai 2024
Réunion des directeurs de Jonzac - 15 mai 2024IEN_Jonzac
 
Quitter la nuit. pptx
Quitter        la             nuit.   pptxQuitter        la             nuit.   pptx
Quitter la nuit. pptxTxaruka
 
Les débuts de la collection "Le livre de poche"
Les débuts de la collection "Le livre de poche"Les débuts de la collection "Le livre de poche"
Les débuts de la collection "Le livre de poche"ArchivesdeLyon
 
Fiche de vocabulaire pour faire une appréciation
Fiche de vocabulaire pour faire une appréciationFiche de vocabulaire pour faire une appréciation
Fiche de vocabulaire pour faire une appréciationLeBaobabBleu1
 
GHASSOUB _Seance 3_ measurement and evaluation in education.pptx
GHASSOUB _Seance 3_ measurement and evaluation in education.pptxGHASSOUB _Seance 3_ measurement and evaluation in education.pptx
GHASSOUB _Seance 3_ measurement and evaluation in education.pptxAbderrahim GHASSOUB
 

Dernier (15)

Àma Gloria.pptx Un film tourné au Cap Vert et en France
Àma Gloria.pptx   Un film tourné au Cap Vert et en FranceÀma Gloria.pptx   Un film tourné au Cap Vert et en France
Àma Gloria.pptx Un film tourné au Cap Vert et en France
 
PLANNING HEBDO ET CR LYCEE COUDON 21 MAI2024
PLANNING HEBDO ET CR LYCEE COUDON 21 MAI2024PLANNING HEBDO ET CR LYCEE COUDON 21 MAI2024
PLANNING HEBDO ET CR LYCEE COUDON 21 MAI2024
 
Exemple de grille d'audit 5S, check liste Audit
Exemple de grille d'audit 5S, check liste AuditExemple de grille d'audit 5S, check liste Audit
Exemple de grille d'audit 5S, check liste Audit
 
Nathanaëlle Herbelin.pptx Peintre française
Nathanaëlle Herbelin.pptx Peintre françaiseNathanaëlle Herbelin.pptx Peintre française
Nathanaëlle Herbelin.pptx Peintre française
 
Texte avec différentes critiques positives, négatives ou mitigées
Texte avec différentes critiques positives, négatives ou mitigéesTexte avec différentes critiques positives, négatives ou mitigées
Texte avec différentes critiques positives, négatives ou mitigées
 
Quitter la nuit. pptx
Quitter          la        nuit.    pptxQuitter          la        nuit.    pptx
Quitter la nuit. pptx
 
Un petit coin etwinning- Au fil des cultures urbaines
Un petit coin  etwinning- Au fil des cultures urbainesUn petit coin  etwinning- Au fil des cultures urbaines
Un petit coin etwinning- Au fil des cultures urbaines
 
PowerPoint-de-Soutenance-de-TFE-infirmier.pdf
PowerPoint-de-Soutenance-de-TFE-infirmier.pdfPowerPoint-de-Soutenance-de-TFE-infirmier.pdf
PowerPoint-de-Soutenance-de-TFE-infirmier.pdf
 
rapport de stage gros oeuvre_compressed.pdf
rapport de stage gros oeuvre_compressed.pdfrapport de stage gros oeuvre_compressed.pdf
rapport de stage gros oeuvre_compressed.pdf
 
GHASSOUB _Seance 4_ measurement and evaluation in education_-.pptx
GHASSOUB _Seance 4_ measurement and evaluation in education_-.pptxGHASSOUB _Seance 4_ measurement and evaluation in education_-.pptx
GHASSOUB _Seance 4_ measurement and evaluation in education_-.pptx
 
Réunion des directeurs de Jonzac - 15 mai 2024
Réunion des directeurs de Jonzac - 15 mai 2024Réunion des directeurs de Jonzac - 15 mai 2024
Réunion des directeurs de Jonzac - 15 mai 2024
 
Quitter la nuit. pptx
Quitter        la             nuit.   pptxQuitter        la             nuit.   pptx
Quitter la nuit. pptx
 
Les débuts de la collection "Le livre de poche"
Les débuts de la collection "Le livre de poche"Les débuts de la collection "Le livre de poche"
Les débuts de la collection "Le livre de poche"
 
Fiche de vocabulaire pour faire une appréciation
Fiche de vocabulaire pour faire une appréciationFiche de vocabulaire pour faire une appréciation
Fiche de vocabulaire pour faire une appréciation
 
GHASSOUB _Seance 3_ measurement and evaluation in education.pptx
GHASSOUB _Seance 3_ measurement and evaluation in education.pptxGHASSOUB _Seance 3_ measurement and evaluation in education.pptx
GHASSOUB _Seance 3_ measurement and evaluation in education.pptx
 

Les Séries de Fourier

  • 1. Dédramathisons TFE Séries de Fourier et applications Rédacteurs : Antoine Etesse Frederic Jacobs Jie-Fang Zhang 1er avril 2011
  • 2. Sommaire I Introduction et théorie 2 1 Situation problème 3 1.1 Approximation de cette sinusoïde . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Vers les séries de Fourier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Elaborer une théorie à partir de l’exemple 8 2.1 Construction de la théorie . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 Périodicité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 Calcul d’intégrales intéressantes . . . . . . . . . . . . . . . . . . . . 10 2.1.3 Calcul des coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.4 Exemple : Fonction carrée . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.5 Ecriture complexe des séries de Fourier . . . . . . . . . . . . . . . 20 2.2 Convergence des séries trigonométriques, des séries de Fourier, et Théorème de Dirichlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.1 Convergence simple . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.2 Convergence uniforme . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.3 Convergence normale . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.4 Convergence des séries trigonométriques . . . . . . . . . . . . . . . 29 2.2.5 Théorème de Dirichlet. . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.6 Analyse d’une fonction qui répond aux hypothèses du théorème de Dirichlet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3 Phénomène de Gibbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 II Applications de l’analyse harmonique 37 1 Synthèse numérique d’un son à partir de l’addition des séries de Fourier 38 1
  • 3. 2 Applications informatiques 39 2.1 FFT : Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2 Compression JPEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.2.1 Pourquoi Fourier ? . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.2.2 Le JPEG, c’est quoi . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.2.3 Quelle couleur ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.2.4 Alors quelle avancée l’analyse de Fourier a-t-elle permis ? . . . . . 48 3 Digital Signal Processing, un large domaine d’applications 51 3.1 Applications en télécommunications . . . . . . . . . . . . . . . . . . . . . 51 3.1.1 Confondre l’information. Sans la mélanger. . . . . . . . . . . . . . 52 3.1.2 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.1.3 Suppression de l’écho . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.1.4 La Blue Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 A Joseph Fourier et ses précurseurs 54 A.1 Les précurseurs de Fourier . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 A.2 Biographie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 A.3 Son oeuvre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2
  • 5. Chapitre 1 Situation problème Comment peut-on produire un son particulier ? Tout d’abord, on sait qu’un son est une onde sonore, plus ou moins périodique, qui se propage dans l’air. C’est d’ailleurs ce qui le différencie de ce qu’on appelle communément un bruit. Figure 1.1 – Un son, caractérisé par une certaine répétition. Figure 1.2 – Du bruit, rien n’est ordonné ou répétitif. Ainsi, la réponse à notre question initiale se déduit aisément : il nous suffit de créer 4
  • 6. des déformations périodiques dans l’air. Cependant, la question s’avère être plus complexe car nous désirons obtenir un son spécifique. Par exemple, le son la 440Hz correspond en réalité à 440 déformations par seconde. Pourtant, il existe des milliers de la 440Hz différents, empreints de leur spécificité, et tout le monde peut, par exemple distinguer un son d’une fréquence de 440Hz issu d’un diapason de celui provenant d’un piano. Cette différence sonore que l’on perçoit découle de la dissimilitude du timbre des deux notes. L’illustration graphique de ces deux sons (amplitude-fréquence), témoigne de la dissemblance des deux notes en questions. Voici la même note jouée sur des instruments différents. Figure 1.3 – Une note jouée sur un Piano UNSW c Figure 1.4 – Même note jouée sur une guitare UNSW c Remarquez la forte corrélation entre les deux instruments jouant la même note. Ainsi émerge une nouvelle question, de loin plus intéressante : comment peut-on produire un timbre particulier ? La réponse est en fait relativement simple, et facilement imaginable. Pour commencer, on peut se pencher sur les instruments de musique. Nous savons que lorsqu’on joue une note sur un instrument, on produit non seulement la note jouée, mais également ce qu’on appelle les harmoniques de la note. On dira que la note a une fréquence fondamentale f , 5
  • 7. et que ses harmoniques possèdent des fréquences multiples de celle-ci, nf avec n ∈ Z. Il va de soi que l’amplitude des harmoniques peut être nulle, ou non-nulle. On peut représenter la note sous un graphique (amplitude-fréquence). Comme ceux utilisés pour représenter les deux sons ci-dessus . Nous pouvons facilement déduire que dans ce cas, les notes que l’on peut entendre correspondent bien à la superposition de l’onde fondamentale et ses harmoniques. La forme de l’onde, donc son timbre, concorde avec la somme des amplitudes de toutes les harmoniques de l’onde. Aussi la fréquence de deux sons peut-elle très bien être similaire, chacun possédant ses harmoniques spécifiques, la forme de l’onde diffèrera clairement. Figure 1.5 – Concept d’addition de sinusoïdes par Denis Auquebon La méthode expérimentale de représentation d’un son quelconque consiste donc à ajouter à l’onde sonore fondamentale de fréquence déterminée f , les ondes harmoniques de fréquence 2f , 3f , 4f ,... et ainsi de suite. La combinaison de la fondamentale et des harmoniques forment le son, parfois simple, souvent compliqué, dont la fréquence est évidemment celle du son fondamental. Nous pouvons ainsi créer tout une gamme de sons, suivant que l’on omette l’harmonique de fréquence 2f , 5f ,... ou que l’on prenne deux fois l’harmonique de fréquence 3f quatre fois celle de fréquence 8f ,... Nous arrivons donc à la conclusion que nous pouvons créer toute une série de son à l’aide d’une addition d’onde fondamentale et des ses harmoniques. Mais inversement, peut-on décrire tout son comme la somme d’harmoniques ? Afin d’apporter une réponse, nous devons nous pencher sur les séries de Fourier. 6
  • 8. Figure 1.6 – My normal approach is useless here 1.1 Approximation de cette sinusoïde 1.2 Vers les séries de Fourier Revenons quelque peu à l’historique, afin d’en savoir un peu plus sur l’émergence de cette idée géniale. Joseph Fourier, qui travaillait sur la propagation de la chaleur sur des corps solides, a remarqué que la propagation de la chaleur sur un anneau ressemble à un mouvement harmonique. En physique, nous donnons une expression plus générale à ce phénomène 2πx 2πt y(x, t) = A sin( − + φ) λ T où y est le déplacement périodique de la vibration de l’objet , λ la période dans l’espace, T la période dans le temps et φ la phase, qui est constante. En fait, lors d’une expérience simple, il a remarqué que la source de chaleur passe cycliquement, mais brusquement, d’une valeur extrême à une autre. Il a été ainsi amené à soupçonner le rôle très important des fonctions trigonométriques et admettre qu’elles pouvaient être les constituants élémentaires de tout Si nous fixons la variable x, nous avons ici une fonction f (t) périodique de période T . L’idée de Fourier fut alors d’approximer le phénomène observé par une somme finie, constituée des harmoniques de la période fondamentale T . 7
  • 9. L’approximation est N 2πn An sin( t + φn ) n=1 T où N un naturel et An et φn deux constantes qui varient en fonction de n. Nous pouvons développer le sinus, ce qui nous donne : 2πn 2πn 2πn An sin( t + φn ) = An (sin( t) cos(φn ) + cos( t) sin(φn )) T T T 2πn 2πn = An sin(φn ) cos( t) + An cos(φn ) sin( t) T T 2πn 2πn = an cos( t) + bn sin( t) T T puisque An sin(φn ) et An cos(φn ) sont constantes, on peut alors poser que a0 an = An sin(φn ) et bn = An cos(φn ), et si on ajoute un terme constant , on obtient, 2 N a0 2πn 2πn + (an cos( t) + bn sin( t)) 2 n=1 T T a0 On a choisi le terme constant comme étant pour une raison bien précise que l’on 2 détaillera au moment convenu. 8
  • 10. Chapitre 2 Elaborer une théorie à partir de l’exemple 2.1 Construction de la théorie 2.1.1 Périodicité Tout d’abord, nous devons définir ce qu’est la périodicité d’une fonction. Une fonction est périodique de période p s’il existe un nombre réel positif le plus petit possible p tel que f (x) = f (x + p). Le nombre p doit être le plus petit possible parce que pour satisfaire cette relation, il nous suffit de prendre tous les multiples entiers de p, ce qui nous donne f (x + np) = f (x) où n ∈ Z. Penchons-nous à présent sur la somme des fonctions périodiques. 1 Si on a trois fonctions périodiques de période π, 2π et 4π respectivement, alors la somme 4 de ces trois fonctions sera-t-elle périodique ? Si oui, quelle est sa période ? Afin de faciliter la compréhension, nous pouvons représenter cette fonction somme (s(x) = 1 sin(4x) + sin(x) + sin( x)) et ainsi voir facilement que s(x) est périodique de période de 4 4π. Ainsi, nous déduisons que la période de la somme correspond à la plus grande période de ses fonctions initiales, dans ce cas-ci, 4π. Cependant, la somme des fonctions périodiques n’est pas toujours périodique. On peut prendre comme exemple s(x) = sin x+sin(πx). Bien que les deux fonctions initiales soient périodiques de période respectives 2π et 2, s(x) n’est pas périodique. Pour ce genre de cas, on peut approximer s(x) par s (x) = sin x + sin(3, 1415x), qui est périodique. Mais ne nous tracassons pas trop, étant donné que nous allons travailler avec des périodes 9
  • 11. simples et entières. Démontrons un lemme sur la périodicité, qui nous sera utile par la suite. Soit f une fonction continue par morceau périodique de T . a+T L’intégrale f (x) dx ne dépend pas du réel a. Autrement dit, a T a+T T 2 f (x) dx = f (x) dx = f (x) dx = · · · −T a 0 2 Pour démontrer ceci, nous allons exploiter l’additivité de l’intégrale. a+T 0 T a+T f (x) dx = f (x) dx + f (x) dx + f (x) dx a a 0 T Changeons de variable. Soit x = y + T , ce qui implique dx = dy. a+T a a Alors on a f (x) dx = f (y + t) dy = f (y) dy puisque f (y + T ) = f (y). T 0 0 0 a On peut voir que f (x) dx + f (y) dy = 0, ce qui nous donne : a 0 a+T T f (x) dx = f (x) dx a 0 Cette dernière expression est indépendante de a En vue de ce que l’on a pu dire dans l’introduction, peut-on dire qu’une fonction f (x) périodique de période T peut s’écrire sous la forme d’une somme N a0 2πn 2πn f (x) = + (an cos( x) + bn sin( )x)? 2 n=1 T T Certainement pas, car nous n’avons pas encore montré les conditions pour que les deux membres soient équivalents. De plus, on n’a pas encore trouvé les expressions des a0 constantes , an et bn , qui différencient une série d’une autre. 2 Pour trouver les expressions de ces constantes, nous allons utiliser les outils d’intégrale sur la période de la fonction que l’on désire étudier.(Et de par le lemme que nous avons démontré, on voit bien que la restriction à une période suffit). Pour faciliter la compréhension, nous allons d’abord faire les démonstrations avec une fonction f (x) qui a une période 2π, puis ensuite étendre la démonstration pour des périodes quelconques. 10
  • 12. 2.1.2 Calcul d’intégrales intéressantes Avant de déterminer les expressions de ces constantes, nous devons déterminer certaines relations qui nous seront très utiles par la suite.(Mentionnons au préalable que nous utilisons la parité des fonctions sinus et cosinus dans notre développement.) π cos nx cos kx dx −π π sin nx sin kx dx −π et π cos(nx) sin(kx) dx où n, k ∈ Z −π Si n = k : π π cos nx cos kx dx = 2 cos nx cos kx dx −π 0 π 1 =2 (cos((n + k)x) + cos((n − k)x) dx 0 2 1 1 =( sin((n + k)x) + sin((n − k)x))|π 0 n+k n−k 1 1 =( sin((n + k)π) + sin((n − k)π) n+k n−k =0 π π sin nx sin kx dx = 2 sin nx sin kx dx −π 0 π −1 =2 (cos((n + k)x) − cos((n − k)x) dx 2 0 −1 −1 =( sin((n + k)x) − sin((n − k)x))|π 0 n+k n−k −1 −1 =( sin((n + k)π) − sin((n − k)π) n+k n−k =0 11
  • 13. Si n = k π π cos nx cos kx dx = 2 cos2 nx dx −π 0 π 1 + cos(2nx) =2 dx 0 2 1 1 = 2( x + sin(2nx))|π 0 2 4n 1 =2× π 2 =π π π sin nx sin kx dx = 2 sin2 nx dx −π 0 π 1 − cos(2nx) =2 dx 0 2 1 1 = 2( x − sin(2nx))|π 0 2 4n 1 =2× π 2 =π Et enfin, on voit que cos(nx) sin(kx) est impaire car cos(nx) sin(kx) = − cos(−nx) sin(−kx) π Donc, dans tous les cas, cos(nx) sin(kx) dx = 0 −π En résumé, (n, k ∈ Z) π 0 si n = k cos nx cos kx dx = −π π si n = k π 0 si n = k sin nx sin kx dx = −π π si n = k π cos(nx) sin(kx) dx = 0 −π 2.1.3 Calcul des coefficients Sans avoir montré l’existence, on suppose qu’une fonction périodique de période 2π, continue sur R et dérivable sur R est égale à sa série de Fourier. Alors, N a0 f (x) = + (an cos(nx) + bn sin(nx)) 2 n=1 12
  • 14. Pour trouver a0 , on va prendre l’intégrale de −π à π (une période entière) dans les deux membres, ce qui nous donne π π π N a0 f (x) dx = dx + (an cos(nx) + bn sin(nx)) dx −π −π 2 −π n=1 π π π N a0 f (x) dx = dx + (an cos(nx) + bn sin(nx)) dx −π −π 2 −π n=1 l’intégrale d’une somme est égale à la somme de l’intégrale π N π N π a0 = dx + an cos(nx) dx + bn sin(nx) dx −π 2 n=1 −π n=1 −π N N a0 π an −bn = x|−π + sin(nx)|π + −π cos(nx)|π −π 2 n=1 n n=1 n a0 = × 2π 2 = a0 π On a alors, π 1 a0 = f (x) dx π −π Pour trouver an , on va multiplier les deux membres de l’égalité par cos(kx) où k un entier positif. N a0 f (x) cos(kx) = cos(kx) + cos(kx) (an cos(nx) + bn sin(nx)) 2 n=1 N a0 = cos(kx) + (an cos(nx) cos(kx) + bn sin(nx) cos(kx)) 2 n=1 Ensuite, nous prendre l’intégrale de −π à π dans les deux membres, ce qui nous donne π π π N a0 f (x) cos(kx) dx = cos(kx) dx + (an cos(nx) cos(kx) + bn sin(nx) cos(kx)) dx −π −π 2 −π n=1 π N π N π a0 = cos(kx) dx + an cos(nx) cos(kx) dx + bn sin(nx) cos(kx) dx −π 2 n=1 −π n=1 −π π N π N π a0 = cos(kx) dx + an cos(nx) cos(kx) dx + bn sin(nx) cos(kx) dx 2 −π n=1 −π n=1 −π 13
  • 15. parmi les n, il existe un et un seul n égal à k tel que N π N π π an cos(nx) cos(kx) dx = (an cos(nx) cos(kx) dx) + ak cos2 (kx) dx n=1 −π n=1,n=k −π −π Par conséquent, la somme s’annule sauf pour terme k qui donne ak π. N a0 π π De plus, cos(kx) dx et bn sin(nx) cos(kx) dx donnent aussi 0 2 −π n=1 −π π On obtient donc f (x) cos(kx) dx = ak π pour tout k entier positif ce qui revient à dire −π π 1 que ak = f (x) cos(kx) dx, et de façon générale nous avons ainsi : π −π π 1 an = f (x) cos(nx) dx π −π Pour bn , on va réaliser le même procédé en multipliant les deux membres par sin(kx) où k est un entier positif. N a0 f (x) sin(kx) = sin(kx) + sin(kx) (an cos(nx) + bn sin(nx)) 2 n=1 N a0 = sin(kx) + (an cos(nx) sin(kx) + bn sin(nx) sin(kx)) 2 n=1 De même en prenant l’intégrale définie de −π à π, nous avons π π π N a0 f (x) sin(kx) dx = sin(kx) dx + (an cos(nx) sin(kx) + bn sin(nx) sin(kx)) dx −π −π 2 −π n=1 π N π N π a0 = sin(kx) dx + an cos(nx) sin(kx) dx + bn sin(nx) sin(kx) dx −π 2 n=1 −π n=1 −π π N π N π a0 = sin(kx) dx + an cos(nx) sin(kx) dx + bn sin(nx) sin(kx) dx 2 −π n=1 −π n=1 −π En considérant les résultats qu’on a montré auparavant, on peut constater que N π N π π bn sin(nx) sin(kx) dx = (bn sin(nx) sin(kx) dx) + bk sin2 (kx) dx n=1 −π n=1,n=k −π −π π 2 la somme s’annule sauf pour bk sin (kx) dx qui donne bk π. −π π N π a0 et sin(kx) dx et an cos(nx) sin(kx) dx donnent 0. 2 −π n=1 −π 14
  • 16. π 1 Par conséquent, nous avons pour tout k entier positif, bk = f (x) sin(kx) dx π −π Et donc π 1 bn = f (x) sin(nx) dx π −π Résumons quelque peu. Si une fonction périodique de période 2π peut s’écrire sous forme de série de Fourier, alors N a0 f (x) = + (an cos(nx) + bn sin(nx)) 2 n=1 Alors, π 1 a0 = f (x) dx π −π π 1 an = f (x) cos(nx) dx π −π π 1 bn = f (x) sin(nx) dx π −π On peut tout de suite appliquer ce que l’on vient de voir sur exemple. 2.1.4 Exemple : Fonction carrée Prenons l’exemple d’une fonction carrée périodique de période 2π. 1 si 0 ≤ x < π Alors sur l’intervalle [−π; π], on a f (x) = −1 si −π ≤ x < 0 Puisqu’elle est définie dans R et est périodique de 2π, on peut alors écrire 1 si 2kπ ≤ x < (2k + 1)π f (x) = où k ∈ Z −1 si (2k + 1)π ≤ x < 2kπ Si cette fonction peut être écrite sous la forme de série de Fourier, alors cette série est N a0 égale à + (an cos(nx) + bn sin(nx)). 2 n=1 Maintenant, il faut qu’on détermine les coefficients a0 , an et bn . Pour cela, nous pouvons directement appliquer ce que nous avons trouvé auparavant, mais on doit traiter les deux parties séparément, puisque f (x) est définie différemment 15
  • 17. Figure 2.1 – Graphique de la fonction carrée sur l’intervalle [−π, π]. 0 π 1 a0 = ( f (x) dx + f (x) dx) π −π 0 0 π 1 = ( −1 dx + 1 dx) π −π 0 1 = (π − π) = 0 π π 1 an = f (x) cos(nx) dx π −π 0 π 1 = ( − cos(nx) dx + cos(nx) dx) π −π 0 1 −1 1 = ( sin(nx)|0 + sin(nx)|π ) −π 0 π n n 1 −1 1 = ( (sin(0) − sin(−nπ)) + (sin(nπ) − sin(0))) π n n =0 π 1 bn = f (x) sin(nx) dx π −π 0 π 1 = ( − sin(nx) dx + sin(nx) dx) π −π 0 1 1 −1 = ( cos(nx)|0 + −π cos(nx)|π ) 0 π n n 1 1 −1 = ( (cos(0) − cos(−nπ)) + (cos(nπ) − cos(0))) π n n 1 1 −1 = ( (1 − cos(−nπ)) + (cos(nπ) − 1)) π n n 2 = (1 − cos(nπ)) nπ 16
  • 18. On remarque ici que la valeur de bn dépend de la parité de n. Aussi posons-nous soit n = 2k, soit n = 2k + 1 suivant la parité de k ∈ Z. 2 1 Si n = 2k alors (1 − cos(nπ)) = (1 − cos(2kπ)) = 0 nπ kπ 2 2 4 Si n = 2k + 1, alors (1 − cos(nπ)) = (1 − cos((2k + 1)π)) = nπ (2k + 1)π (2k + 1)π   0 si n est un entier pair Donc on a bn = 4  si n est un entier impair nπ Nous avons donc trouvé que la série de Fourier de f (x) est N 4 sin((2k + 1)x) (2k + 1)π k=0 Figure 2.2 – Addition de termes de la fonction carrée Mais maintenant, nous pouvons nous poser une question sur le nombre N : de quelle grandeur doit-il être afin d’obtenir exactement le graphe de la fonction désirée ? De plus, on rencontre une difficulté lorsqu’on veut construire cette fonction carrée en l’approchant avec la somme des termes consécutifs de la série que l’on vient de trouver. 17
  • 19. En effet, comment peut-on construire une fonction discontinue à chaque x = kπ (où k est un entier) à l’aide de la somme de fonctions continues en tout point dans R et dérivables dans tous ses degrés (ses fonctions dérivées de degré 1, 2, 3,...,etc. sont toutes continues, car les fonctions sinus et cosinus sont de classe C n ). Cependant, nous pouvons observer que plus on ajoute de termes dans cette somme, donc plus le nombre N croît, plus la fonction a l’air de coller au graphe de la fonction carrée. Mais elle ne deviendra jamais carrée puisqu’il existe toujours des courbes aux extrémités. Par cette idée intuitive, on peut déduire que la série de Fourier associée à cette fonction ∞ 4 carrée f (x) est sin((2k + 1)x) (2k + 1)π k=0 De même, on peut étendre la série de Fourier vers une écriture plus générale. Si une fonction f (x) périodique de période 2π peut être écrite sous forme de série de Fourier, alors cette série est égale à ∞ a0 + (an cos(nx) + bn sin(nx)) 2 n=1 Par cet exemple, nous pouvons aussi observer une chose étonnante. Cette fonction carrée peut être simplement écrite par la somme de sinus. En effet, la raison pour laquelle son expression est uniquement sous forme de termes en sinus est simplement due à sa parité. Cette "propriété de parité" nous dit que : – si la fonction est paire, alors sa série de Fourier est une somme de cosinus – si la fonction est impaire, sa série de Fourier est une somme de sinus Rappelons-nous d’abord de certaines propriétés liées a la parité d’une fonction. Si une fonction est paire, alors f (x) = f (−x) et on peut simplifier l’expression de l’intégrale sur des intervalles symétriques : π π f (x) dx = 2 f (x) dx. −π 0 Si une fonction est impaire alors, f (x) = −f (−x). π et f (x) dx = 0 −π Finalement, le produit d’une fonction paire et d’une fonction impaire est impaire, et le produit de deux fonctions de la même parité est paire. 18
  • 20. Ainsi, si f (x) est paire, alors f (x) sin nx est impaire et f (x) cos nx est paire. π 2 a0 = f (x) dx π 0 π 2 an = f (x) cos(nx) dx π 0 π 1 bn = f (x) sin(nx) dx = 0 π −π Si f (x) est impaire, alors f (x) sin nx est paire et f (x) cos nx est impaire. π 1 a0 = f (x) dx = 0 π −π π 1 an = f (x) cos(nx) dx = 0 π −π π 2 bn = f (x) sin(nx) dx π 0 Par conséquent, on voit que ∞ a0 Si f (x) paire, la serie = + an cos(nx) 2 n=1 ∞ Si f (x) impaire, la serie = bn sin(nx) n=1 Maintenant qu’on est familier avec la série de Fourier pour une fonction de période 2π, on peut se demander quelle sera la forme de la série de Fourier pour une fonction périodique de période T quelconque. Étudions cela : Soit f (x) une fonction périodique de période T . On veut la développer en série de Fourier, mais on ne connait que le la série pour une période de 2π. Nous allons donc effectuer un T T changement de variable x = u tel que f ( u) soit périodique de période 2π. 2π 2π T T On le voit facilement car f (x) = f ( u) et f (x + T ) = f ( (u + 2π)). 2π 2π T T T Et puisque f (x) = f (x + T ) ⇔ f ( u) = f ( (u + 2π)) donc f ( u) est bien périodique 2π 2π 2π de 2π. 19
  • 21. On connait ainsi la forme de cette série de Fourier et de ses coefficients ∞ a0 + (an cos nu + bn sin nu) 2 n=1 T T Et on applique le changement de variable x = 2π u ⇒ dx = 2π du, ce qui va nous donner comme expression π 1 T a0 = f( u) du π −π 2π T 1 2 2π = f (x) dx π −T 2 T T T 2 2 2 = f (x) dx = f (x) dx T −T 2 T 0 π 1 T an = f( u) cos(nu) du π −π 2π T 1 2 2πnx 2π = f (x) cos( ) dx π −T 2 T T T T 2 2 2πnx 2 2πn = f (x)cos( ) dx = f (x) cos( ) dx T −T 2 T T 0 T π 1 T bn = f( u) sin(nu) du π −π 2π T 1 2 2πnx 2π = f (x) sin( ) dx π −T 2 T T T T 2 2 2πnx 2 2πn = f (x) sin( ) dx = f (x) sin( ) dx T −T 2 T T 0 T Et la série de Fourier d’une fonction de période quelconque T sera ∞ a0 2πn 2πn + (an cos x + bn sin x) 2 n=1 T T Et cela satisfait également toutes les autres propriétés démontrées auparavant. 20
  • 22. 2.1.5 Ecriture complexe des séries de Fourier Cette manière d’écrire la série de Fourier avec la somme de sinus et cosinus n’est pas l’unique représentation des séries de Fourier : nous pouvons aussi écrire la somme de Fourier sous la forme exponentielle, ce qui simplifiera l’écriture et les calculs. Tout d’abord, nous devons montrer la relation d’Euler qui nous sera très utile pour la suite. eiπ + 1 = 0 Par les séries de Taylor (plus précisément par la série de Maclaurin), on peut écrire la fonction ex sous la forme suivante : x2 xn ex = 1 + x + + ··· + + ··· 2! n! Nous pouvons faire la même chose pour sin x et cos x, ce qui nous donne : x2 x4 x6 x3 x5 x7 cos x = 1 − + − + · · · et sin x = x − + − + ··· 2! 4! 6! 3! 5! 7! Et vu que (iθ)2 (iθ)3 (iθ)4 (iθ)n eiθ = 1 + iθ + + + + ··· + + ··· 2! 3! 4! n! −θ2 −iθ3 θ4 = 1 + iθ + + + + ··· 2! 3! 4! 2 4 θ θ θ3 θ5 = (1 − + − · · · ) + i(θ − + ) 2! 4! 3! 5! = cos θ + i sin θ Nous obtenons alors que eiθ = cos θ + i sin θ ce qui veut aussi dire que eiπ = cos π + i sin π = −1 ou encore eiπ + 1 = 0 Comme corollaire de la relation eiθ = cos θ + i sin θ, nous pouvons déduire que eiθ + e−iθ cos θ = 2 eiθ − e−iθ sin θ = 2i a0 Ainsi, on pourrait, sans se préoccuper du terme constant , remplacer ces expressions 2 21
  • 23. dans la série de Fourier trigonométrique. ∞ ∞ einx + e−inx einx − e−inx (an cos(nx) + bn sin(nx)) = (an + bn ) n=1 n=1 2 2i ∞ an inx ibn inx = ( (e + e−inx ) − (e − e−inx )) n=1 2 2 ∞ ∞ an ibn an ibn = einx ( − )+ e−inx ( + ) n=1 2 2 n=1 2 2 Au lieu de prendre tous les termes n de 1 à ∞, on peut penser qu’on peut inverser ceci sans pour autant changer le sens de la somme en prenant tout les n de−∞ à −1. ∞ −1 an ibn a−n ib−n = einx ( − )+ einx ( + ) n=1 2 2 n=−∞ 2 2 Nous avons envie de grouper les deux sommes, pour ça, il faut qu’on trouve une relation entre les deux. Puisque la série trigonométrique donne une fonction réelle, alors la somme de ces deux sommes doit aussi donner quelque chose de réel. La somme des deux doit donc satisfaire la symétrie complexe : si on veut que la somme de deux nombres complexes soit un nombre réel il faut alors que si l’un est z, l’autre soit son conjugué z. an − ibn Si l’on pose que Cn = , donc on peut aussi déduire que 2 a−n − ib−n an + ibn C−n = , alors on a besoin que le terme correspondant de Cn soit Cn = 2 2 a−n + ib−n et que celui de C−n soit C−n = 2 Pour montrer cela nous devons d’abord montrer la relation entre les constantes trigonométriques et a−n et b−n . π 1 On a vu que an = f (x) cos(nx) dx alors, π −π π 1 a−n = f (x) cos(−nx) dx π −π π 1 = f (x) cos(nx) dx π −π = an 22
  • 24. π 1 bn = f (x) sin(nx) dx π −π π 1 b−n = f (x) sin(−nx) dx π −π π 1 =− f (x) sin(nx) dx π −π = −bn Par ces deux relations, nous pouvons constater que, a−n − ib−n C−n = 2 an + ibn = 2 an − ibn = 2 = Cn Ceci nous montre bien que la somme des deux est bien réelle puisqu’elles satisfont Cn = C−n . Par la même procédure, on peut aussi montrer que C−n = Cn . Mais avant de pouvoir les écrire sous une seule somme, on peut constater qu’il nous manque le terme n = 0. Puisqu’on sait que Cn = C−n , alors C0 = C−0 = C0 . Ca montre que C0 est un terme a0 particulier car il est toujours réel est égale a . C’est la raison pour laquelle on a choisi, 2 a0 dans la série de Fourier trigonométrique, d’introduire la constante comme étant . 2 Finalement, nous pouvons continuer notre raisonnement, et poser que an − ibn a−n + ib−n Cn = et Cn = 2 2 ∞ ∞ −1 a0 a0 an − ibn a−n + ib−n + (an cos(nx) + bn sin(nx)) = + einx ( )+ einx ( ) 2 n=1 2 n=1 2 n=−∞ 2 ∞ −1 a0 = + Cn einx + Cn einx 2 n=1 n=−∞ et Cn = C−n et C0 = C−0 = C0 , donc ∞ = Cn einx −∞ Nous avons donc que si une fonction peut être écrite sous forme de série de Fourier 23
  • 25. exponentielle, alors sa série de Fourier sera ∞ Cn einx n=−∞ Il nous faut maintenant trouver les expressions du coefficient Cn , à l’instar de ce qu’on a pu réalisé précédemment. an − ibn a−n − ib−n N’oublions pas qu’on a défini que Cn = , C−n = et C−0 = C0 . 2 2 Par ailleurs, nous avons aussi montré les expressions de an et bn , donc pour trouver Cn , il nous suffit de substituer les expressions. an − ibn Cn = 2 1 1 π i π = ( f (x) cos(nx) dx − f (x) sin(nx) dx) 2 π −π π −π π 1 = f (x)(cos(nx) − isin(nx)) dx 2π −π Par la relation d’Euler, on peut voir directement que cos(nx) − isin(nx) = e−inx π 1 = f (x)e−inx dx 2π −π Cependant, cette méthode pour trouver le coefficient Cn dépend fortement de an et bn qu’on a trouvé auparavant. Donc cette méthode n’est pas très pratique. Dans ce cas, nous pouvons aussi montrer un autre moyen pour trouver l’expression du coefficient Cn . Supposons que ∞ f (x) = Cn einx n=−∞ alors si on multiplie les deux côtés par e−ikx ou k est un entier quelconque, on obtient ∞ f (x)e−ikx = e−ikx Cn einx n=−∞ Pour la partie de droite, on a ∞ e−ikx Cn einx = e−ikx (· · · + C−2 e−2ix + · · · + C1 eix + · · · + Ck eikx + · · · ) n=−∞ nous remarquons qu’il existe un et un seul terme où n = k qui nous donnera 24
  • 26. Ck eix(k−k) = Ck donc nous pouvons écrire de façon équivalente : ∞ ∞ e−ikx Cn einx = Cn ei(n−k)x + Ck n=−∞ n=−∞,n=k ∞ Donc on a Ck = f (x)e−ikx − Cn ei(n−k)x n=−∞n=k On peut intégrer sur une période des deux côtés, π π π ∞ Ck = f (x)e−ikx dx − Cn ei(n−k)x dx −π −π −π n=−∞,n=k Prenons un terme dans la somme que nous devons intégrer, π π Cn eix(n−k) dx = Cn eix(n−k) dx −π −π Cn = ei(n−k)x |π −π i(n − k) Cn = (eiπ(n−k) − e−iπ(n−k) ) i(n − k) par la relation d’Euler, on sait que pour m entier, eiπm = 1 Puisque n et k sont tous les deux entiers, leur différence l’est également =0 π π Finalement, on a Ck dx = f (x)e−ikx dx −π −π π 2πCk = f (x)e−ikx dx −π π 1 Pour tout k entier, on peut avoir Ck = f (x)e−ikx dx. 2π −π Donc si on peut écrire ∞ f (x) = Cn einx −∞ alors, π 1 Cn = f (x)e−inx dx 2π −π On obtient bien le même expression que ce qu’on a trouve par la première méthode. Tout comme les séries de Fourier trigonométriques, on peut écrire les séries de Fourier exponentielles d’une fonction f (x) de période quelconque T . 25
  • 27. T T On utilisera aussi le changement de variable x = u pour rendre f ( u). 2π 2π Finalement on obtient que la série de Fourier d’une fonction périodique de T est ∞ 2πinx f (x) = Cn e T n=−∞ où le coefficient de Fourier T T 1 2 −2πinx 1 −2πinx Cn = f (x)e T dx = f (x)e T dx T −T 2 T 0 2.2 Convergence des séries trigonométriques, des séries de Fourier, et Théorème de Dirichlet Jusqu’à présent, nous avons toujours utilisé soit l’hypothèse "si la fonction égale à sa série" ou soit le terme "la série de Fourier d’une fonction" parce qu’on a pas encore montre de manière rigoureuse, l’équivalence entre la fonction et sa série de Fourier. Pour cela, nous devons montrer la convergence de la série de Fourier vers la fonction. La convergence est sans conteste l’aspect le plus compliqué dans la description mathématique des séries de Fourier. Aussi pouvons-nous seulement, avec notre modeste niveau, en aborder qu’une mince partie. Avant toute chose, il convient d’introduire certaines notions en ce qui concerne la convergence, afin que le vocabulaire utilisé, qui peut somme toute paraître anodin, prenne tout son sens. En premier lieu, nous devons distinguer les différentes formes de convergence : la convergence simple, la convergente uniforme, la convergence en norme ainsi que la convergence "presque partout". Nous ne nous occuperons pas des deux derniers cas, car trop complexes. 2.2.1 Convergence simple Définition : Soient I un intervalle de R, (fn )n∈Z une suite de fonctions définies sur I, et f définie sur I. On dit que (fn ) converge simplement vers f sur I si ∀x ∈ I, la suite (fn (x)) converge vers f (x). Autrement dit : ∀x ∈ I, ∀ > 0, ∃n0 ( , x) ∈ N, ∀n ≥ n0 ⇒ |fn (x) − f (x)| < Où la notation ( , x) signifie que le choix du n0 dépend et de , et du x déterminé. Exemple : Soit sur [0, 1], fn (x) = xn . Il est clair que la fonction fn converge simplement vers la fonction définie par f (x) = 0 si x est dans [0,1[ et f (1) = 1. 26
  • 28. Figure 2.3 – Illustration de la convergence simple On constate dèjà ici l’insuffisance de la convergence simple pour les fonctions continues : chaque fonction (fn ) est continue, la suite (fn ) converge simplement vers f , et pourtant f n’est pas continue. Ainsi la continuité n’est pas toujours préservée par la convergence simple, d’où par la suite l’idée de convergence uniforme. Une autre insuffisance d’une telle notion est que l’intégrale de la limite d’une suite fonctions intégrables n’est pas forcément égale à la limite de l’intégrale de la suite de fonctions intégrables. Soit la suite de fonctions définie sur [0,1] par  1  fn (x) = n2 x,  0≤x≤ 2n 1 1 1 f (x) = n2 ( n − x), ≤x ≤n  n 2n 1 fn (x) = 0, x≥  n Montrons la convergence simple de la suite fn (x) sur [0,1]. 1 1 Soit x>0. n →0 lorsque n → ∞, donc à partir d’un certain rang N , on a : n < x. On en déduit donc qu’à partir du même rang N , fn (x) = 0 et donc fn (x) → 0 lorsque n → ∞. Ainsi, la suite (fn (x)) converge simplement vers la fonction nulle sur [0,1]. 1 1 1 2n n D’un autre côté, fn (x) = n2 xdx + n − n2 xdx = 1/4 (L’intégrale est donc 1 0 0 2n 1 indépendante de n). Ceci prouve que la suite ( fn ) ne tend pas vers 0. Aussi cette 0 intégrale n’est-elle pas égale à l’intégrale de la fonction nulle, qui est bien entendu nulle, 1 1 1 et donc, lim fn (x)dx = lim fn (x)dx = f (x)dx = 0. n→∞ 0 0 n→∞ 0 Ces insuffisances motivent donc une nouvelle notion de convergence. 27
  • 29. Figure 2.4 – Illustration de la convergence uniforme 2.2.2 Convergence uniforme Définition : Soient I un intervalle de R, (fn )n∈Z une suite de fonctions définies sur I, et f définie sur I. On dit que (fn ) converge uniformément vers f sur I si : ∀ > 0, ∃n0 ( ) ∈ N, ∀x ∈ I, ∀n ≥ n0 , |fn (x) − f (x)| < . La convergence uniforme est donc une forme de convergence beaucoup plus exigeante que la convergence simple, qui ne demandait que, pour chaque point x, la suite (fn (x)) ait une limite. La convergence uniforme veut que toutes les suites (fn (x)) avancent vers leur limite respectives avec un certain mouvement d’ensemble, autrement dit, la convergence a lieu à la même vitesse pour chaque point x, d’où le fait que l’on puisse déterminer une valeur unique n0 à partir de laquelle toutes les fn (x) dont le n est supérieur à n0 soient inférieures à un donné, ce indépendamment de x. A l’inverse, pour la convergence simple, le rang à partir duquel la distance devient très petite peut fortement varier d’un x à l’autre. De façon imagée, on peut dire que pour que la convergence uniforme, il est possible, selon le n0 , de former un tube plus ou moins petit autour de la fonction vers laquelle la suite converge dans lequel tous les fn , n > n0 se trouvent. Pour la convergence simple, on aurait, toujours de façon imagée, certaines fonctions qui ferait des pics, dépassant ce tube imaginaire, pour ensuite revenir vers la fonction vers laquelle la suite tend. Ceci se retrouve bien entendu dans la définition ci-dessus avec |fn (x) − f (x)| < . 28
  • 30. Figure 2.5 – Exemple de convergence uniforme vers la fonction y = |x| Il semble assez intuitif que toute suite de fonction qui converge uniformément converge simplement. Nous n’allons pas le démontrer formellement. La réciproque est en général fausse, sauf cas exceptionnels. Réglons de suite la seconde insuffisance pour les fonctions intégrables : la définition de convergence uniforme nous permet une majoration indépendante de x, d’où nous obtenons l’inégalité suivante : b |fn (x) − f (x)|dx ≤ (b − a)max|fn − f | a Ceci nous permet dès lors de permuter la position de limite sans affecter le résultat, et la limite de l’intégrale est bien égale à l’intégrale de la limite. (Quand n tend vers l’infini, le second membre tend vers 0, d’où le premier également - du fait de la valeur absolu - et b b lim fn (x)dx = f (x)dx ) n→∞ a a Mais qu’en est-il de la première insuffisance en ce qui concerne les fonctions continues : si une suite de fonction (fn ) continues sur I converge uniformément vers f , f est-elle continue sur I ? La réponse est oui (on s’en doute), en voici la preuve : Nous savons que : ∀ > 0, ∃n0 ( ) ∈ N, ∀x ∈ I, ∀n ≥ n0 ⇒ |fn (x) − f (x)| < . Prenons x0 ∈ I, qui répond donc à l’inégalité, et fixons un nombre entier N qui caractérise la fonction fN . Nous savons d’autre part que (fN ) est continue en x0 , donc : ∀x ∈ I, ∃δ( , x) > 0, |x − x0 | < δ ⇒ |fN (x) − fN (x0 )| < Et l’inégalité triangulaire achève la démonstration puisque |f (x) − f (x0 )| < |f (x) − fN (x)| + |fN (x) − fN (x0 )| + |fN x0 − f (x0 )| < 3 . 29
  • 31. 2.2.3 Convergence normale Soient I un intervalle de R et (fn )n∈Z une suite de fonctions définies sur I. On dit que ∞ (fn ) converge normalement sur I si la série sup|fn (x)|, x ∈ I est convergente. n≥0 La convergence normale est encore plus exigeante que la convergence uniforme, dans le sens où toute fonction qui converge normalement converge uniformément. Nous ne le démontrerons pas. 2.2.4 Convergence des séries trigonométriques Proposition 1 Si les séries numériques |an | et |bn | co,nvergent, alors la série trigonométriques 2πn 2πn S(t) = an cos( t) + bn sin( t) converge normalement (et donc uniformément) T T n≥0 sur R Preuve Cela découle directement de l’inégalité : |an cos( 2πn t) + bn sin( 2πn )t)| ≤ |an | + |bn | T T Corollaire Si les séries numériques |an | et |bn | convergent, alors la série trigonométrique S(t) est continue sur R. Si les séries n |an | et n |bn | convergent, alors la somme S(t) est continue sur R, à dérivée continue. Proposition 2 Si les suites numériques (an ) et (bn ) sont décroissantes et tendent vers 0, alors la série trigonométrique S(t) est convergente pour t = k.T où k ∈ Z Nous ne démontrons pas cette proposition. 2.2.5 Théorème de Dirichlet. Avant d’entamer la démonstration, il convient de repréciser les différents types de convergence qui interviennent dans le cadre des séries de Fourier : la convergence simple, que traite le théorème de Dirichlet, la convergence uniforme, la convergence en norme, et la convergence presque partout. Chacune de ces notions de convergence requiert des hypothèses différentes sur la fonction f (x), ainsi que différents types de preuves. Les preuves des trois derniers cas de convergence cités sont inabordables car elles nécessitent des notions d’analyse fonctionnelle très avancées. Quelques notations et définitions 30
  • 32. Notation Nous noterons pour la suite f (a+ ) la limite à droite en a et f (b− ) la limite à gauche en b. Fonction continue par morceau Une fonction f : [a, b] → C est dite continue par morceau sur [a,b] si f est continue sur [a,b] sauf éventuellement en un nombre fini de points qui admettent des limites à gauche et à droite. En particulier, f (a+ ) et f (b− ) existent. Fonction lisse par morceaux Une fonction f : [a, b] → C est dite lisse par morceau sur [a,b] si f et f sont continues par morceaux sur [a,b]. En particulier, f (a+ ) et f (b− ) existent. Extension sur R Une fonction f : R → C est continue (respectivement lisse) par morceau sur R si elle est continue (respectivement lisse) par morceaux sur tout intervalle borné [a,b]∈ R Introduction au théorème n Expression du noyau de Dirichlet : Dn (x) = eikx k=−n Nous allons calculer cette somme dans un cas général afin d’alléger l’écriture. Soit donc la somme symétrique (car allant de −n à n) de termes d’une suite géométrique de raison q. Nous allons utiliser la symétrie de la somme afin de modifier l’écriture : n 2n q 2n+1 qk = q −n q k = q −n q−1 k=−n k=0 1 Pour obtenir un terme plus homogène, multiplions numérateur et dénominateur par q − 2 , 1 1 1 q −n− 2 q 2n+1 − 1 q n+ 2 − q −n− 2 ce qui nous donne : −1 = 1 −1 q 2 q−1 q2 − q 2 En remplaçant maintenant q par eix , nous trouvons : 1 1 ei(n+ 2 )x − e−i(n+ 2 )x 1 1 ei( 2 )x − e−i( 2 )x Et en utilisant les formules d’Euler, nous pouvons transformer l’expression en : sin((n + 1 )x) 2 sin( x ) 2 Cependant, nous aurons besoin pour notre démonstration de l’intégrale de −π à π (qui équivaut soit disant passant au double de l’intégrale de 0 à π, la fonction déterminé par le noyau étant paire) de la fonction Dn (x). La primitive de l’expression trouvée étant extrêmement ardue, nous devons trouver une autre expression du noyau. Sachant que le noyau est une fonction réelle, il nous suffit en fait de prendre en compte n uniquement les parties réelles de la somme eikx , ce qui nous donne : k=−n 31
  • 33. k=n Dn (x) = 1 + 2 cos(kx) k=1 (Deux fois la somme car cosx est paire, 1 car nous considérons à part le cas où k=0) π Aussi trouvons-nous aisément que : Dn (x)dx = 2π, les termes en cosinus devenant −π des sinus, qui s’annulent pour x = k.π. En résumé, n n 1 sin((n + 2 )x) Dn (x) = eikx = 1 + 2 cos(kx) = sin( x ) 2 k=−n k=1 Et son intégrale de 0 à π équivaut à π. Passons maintenant au théorème de Dirichlet en lui-même. Théorème(Dirichlet, 1824) Si f : R → C est 2π-périodique et lisse par morceau sur R, alors : f 1 lim SN (x) = (f (x+ ) + f (x− )) pour tout x. N →∞ 2 En particulier, f lim SN (x) = f (x) N →∞ f pour tout x où f est continue, avec SN (x) la série de Fourier correspondant à la fonction. Nous pouvons dès lors dire qu’une fonction qui vérifie les hypothèses du théorème de Dirichlet converge simplement. Remarque :Il peut exister des fonctions continues dont la série de Fourier associée diverge pour certaines valeurs de x. Preuve Nous allons utiliser la notation complexe, et choisir le cas particulier T = 2π afin p d’alléger l’écriture. Notons Sp (x) = ck eikx la somme partielle de la série de Fourier k=−p en un point x fixé. 1 1. Calcul de Sp (x) − (f (x+ ) + f (x− )) 2 Calculons la somme partielle Sp (x), et précisons que f (t) correspond à la fonction que l’on a représenté sous forme de série. x étant fixé, nous utilisons la variable t afin de ne pas prêter à confusion ; il ne s’agit en quelque sorte que d’une variable muette : p 2π 1 Sp (x) = eikx e−ikt f (t)dt 2π 0 k=−p 32
  • 34. p 1 = eik(x−t) f (t)dt 2π 0 k=−p 2π 1 = Dp (x − t)f (t)dt 2π 0 2π−x 1 = Dp (u)f (u + x)du 2π −x [Changement de variable (t=u+x) + utilisation du fait que le noyau de Dirichlet est pair.] π 1 = Dp (u)f (u + x)du 2π −π 2π π k+2π f périodique de période 2π, donc, comme on a pu le démontrer, = = 0 −π k Ceci nous permet dès lors d’écrire en se souvenant que l’intégrale du noyau sur la période est π : π π 1 1 1 Sp (x) − (f (x+ ) + f (x− )) = Dp (u)f (u + x)du − Dp (u)f (x+ )du − 2 2π −π 4π −π π 1 − Dp (u)f (x )du 4π −π Ce qui nous donne en utilisant la parité du noyau de Dirichlet : π π 0 1 1 1 Dp (u)f (u + x)du − Dp (u)f (x+ )du − Dp (u)f (x− )du 2π −π 2π 0 2π −π 0 π = 1 2π ( −π Dp (u)(f (u + x) − f (x− ))du + 0 Dp (u)((f (u + x) − f (x+ ))du ) Il ne nous reste donc plus qu’à prouver que ces deux intégrales tendent vers 0 lorsque p tend vers l’infini, et nous aurons gagné. La démonstration étant quasi identique pour chaque intégrale, nous ne le démontrerons que pour une seule. π 2. Calcul de lim Dp (u)((f (u + x) − f (x+ ))du p→∞ 0 1 sin((p + 2 )x) Nous avons vu dans l’introduction au théorème que Dp (x) = x sin( 2 ) Choisissons α, 0 < α < π, tel que f soit lisse par morceau sur ]x; x + α[ (sans oublier π α π que x est fixé), et décomposons en + 0 0 α α 2.1 Traitons d’abord le cas de la première intégrale 0 33
  • 35. Notons M la borne supérieure de f sur [0; α] et remarquons que u ≤ πsin( u ) pour 2 tout u ∈ [0, π] Nous appliquons le théorème des accroissements finis à f sur [x; x + u] : |f (u + x) − f (x+ )| ≤ M u. Et donc, en réinjectant dans l”intégrale dont on a pris la valeur absolu, tout en se rappelant que u ≤ πsin( u ) , nous obtenons : 2 α |sin((p + 1 )u)| α |sin((p + 1 )u)| 2 |((f (u + x) − f (x+ ))|du ≤ 2 M udu ≤ M πα 0 sin( u ) 2 0 sin( u ) 2 Ainsi, l’intégrale peut être rendue arbitrairement petite pour autant que l’on choisisse bien α. π 2.2 Cas de la seconde intégrale α Nous allons utiliser le lemme suivant afin de démontrer cela (remarquons que ce lemme marche tout aussi bien pour le premier cas) : Lemme Toute fonction f lisse par morceau sur [a, b] vérifie : b lim f (x)sin(nx)dx = 0 n→∞ a b lim f (x)cos(nx)dx = 0 n→∞ a Preuve b n−1 αk+1 Il nous suffit d’intégrer par partie : f (x)sin(nx)dx = f (x)sinxdx = a k=0 αk n−1 αk+1 n−1 1 + − 1 (f (αk )cos(nαk ) − f (αk+1 )) + f (x)cos(nx)dx n n αk k=0 k=0 Et l’on constate bien que lorsque n → ∞, l’expression → 0 (Rappelons-nous bien que l’hypothèse de départ est que f est lisse par morceau, d’où le fait que sa dérivée soit continue, et a fortiori bornée, ce qui justifie le fait que la seconde partie de l’expression tende vers 0.) Revenons-en au traitement de notre second cas. f (x+u)−f (x+ ) Posons g(u) = sin( u ) . Il suffit maintenant simplement de constater que g(u) est 2 lisse par morceau sur [α; π], ce qui implique que π 1 lim g(u)sin((p + )u) = 0 d’après le lemme précédent, ce que l’on cherchait à p→∞ α 2 34
  • 36. démontrer. 3.Synthèse de la démonstration du théorème de Dirichlet. 1 Nous avons donc démontré que lim Sp (x) − (f (x+ ) + f (x− )) = 0, pour une fonction p→∞ 2 f lisse par morceau, ce qui nous assure que qu’en tout point de discontinuité, la fonction converge vers une valeur, et qu’en tout autre point où f est continue, la limite de la série de Fourier correspondant à la fonction pour p très grand tend vers la fonction. 2.2.6 Analyse d’une fonction qui répond aux hypothèses du théorème de Dirichlet. On se propose d’étudier la fonction f (x) = ex si x ∈] − π; π[, fonction qu’on étend par la suite sur l’ensemble des réels. D’après ce qu’on a pu démontrer sur la périodicité, nous pouvons nous contenter d’étudier la fonction sur ] − π; π[ Figure 2.6 – Graphique de f (x) = ex si x ∈] − π; π[, fonction qu’on étend par la suite sur l’ensemble des réels. Remarquons tout de suite que la fonction est discontinue aux points x = π + k.2π, qu’elle est de période de 2π et qu’elle vérifie les hypothèses du théorème de Dirichlet puisqu’elle est clairement lisse par morceau. Ainsi, nous pouvons légitimement écrire ∞ a0 cette fonction sous forme de série de Fourier, c’est-à-dire f (x) = 2 + (an cos(nx) + n=0 bn sin(nx)) Calcul de a0 1 π x eπ − e−π a0 = e dx = π −π π Calcul de an 1 π x an = e cos(nx)dx. π −π π Pour trouver ex cos(nx)dx, deux méthodes-entre autres- s’offrent à nous : la double −π π intégration par partie, ou ex(ni+1) , en considérant ensuite la partie réelle de l’intégrale. −π Nous allons utiliser la première pour la recherche de an et la seconde pour la recherche de 35
  • 37. bn . ( A la seule différence près que cos(nx) étant subsitué par sin(nx) pour la recherhce de bn , nous devrons considérer la partie imaginaire de l’intégrale.) Soit I = ex cos(nx)dx. Après la première intégration par partie, nous trouvons : ex sin(nx) 1 I= − ex sin(nx) n n Intégrons maintenant par partie J = ex sin(nx) ; nous trouvons : −ex cos(nx) 1 π x J= + e cos(nx) n n −π ex sin(nx) 1 −ex cos(nx) 1 Ainsi, I = − ( + I) nx n n n 1 e sin(nx) ex cos(nx) ⇔ I(1 + 2 ) = + nx n x n2 n.e sin(nx) + e cos(nx) ⇔I= n2 + 1 π eπ .cos(nπ) e−π .cos(nπ) cos(nπ) π Dès lors, ex cos(nx)dx = 2+1 − 2+1 = 2 (e − e−π ) −π n n n +1 1 cos(nπ) π Et finalement, an = ( (e − e−π )) π n2 + 1 Calcul de bn 1 π x 1 π bn = e sin(nx)dx = ( ex(ni+1) ) π −π π −π 1 π x(ni+1) eπ(ni+1) e−π(ni+1) ⇒ e = − π −π ni + 1 ni + 1 −ni + 1 π nπi −π −nπi = 2 (e e −e e ) n +1 En prenant uniquement la partie imaginaire, en considérant bien que sin(nπ) est de toute façon nul, nous trouvons : 1 −n bn = ( 2 (eπ cos(nπ) − e−π cos(nx))) π n +1 1 ncos(nπ) −π Et finalement, bn = ( (e − eπ )) π n2 + 1 Et en groupant le tout, nous trouvons l’expression de la série. (En considérant bien que suivant que n est pair ou impair, cos(nπ) équivaudra à 1 ou -1) Série de Fourier associée à la fonction ∞ eπ − e−π (−1)n f (x) = + (eπ − e−π )(cos(nx) − nsin(nx)) 2π n=1 π(n2 + 1) 36
  • 38. eπ − e−π (−1)n = π (1 + 2 π(n2 + 1) ) (cos(nx) − nsin(nx) n=1 2.3 Phénomène de Gibbs Nous avons vu lors de l’analyse de la fonction carrée qu’au plus on additionne des termes trigonométriques, au plus la fonction tend vers une forme carrée. Mais nous remarquons aussi que sur les points anguleux de la fonction, bien qu’on puisse ajouter un grand nombre de termes, défaut d’approximation persistera. Figure 2.7 – Illustration du phénomène de Gibbs Etant donné que tout terme de la série de Fourier est une fonction continue, il est normal que la série ne puisse approcher uniformément la fonction aux points de discontinuité. Des études ont déjà montré que l’amplitude d’oscillation autour des discontinuités est toujours plus importante. Quantitativement, il en ressort que très régulièrement, l’oscillation y est 18% plus importante que sur le reste la fonction continue. C’est le cas dans la fonction carrée. Nous verrons dans la partie traitant des applications l’importance de cette fonction carrée qui est incontournable en électronique lorsque l’on manipule des informations binaires qui ne s’expriment qu’à l’aide de deux valeurs uniques. 37
  • 39. Deuxième partie Applications de l’analyse harmonique 38
  • 40. Chapitre 1 Synthèse numérique d’un son à partir de l’addition des séries de Fourier Nous allons voir comment l’on peut modéliser des signaux à l’aide des séries de Fourier par addition de termes en sinus et cosinus. Nous avons développé une application qui montre visuellement et auditivement l’importance de l’addition de termes dans les séries de Fourier pour modéliser par exemple la fonction carrée. Il faut cependant différencier plusieurs types de signaux. Les signaux harmoniques, les signaux périodiques qui correspondent à la composition de différents signaux harmoniques et les signaux non périodiques. Chacun de ces signaux seront analysés à l’aide d’outils différents. Pour les signaux harmoniques, une analyse sinusoïdale suffit. Pour des signaux composés de plusieurs harmoniques, on utilisera les séries de Fourier. Et finalement pour les signaux non périodiques on peut utiliser les transformées de Fourier. 39
  • 41. Chapitre 2 Applications informatiques 2.1 FFT : Fast Fourier Transform Nous avons vu que les séries de Fourier sont des outils très pratiques afin de pouvoir modéliser des signaux sous forme d’addition de sinusoïdes et cosinuoïdes. Il est donc pratique de disposer de ces séries mais le calcul n’est pas toujours simple et efficace. C’est pourquoi avec le développement de l’informatique sont apparus des algorithmes qui permettent de calculer les coefficients selon une méthode linéaire. Ainsi, nos processeurs binaires savent traiter bien plus rapidement l’information. Jusqu’ici on s’était intéressé à l’approche temporelle du son, c’est-à-dire que l’on se contentait de considérer le signal comme une grandeur évoluant au fil du temps. C’est la vision la plus directe mais pas nécessairement la plus intuitive. Lorsque l’on écoute un son, l’analyse la plus simple, la plus primitive c’est, d’une part, de savoir s’il est fort ou faible en terme de volume sonore et par ailleurs s’il est grave ou aigu. 1 Nos oreilles sont essentiellement sensibles à la fréquence et à l’amplitude du son. A partir de là, il parait évident que la représentation temporelle n’est pas la plus triviale pour “visualiser” un son de la même manière qu’on l’écoute. Nous allons donc recourir à une opération qui suit cette logique, la transformée de Fourier. Une transformée est une opération consistant à faire correspondre une fonction à une autre pour représenter la même information d’une façon différente. Dans le cas de Fourier, l’idée est d’exprimer le son comme dépendant de la fréquence et non plus du temps le tout à partir de l’hypothèse que tout signal est fondamentalement composé d’une somme de sinusoïdes de fréquences différentes. On peut distinguer assez clairement l’évolution du volume sonore mais on n’a aucune information visible sur la hauteur du son joué. 1. Pour l’oreille humaine, des sons très graves oscillent autour des 16Hz alors que des sons très aigus oscillent autour des 16kHz 40
  • 42. Figure 2.1 – Représentation temporelle d’un son Figure 2.2 – Représentation fréquentielle d’un son Comparons les graphes. Sur la Figure 2.2 on a donc plus le temps comme abscisse mais la fréquence. Tout de suite, le graphique est nettement moins massif. Pourquoi ? On distingue clairement que le son est très simple car composé essentiellement d’une seule fréquence (788, 5Hz, c’est presque un sol) plus deux petits pics à dans les hautes fréquences ( 3000Hz et 7000Hz). Par contre il est difficile de savoir comment le son évolue au fil du temps. 41
  • 43. Les deux représentations ont clairement leurs avantages respectifs en fonction de ce que l’on recherche. Nous allons maintenant énoncer la formule de base de la transformée de Fourier, sans la démontrer. ˆ +∞ F (f ) : ν → f (ν) = −∞ f (t) e−i2πνt dt La transformée ainsi calculée est un signal complexe, c’est à dire en deux dimensions. Là où chaque échantillon du signal d’origine était composé d’une grandeur (l’amplitude), sa transformée associe à chaque fréquence à la fois l’amplitude 2 et la phase. 3 Nous allons maintenant analyser ce qu’il se passe lorsque nous composons un son d’un la (440Hz) et d’un ré (294Hz), respectivement déphasés de 0.7 et -0.2. L’équation de ce son est : x(t) = 0.5 cos((2π)500t + 0.7) + 0.25 cos((2π)294t − 0.2) Voici ce que donne cette addition graphiquement : Figure 2.3 – Addition du signal du La et du Ré Traçons le graphe de la transformée de cette fonction maintenant. Deux traits sont à nouveau présents sur le graphe de la transformée. En lisant le graphique nous pouvons donc retrouver les deux fréquences avec leur amplitude et phase respective. Il est important de remarquer que l’amplitude nous donne une indication sur le volume sonore de chaque fréquence alors que la phase nous renseigne sur le positionnement dans le temps. Nous 2. L’amplitude c’est le volume sonore associé à chaque fréquence 3. La phase est un concept un peu plus abstrait, il s’agit du “retard” de chaque fréquence. 42