SlideShare una empresa de Scribd logo
1 de 8
Descargar para leer sin conexión
OPERACIONES FUNDAMENTALES CON
                    CONJUNTOS
OPERACIONES CON CONJUNTOS
       En aritmética se suma, resta y multiplica, es decir, a cada par de números x e y se le
asigna un número x + y llamado suma de x e y, un número x - y llamado diferencia de x e y
y un número xy llamado producto de x e y. Estas asignaciones se llaman operaciones de
adición, sustracción y multiplicación de números. En este capitulo se van a definir las
operaciones de unión, intersección y diferencia de conjuntos, es decir, se van a asignar o a
hacer corresponder nuevos conjuntos a pares de conjuntos A y B.

UNION
       La unión de los conjuntos A y B es el conjunto de todos los elementos que
pertenecen a A o a B o a ambos. Se denota la unión de A y B por


                                               A⋃B



que se lee «A unión B».


Ejemplo 1-1: En el diagrama de Venn de la Figura 2-1, A ⋃ B aparece rayado, o sea el área


de A y el área de B.




Ejemplo 1-2: Sean S = {a, b, c, d} y T = {f, b, d, g}. Entonces
S ⋃ T = {a, b, c, d, f, g}



Ejemplo 1-3: Sean P el conjunto de los números reales positivos y Q el conjunto de los



números reales negativos. P ⋃ Q, unión de P y Q, consiste en todos los números reales


exceptuado el cero.


       La unión A ⋃ B se puede definir también concisamente así:




                                 A ⋃ B = {x ⃒ x ∈ A o x ∈ B}



Observación 2-1: Se sigue inmediatamente de la definición de la unión de dos conjuntos



que A ⋃ B y B ⋃ A son el mismo conjunto, esto es:




                                    A⋃B=B⋃A




Observación 2-2: A y B son ambos subconjuntos de A ⋃ B, es decir, que:
A ⊂ (A ⋃ B) y B ⊂ (A ⋃ B)



       En algunos libros la unión de A y B se denota por A + B y se la llama suma
conjuntista de A y B o simplemente A más B.

INTERSECCION
La intersección de los conjuntos A y B es el conjunto de los elementos que son comunes a
A y B, esto es, de aquellos elementos que pertenecen a A y que también pertenecen a B. Se
denota la intersección de A y B por


                                           A⋂B



que se lee «A intersección B».


Ejemplo 2-1: En el diagrama de Venn de la Figura 2-2, se ha rayado A ⋂ B, el área común


a ambos conjuntos A y B.




Ejemplo 2-2: Sean S = {a, b, c, d} y T = {f, b, d, g}. Entonces


                                       S ⋂ T = {b, d}
Ejemplo 2-3: Sea V = {2, 4, 6,…}, es decir los múltiplos de 2; y Sea W = {3, 6, 9,…}, o
sea los múltiplos de 3. Entonces


                                  V ⋂ W = {6, 12, 18,…}



        La intersección de A y B se puede definir concisamente así:


                                    A ⋂ B = {x ⃒ x ∈ A, x ∈ B}




Aquí la coma tiene el significado de «y».



Observación 2-3: Se sigue inmediatamente de la definición de intersección de dos
conjuntos que


                                      A⋂B=B⋂A




Observación 2-4: Cada uno de los conjuntos A y B contiene al A ⋂ B como subconjunto,


es decir,


                                (A ⋂ B) ⊂ A y (A ⋂ B) ⊂ B



Observación 2-5: Si dos conjuntos A y B no tienen elementos comunes, es decir, si A y B



son disjuntos, entonces la intersección de A y B es el conjunto vacío, o sea A ⋂ B = ∅.
En algunos libros, sobre todo de probabilidades, la intersección de A y B se denota
por AB y se llama producto conjuntista de A y B o simplemente A por B.
DIFERENCIA
La diferencia de los conjuntos A y B es el conjunto de elementos que pertenecen a A, pero
no a B. Se denota la diferencia de A y B por
                                           A–B


que se lee «A diferencia B» o simplemente «A menos B».



Ejemplo 3-1: En el diagrama de Venn de la Figura 2-3, se ha rayado A – B, el área de A
que no es parte de B.




Ejemplo 3-2: Sean S = {a, b, c, d} y T = {f, b, d, g}. Entonces
                                       S – T = {a, c}
Ejemplo 3-3: Sea R el conjunto de los números reales y Q el conjunto de los números
racionales. Entonces R - Q es el conjunto de los números irracionales.
       La diferencia de A y B se puede también definir concisamente como:


                                   A – B = {x ⃒ x ∈ A, x ∉ B}



Observación 2-6: El conjunto A contiene al A - B como subconjunto, esto es:


                                       (A – B) ⊂ A
Observación 2-7: Los conjuntos (A – B), A ⋂ B y (B – A) son mutuamente disjuntos, es


decir, la intersección de dos cualesquiera es vacía.


       La diferencia de A y B se denota a veces por A/B o bien por A ∼ B.




COMPLEMENTO
       El complemento de un conjunto A es el conjunto de elementos que no pertenecen a
A, es decir, la diferencia del conjunto universal U y del A. Se denota el complemento de A
por


                                                  A′



Ejemplo 4-1: En el diagrama de Venn de la Figura 2-3, se ha rayado el complemento de A.
o sea el área exterior a A. Se supone que el conjunto universal U es el área del rectángulo.




Ejemplo 4-2: Suponiendo que el conjunto universal U sea el alfabeto, dado T = {a, b, c},
entonces


                                     T′ = {d, e, f,…, y, z}
Ejemplo 4-3: Sean E = {2, 4, 6,...}, o sea los números pares _ Entonces F = {1, 3, 5,...},
que son los impares, Aquí se supone que el conjunto universal es el de los números
naturales 1, 2, 3,...
También se puede definir el complemento de A concisamente así;


                                     A′ = {x ⃒ x ∈ U, x ∉ A}



o simplemente:


                                        A′ = {x ⃒ x ∉ A}



Lo que se establece en seguida resulta de la definición del complemento de un conjunto.


Observación 2-8: La unión de cualquier conjunto A y su complemento A′ es el conjunto


universal, o sea que


                                       A ⋃ A′ = U




       Por otra parte, el conjunto A y su complemento A′ son disjuntos, es decir,




                                       A ⋂ A′ = ∅




Observación 2-9: El complemento del conjunto universal U es el conjunto vacío ∅ y


viceversa, o sea que:
U′ = ∅ y ∅′ = U



Observación 2-10: El complemento del complemento de un conjunto A es el conjunto A
mismo. Más breve:


                                        (A′)′= A



        La siguiente observación muestra como la diferencia de dos conjuntos podría ser
definida por el complemento de un conjunto y la intersección de dos conjuntos. En efecto,
se tiene la siguiente relación fundamental:
Observación 2-11: La diferencia de A y B es igual a la intersección de A y el complemento
de B, o sea:


                                     A–B=A⋂B



La demostración de la Observación 2-11 se sigue inmediatamente de las definiciones:


                    A – B = {x ⃒ x ∈ A, x ∉ B} = {x ⃒ x ∈ A, x ∈ B′}= A ⋂ B′

Más contenido relacionado

La actualidad más candente

Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations
Viraj Patel
 
Nomenclatura grupos funcionales quimica organica
Nomenclatura grupos funcionales quimica organicaNomenclatura grupos funcionales quimica organica
Nomenclatura grupos funcionales quimica organica
andrewlatinsup
 
Ecuaciones e inecuaciones con valor absoluto (1) copy
Ecuaciones e inecuaciones con valor absoluto (1)   copyEcuaciones e inecuaciones con valor absoluto (1)   copy
Ecuaciones e inecuaciones con valor absoluto (1) copy
williamlopezalamo315
 

La actualidad más candente (20)

Introduction to set theory
Introduction to set theoryIntroduction to set theory
Introduction to set theory
 
Cicloides-Propiedad Tautocrona
Cicloides-Propiedad Tautocrona Cicloides-Propiedad Tautocrona
Cicloides-Propiedad Tautocrona
 
Series de Potencia.pdf
Series de Potencia.pdfSeries de Potencia.pdf
Series de Potencia.pdf
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations
 
Discrete mathematic
Discrete mathematicDiscrete mathematic
Discrete mathematic
 
Ppt esteres esteres 16-09
Ppt esteres  esteres 16-09Ppt esteres  esteres 16-09
Ppt esteres esteres 16-09
 
Lagrange’s interpolation formula
Lagrange’s interpolation formulaLagrange’s interpolation formula
Lagrange’s interpolation formula
 
Nomenclatura grupos funcionales quimica organica
Nomenclatura grupos funcionales quimica organicaNomenclatura grupos funcionales quimica organica
Nomenclatura grupos funcionales quimica organica
 
Grupos y códigos
Grupos y códigosGrupos y códigos
Grupos y códigos
 
Ecuaciones e inecuaciones con valor absoluto (1) copy
Ecuaciones e inecuaciones con valor absoluto (1)   copyEcuaciones e inecuaciones con valor absoluto (1)   copy
Ecuaciones e inecuaciones con valor absoluto (1) copy
 
Ecuaciones Diferenciales 2do Orden.
Ecuaciones Diferenciales 2do Orden.Ecuaciones Diferenciales 2do Orden.
Ecuaciones Diferenciales 2do Orden.
 
Chapter 1
Chapter 1 Chapter 1
Chapter 1
 
Ring
RingRing
Ring
 
Metric space
Metric spaceMetric space
Metric space
 
Group Actions
Group ActionsGroup Actions
Group Actions
 
Química orgánica nomenclatura
Química orgánica   nomenclaturaQuímica orgánica   nomenclatura
Química orgánica nomenclatura
 
Sustitucion de una variable en una integral definida.pptx
Sustitucion de una variable en una integral definida.pptxSustitucion de una variable en una integral definida.pptx
Sustitucion de una variable en una integral definida.pptx
 
Vectors and 3 d
Vectors and 3 dVectors and 3 d
Vectors and 3 d
 
Cap
CapCap
Cap
 
Matrix
MatrixMatrix
Matrix
 

Similar a Operaciones fundamentales con conjuntos

teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...
LICETHPACHAMOROARAUJ
 
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...
LICETHPACHAMOROARAUJ
 

Similar a Operaciones fundamentales con conjuntos (20)

Diferentes operaciones que se pueden hacer entre conjuntos
Diferentes operaciones que se pueden hacer entre conjuntosDiferentes operaciones que se pueden hacer entre conjuntos
Diferentes operaciones que se pueden hacer entre conjuntos
 
Teoria de-conjuntos romeo gobbo
Teoria de-conjuntos romeo gobboTeoria de-conjuntos romeo gobbo
Teoria de-conjuntos romeo gobbo
 
Conjuntos 121015222224-phpapp02 (1)
Conjuntos 121015222224-phpapp02 (1)Conjuntos 121015222224-phpapp02 (1)
Conjuntos 121015222224-phpapp02 (1)
 
conjuntos-introducción.pptx
conjuntos-introducción.pptxconjuntos-introducción.pptx
conjuntos-introducción.pptx
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Teoria_de_conjuntos.ppt
Teoria_de_conjuntos.pptTeoria_de_conjuntos.ppt
Teoria_de_conjuntos.ppt
 
Clase 5.pdf
Clase 5.pdfClase 5.pdf
Clase 5.pdf
 
Unidad_III_conjunto
Unidad_III_conjuntoUnidad_III_conjunto
Unidad_III_conjunto
 
operacion con conjuntos
operacion con conjuntosoperacion con conjuntos
operacion con conjuntos
 
Asignación lll
Asignación lllAsignación lll
Asignación lll
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...
 
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios (1)...
 
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.ppt
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.pptteoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.ppt
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.ppt
 
Teoria basica de conjuntos.ppt
Teoria basica de conjuntos.pptTeoria basica de conjuntos.ppt
Teoria basica de conjuntos.ppt
 
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.ppt
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.pptteoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.ppt
teoria-de-conjuntos-y-subconjuntos-presentacion-inicial-con-10-ejercicios.ppt
 
CLASE OPERACIONES CON CONJUNTO
CLASE OPERACIONES CON CONJUNTOCLASE OPERACIONES CON CONJUNTO
CLASE OPERACIONES CON CONJUNTO
 
Resumen teoria de conjuntos
Resumen teoria de conjuntosResumen teoria de conjuntos
Resumen teoria de conjuntos
 
Cim tema 1 05 teoria de conjuntos
Cim tema 1 05 teoria de conjuntosCim tema 1 05 teoria de conjuntos
Cim tema 1 05 teoria de conjuntos
 
undécimo uno 2016- conjuntos
undécimo  uno 2016- conjuntos    undécimo  uno 2016- conjuntos
undécimo uno 2016- conjuntos
 

Más de Giovanni Vielma

Más de Giovanni Vielma (17)

Diseño instruccional2
Diseño instruccional2Diseño instruccional2
Diseño instruccional2
 
Diseño instruccional
Diseño instruccionalDiseño instruccional
Diseño instruccional
 
Diseño instruccional
Diseño instruccionalDiseño instruccional
Diseño instruccional
 
Diseño instruccional
Diseño instruccionalDiseño instruccional
Diseño instruccional
 
Diseño instruccional
Diseño instruccionalDiseño instruccional
Diseño instruccional
 
Diseño instruccional
Diseño instruccionalDiseño instruccional
Diseño instruccional
 
Plan de evaluación
Plan de evaluaciónPlan de evaluación
Plan de evaluación
 
Diseño instruccional
Diseño instruccionalDiseño instruccional
Diseño instruccional
 
Plan de evaluación
Plan de evaluaciónPlan de evaluación
Plan de evaluación
 
Conjuntos producto y grafos de funciones
Conjuntos producto y grafos de funcionesConjuntos producto y grafos de funciones
Conjuntos producto y grafos de funciones
 
Ecuaciones y sistemas de ecuaciones
Ecuaciones y sistemas de ecuacionesEcuaciones y sistemas de ecuaciones
Ecuaciones y sistemas de ecuaciones
 
Relaciones
RelacionesRelaciones
Relaciones
 
Funciones
FuncionesFunciones
Funciones
 
Conjuntos de números
Conjuntos de númerosConjuntos de números
Conjuntos de números
 
Conjuntos y subconjuntos
Conjuntos y subconjuntosConjuntos y subconjuntos
Conjuntos y subconjuntos
 
Operaciones fundamentales con conjuntos definitivo (2)
Operaciones fundamentales con conjuntos definitivo (2)Operaciones fundamentales con conjuntos definitivo (2)
Operaciones fundamentales con conjuntos definitivo (2)
 
Conjuntos y subconjuntos
Conjuntos y subconjuntos Conjuntos y subconjuntos
Conjuntos y subconjuntos
 

Último

Tema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptxTema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptx
Noe Castillo
 

Último (20)

ESTEREOTIPOS Y ROLES DE GÉNERO (labor de grupo)
ESTEREOTIPOS  Y ROLES DE GÉNERO (labor de grupo)ESTEREOTIPOS  Y ROLES DE GÉNERO (labor de grupo)
ESTEREOTIPOS Y ROLES DE GÉNERO (labor de grupo)
 
mapa mental sobre el sistema político...
mapa mental sobre el sistema político...mapa mental sobre el sistema político...
mapa mental sobre el sistema político...
 
Tema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptxTema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptx
 
PROPIEDADES DE LA LUZ. TIPLER. FÍSICA. PROBLEMAS
PROPIEDADES DE LA LUZ. TIPLER. FÍSICA. PROBLEMASPROPIEDADES DE LA LUZ. TIPLER. FÍSICA. PROBLEMAS
PROPIEDADES DE LA LUZ. TIPLER. FÍSICA. PROBLEMAS
 
PLAN DE GESTION DEL RIESGO 2023 - 2024.docx
PLAN DE GESTION DEL RIESGO  2023 - 2024.docxPLAN DE GESTION DEL RIESGO  2023 - 2024.docx
PLAN DE GESTION DEL RIESGO 2023 - 2024.docx
 
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
 
CONCLUSIONES DESCRIPTIVAS TIC que ayudaran a tus registrosdocx
CONCLUSIONES DESCRIPTIVAS TIC que ayudaran a tus registrosdocxCONCLUSIONES DESCRIPTIVAS TIC que ayudaran a tus registrosdocx
CONCLUSIONES DESCRIPTIVAS TIC que ayudaran a tus registrosdocx
 
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdf
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdfRESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdf
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdf
 
1 CARTILLA DE CATEQUESIS año biblico 2023-2024.pdf
1 CARTILLA DE CATEQUESIS año biblico 2023-2024.pdf1 CARTILLA DE CATEQUESIS año biblico 2023-2024.pdf
1 CARTILLA DE CATEQUESIS año biblico 2023-2024.pdf
 
Lec. 08 Esc. Sab. Luz desde el santuario
Lec. 08 Esc. Sab. Luz desde el santuarioLec. 08 Esc. Sab. Luz desde el santuario
Lec. 08 Esc. Sab. Luz desde el santuario
 
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIA
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIALA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIA
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIA
 
TERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docx
TERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docxTERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docx
TERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docx
 
Comunidades Virtuales de Aprendizaje Caracteristicas.pptx
Comunidades Virtuales de Aprendizaje Caracteristicas.pptxComunidades Virtuales de Aprendizaje Caracteristicas.pptx
Comunidades Virtuales de Aprendizaje Caracteristicas.pptx
 
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
 
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos Escolares
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos EscolaresResumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos Escolares
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos Escolares
 
Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )
 
Revista Faro Normalista 6, 18 de mayo 2024
Revista Faro Normalista 6, 18 de mayo 2024Revista Faro Normalista 6, 18 de mayo 2024
Revista Faro Normalista 6, 18 de mayo 2024
 
Gran Final Campeonato Nacional Escolar Liga Las Torres 2017.pdf
Gran Final Campeonato Nacional Escolar Liga Las Torres 2017.pdfGran Final Campeonato Nacional Escolar Liga Las Torres 2017.pdf
Gran Final Campeonato Nacional Escolar Liga Las Torres 2017.pdf
 
Diagnostico del corregimiento de Junin del municipio de Barbacoas
Diagnostico del corregimiento de Junin del municipio de BarbacoasDiagnostico del corregimiento de Junin del municipio de Barbacoas
Diagnostico del corregimiento de Junin del municipio de Barbacoas
 
Sesión de clase: Luz desde el santuario.pdf
Sesión de clase: Luz desde el santuario.pdfSesión de clase: Luz desde el santuario.pdf
Sesión de clase: Luz desde el santuario.pdf
 

Operaciones fundamentales con conjuntos

  • 1. OPERACIONES FUNDAMENTALES CON CONJUNTOS OPERACIONES CON CONJUNTOS En aritmética se suma, resta y multiplica, es decir, a cada par de números x e y se le asigna un número x + y llamado suma de x e y, un número x - y llamado diferencia de x e y y un número xy llamado producto de x e y. Estas asignaciones se llaman operaciones de adición, sustracción y multiplicación de números. En este capitulo se van a definir las operaciones de unión, intersección y diferencia de conjuntos, es decir, se van a asignar o a hacer corresponder nuevos conjuntos a pares de conjuntos A y B. UNION La unión de los conjuntos A y B es el conjunto de todos los elementos que pertenecen a A o a B o a ambos. Se denota la unión de A y B por A⋃B que se lee «A unión B». Ejemplo 1-1: En el diagrama de Venn de la Figura 2-1, A ⋃ B aparece rayado, o sea el área de A y el área de B. Ejemplo 1-2: Sean S = {a, b, c, d} y T = {f, b, d, g}. Entonces
  • 2. S ⋃ T = {a, b, c, d, f, g} Ejemplo 1-3: Sean P el conjunto de los números reales positivos y Q el conjunto de los números reales negativos. P ⋃ Q, unión de P y Q, consiste en todos los números reales exceptuado el cero. La unión A ⋃ B se puede definir también concisamente así: A ⋃ B = {x ⃒ x ∈ A o x ∈ B} Observación 2-1: Se sigue inmediatamente de la definición de la unión de dos conjuntos que A ⋃ B y B ⋃ A son el mismo conjunto, esto es: A⋃B=B⋃A Observación 2-2: A y B son ambos subconjuntos de A ⋃ B, es decir, que:
  • 3. A ⊂ (A ⋃ B) y B ⊂ (A ⋃ B) En algunos libros la unión de A y B se denota por A + B y se la llama suma conjuntista de A y B o simplemente A más B. INTERSECCION La intersección de los conjuntos A y B es el conjunto de los elementos que son comunes a A y B, esto es, de aquellos elementos que pertenecen a A y que también pertenecen a B. Se denota la intersección de A y B por A⋂B que se lee «A intersección B». Ejemplo 2-1: En el diagrama de Venn de la Figura 2-2, se ha rayado A ⋂ B, el área común a ambos conjuntos A y B. Ejemplo 2-2: Sean S = {a, b, c, d} y T = {f, b, d, g}. Entonces S ⋂ T = {b, d}
  • 4. Ejemplo 2-3: Sea V = {2, 4, 6,…}, es decir los múltiplos de 2; y Sea W = {3, 6, 9,…}, o sea los múltiplos de 3. Entonces V ⋂ W = {6, 12, 18,…} La intersección de A y B se puede definir concisamente así: A ⋂ B = {x ⃒ x ∈ A, x ∈ B} Aquí la coma tiene el significado de «y». Observación 2-3: Se sigue inmediatamente de la definición de intersección de dos conjuntos que A⋂B=B⋂A Observación 2-4: Cada uno de los conjuntos A y B contiene al A ⋂ B como subconjunto, es decir, (A ⋂ B) ⊂ A y (A ⋂ B) ⊂ B Observación 2-5: Si dos conjuntos A y B no tienen elementos comunes, es decir, si A y B son disjuntos, entonces la intersección de A y B es el conjunto vacío, o sea A ⋂ B = ∅.
  • 5. En algunos libros, sobre todo de probabilidades, la intersección de A y B se denota por AB y se llama producto conjuntista de A y B o simplemente A por B. DIFERENCIA La diferencia de los conjuntos A y B es el conjunto de elementos que pertenecen a A, pero no a B. Se denota la diferencia de A y B por A–B que se lee «A diferencia B» o simplemente «A menos B». Ejemplo 3-1: En el diagrama de Venn de la Figura 2-3, se ha rayado A – B, el área de A que no es parte de B. Ejemplo 3-2: Sean S = {a, b, c, d} y T = {f, b, d, g}. Entonces S – T = {a, c} Ejemplo 3-3: Sea R el conjunto de los números reales y Q el conjunto de los números racionales. Entonces R - Q es el conjunto de los números irracionales. La diferencia de A y B se puede también definir concisamente como: A – B = {x ⃒ x ∈ A, x ∉ B} Observación 2-6: El conjunto A contiene al A - B como subconjunto, esto es: (A – B) ⊂ A
  • 6. Observación 2-7: Los conjuntos (A – B), A ⋂ B y (B – A) son mutuamente disjuntos, es decir, la intersección de dos cualesquiera es vacía. La diferencia de A y B se denota a veces por A/B o bien por A ∼ B. COMPLEMENTO El complemento de un conjunto A es el conjunto de elementos que no pertenecen a A, es decir, la diferencia del conjunto universal U y del A. Se denota el complemento de A por A′ Ejemplo 4-1: En el diagrama de Venn de la Figura 2-3, se ha rayado el complemento de A. o sea el área exterior a A. Se supone que el conjunto universal U es el área del rectángulo. Ejemplo 4-2: Suponiendo que el conjunto universal U sea el alfabeto, dado T = {a, b, c}, entonces T′ = {d, e, f,…, y, z}
  • 7. Ejemplo 4-3: Sean E = {2, 4, 6,...}, o sea los números pares _ Entonces F = {1, 3, 5,...}, que son los impares, Aquí se supone que el conjunto universal es el de los números naturales 1, 2, 3,... También se puede definir el complemento de A concisamente así; A′ = {x ⃒ x ∈ U, x ∉ A} o simplemente: A′ = {x ⃒ x ∉ A} Lo que se establece en seguida resulta de la definición del complemento de un conjunto. Observación 2-8: La unión de cualquier conjunto A y su complemento A′ es el conjunto universal, o sea que A ⋃ A′ = U Por otra parte, el conjunto A y su complemento A′ son disjuntos, es decir, A ⋂ A′ = ∅ Observación 2-9: El complemento del conjunto universal U es el conjunto vacío ∅ y viceversa, o sea que:
  • 8. U′ = ∅ y ∅′ = U Observación 2-10: El complemento del complemento de un conjunto A es el conjunto A mismo. Más breve: (A′)′= A La siguiente observación muestra como la diferencia de dos conjuntos podría ser definida por el complemento de un conjunto y la intersección de dos conjuntos. En efecto, se tiene la siguiente relación fundamental: Observación 2-11: La diferencia de A y B es igual a la intersección de A y el complemento de B, o sea: A–B=A⋂B La demostración de la Observación 2-11 se sigue inmediatamente de las definiciones: A – B = {x ⃒ x ∈ A, x ∉ B} = {x ⃒ x ∈ A, x ∈ B′}= A ⋂ B′