SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez nos Conditions d’utilisation et notre Politique de confidentialité.
SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez notre Politique de confidentialité et nos Conditions d’utilisation pour en savoir plus.
Publié le
DataScienceLab, 13 мая 2017
Оптимизация гиперпараметров машинного обучения при помощи Байесовской оптимизации
Максим Бевза (Research Engineer at Grammarly)
Все алгоритмы машинного обучения нуждаются в настройке (тьюнинге). Часто мы используем Grid Search или Randomized Search или нашу интуицию для подбора гиперпараметров. Байесовская оптимизация поможет нам направить Randomized Search в те места, которые наиболее перспективны, так, чтобы тот же (или лучший) результат мы получили за меньшее количество итераций.
Все материалы: http://datascience.in.ua/report2017
Il semblerait que vous ayez déjà ajouté cette diapositive à .
Soyez le premier à commenter