SlideShare a Scribd company logo
1 of 45
Download to read offline
26-Apr-13
CE370 : Prof. Abdlehamid Charif 1
CE 370
REINFORCED CONCRETE-I
Prof. A. Charif
Columns
1
Columns - Combined axial force and bending
Short columns
• Columns = vertical (or near vertical) members
supporting axial compression forces, bending moments
and shear forces
• Vertical loads from various floors are cumulated and
transmitted by columns to foundations
• Columns play a major role in structural safety.
• As compression members, failure of columns is more
dangerous than in beams.
2
26-Apr-13
CE370 : Prof. Abdlehamid Charif 2
• Stability effects (buckling) must be considered for columns and
compression members especially if they are slender (long)
• For the majority of columns, referred to as “short columns”,
slenderness effects can be neglected. Slender columns are
studied in CE 470.
• A column is usually subjected to an axial compression force and
two bending moments (biaxial bending) transmitted by beams
and girders connected to it. It is also subjected to two shear
forces and a torsion moment.
• Column reinforcement is distributed along the border in both
directions in order to resist biaxial bending.
• This course deals with the combination of an axial force with
one moment only. Biaxial bending is studied in CE 470.
3
Short columns
• RC columns are either tied (more
than 90 %) or spiral (5 to 10 %).
• Special composite columns are
sometimes used.
4
Types of columns
26-Apr-13
CE370 : Prof. Abdlehamid Charif 3
Tied columns
In tied columns which may be of any shape,
independent ties are used.
All reinforcing bars must be enclosed by lateral ties
Tie spacing requirement is the smallest of
the following three values:
With: db = main bar diameter,
ds = tie (stirrup) diameter
(b, h) = section dimensions.
The role of ties is:
1. Hold and restrain main bars from buckling
2. Hold steel cage during construction
3. May confine concrete and provide ductility
4. Serve as shear reinforcement
 ),(Min,48,16Min hbddS sb
5
• Tie diameter ds should be at least 10 mm if longitudinal bars
have 32 mm diameter or smaller.
• For higher bar diameters, ds should be at least 12 mm.
• The minimum number of bars in columns and compression
members is four for rectangular or circular ties and three for
triangular ties.
• The maximum angle in a tie is 135o
• The maximum distance between an untied bar and a tied one is
150 mm
• First tie at a distance of half spacing above slab and above
footing.
• Last tie at a distance of half spacing below lowest reinforcement
bar of slab.
6
Tied columns
26-Apr-13
CE370 : Prof. Abdlehamid Charif 4
Typical tied column sections
7
Spiral columns
Spiral columns are usually circular
Continuous spiral plays same role as ties and
provides lateral confinement opposing lateral
expansion and thus improving column ductility
Spiral pitch S ranges from 40 to 85 mm
Spiral columns are used in regions with
high seismic activity. Spiral column ductility
improves the structure capacity in absorbing
seismic energy and resisting seismic forces.
Spirals may be used for any section shape but
are effective for circular shapes only.
8
26-Apr-13
CE370 : Prof. Abdlehamid Charif 5
• Figure highlights behavioral difference between tied and spiral
columns. Tied columns have brittle failures. Spiral columns
develop large deformations prior to failure
• Improved behavior of spiral columns justifies use of higher
strength reduction factor in compression (0.70) as compared to
tied columns (0.65)
9
Tied and spiral columns
Strength reduction factor for columns
• Columns are compression members but may be subjected to
axial tension resulting from lateral loading (wind, earthquake).
Column section may vary from compression-controlled case to
tension-controlled one, with linear transition zone in between
• Strength reduction factor depends on steel tension strain
10
26-Apr-13
CE370 : Prof. Abdlehamid Charif 6
Longitudinal reinforcement in columns
• The percentage of reinforcement of columns is
expressed as the ratio of the total steel area with
respect to the full concrete gross section
• The ACI / SBC limits (minimum and maximum) for
this percentage are 1% and 8%.
• In practice, because of bar splicing (usually located at
each floor slab), it is recommended not to exceed 4 %
for longitudinal reinforcement
• For spiral columns:
g
st
t
A
A

11
spiralinsidecoreofArea:
145.0
'
c
y
c
c
g
s
A
f
f
A
A







Strength of columns in axial compression
• Under pure axial compression (with no bending), the nominal
column strength is obtained from the combination of concrete
strength and steel strength as follows:
Where is the net concrete area.
• However because of possible accidental eccentricities and
resulting accidental bending, SBC and ACI codes reduce this
nominal capacity as: where r is a reduction factor.
r = 0.80 for tied columns r = 0.85 for spiral columns
• The maximum design axial compression force is therefore:
  stystgc AfAAfP  '
0 85.0
 stg AA 
0(max) rPPn 
  
  
(max)
'
00
'
00
(max)
columnSpiral:85.0595.0595.085.070.0
columnTied:85.052.052.080.065.0
nu
stystgc
stystgc
n
PP
AfAAfPP
AfAAfPP
P










12
26-Apr-13
CE370 : Prof. Abdlehamid Charif 7
Column tension strength
• Only steel resists tension. The nominal and design tension
strengths are then:
(Tension is negative)
Concrete shear strength for columns
• The concrete shear strength is increased by the axial
compression force:
• if then ties must be designed for shear.
styntstynt AfPAfP 90.0 
db
f
A
P
V w
c
g
u
c
614
1
'









uc VV 5.0
13
• Design of concrete section
• If unknown the concrete gross section may be determined
using axial force only with a reduction factor to account
for bending and by considering an initial value of steel
ratio from 1 to 2 %. The minimum gross section is:
• Tied column:
• Spiral column:
• This approximate section design must then be followed by
a check taking into account the bending moment as will be
shown later in an example.
)(40.0 ')(
tyc
u
trialg
ff
P
A


)(50.0 ')(
tyc
u
trialg
ff
P
A


14
26-Apr-13
CE370 : Prof. Abdlehamid Charif 8
Axial force - bending moment interaction curves
• Both axial force P and bending moment M cause normal stress
• Assuming compression as positive, the total stress must not
exceed the material strength:
I
My
A
P
I
My
A
P
MP   :stressTotal
1
:becomesEquation
:alonemomentBending
1
:aloneforceAxial





ultult
ultult
ult
ult
ult
ult
ult
ult
ult
ult
ult
ult
ult
ult
M
M
P
P
M
M
P
P
MI
y
I
yM
PAA
P
I
My
A
P






(a)
(a)
15
This linear inequality results in an
interaction curve relating the axial force
P to the bending moment M.
For elastic linear, symmetric materials,
(equal strength in tension and
compression), this P-M interaction
curve has the form shown.
A safe combination (M , P) must lie
inside or on the border of the
shaded area.
1
ultult M
M
P
P
16
Axial force - bending moment interaction curves
26-Apr-13
CE370 : Prof. Abdlehamid Charif 9
17
Elastic linear, symmetric
materials, (equal strength in
tension and compression)
Elastic linear materials, with
no tension strength
A combination (M , P) is safe if it lies inside or on the
border of the shaded area.
Axial force - bending moment interaction curves
• For reinforced concrete with nonlinear stress-strain curves and
where tension strength is provided by steel only, the P-M
interaction curves have the form shown in the figures.
18
P-M interaction curves for RC columns
26-Apr-13
CE370 : Prof. Abdlehamid Charif 10
• There are two curves:
• (1): Nominal curve Pn - Mn
• (2): Design curve
• A safe design is inside or on the border
of the shaded design curve.
• The distance between the two curves is
variable depending on the strength
reduction factor. The two curves are
closer in the tension-control zone
• The horizontal line limit corresponds to
the code maximum design compression
force
nn MP  
90.0
(max)nP
19
P-M interaction curves for RC columns
• P-M interaction curves are very important for
column analysis and design which is much
more complex than in beams.
• For many load combinations, beam design
requires designing for the largest moment.
• For columns, it is in general never obvious
which combination controls design.
• In the figure, point 2 is unsafe although it has
smaller values of both axial force and
bending moment as compared to point 1,
which is safe.
• Column design requires checking that all load
combination points lie inside (or on the
border) of the safe design curve.
20
Importance of P-M interaction curves
26-Apr-13
CE370 : Prof. Abdlehamid Charif 11
Importance of P-M interaction curves
• For a given constant axial
force P, critical design is
governed by the largest
value of the moment M.
Smaller moments are
always safe.
• However for a given
constant moment M, critical
design is not obvious.
Smaller or greater axial
forces may be unsafe.
21
Problem 1: Design of a tied column for given loading
• Design the section and reinforcement of a tied column to support
the loading:
• Material data is:
• a/ Select trial section and trial steel ratio:
• We select a trial steel ratio of 0.015 (1.5 %).
• For a tied column:
• This gives a 352-mm square column. We must however take a
greater dimension to allow for the bending moment. We take a
400-mm square column. b = h = 400 mm
kNVmkNMkNP uuu 60.1501550 
MPafMPaf yc 42025'

2
3
)(')( 0.123802
)015.042025(40.0
10.1550
)(40.0
mmA
ff
P
A trialg
tyc
u
trialg 





22
26-Apr-13
CE370 : Prof. Abdlehamid Charif 12
b/ Select reinforcement
• One bar area for 22 mm diameter is:
• Required number of bars is 6.3 but we must use an even
number to obtain symmetrical steel.
• Use six bars of 22 mm diameter (three bars in each layer).
• Total steel area is then:
• This represents a ratio of 1.43 %.
2
2400400400015.0 mmAA gtst  
2
2
13.380
4
22
mmAb 



2
8.2280 mmAst 
b
h
23
c/ Check maximum compression capacity
• We must have:
• For a tied column:
(max)nu PP 
   
OK0.1550
924.22402240924
85.052.052.080.065.0
(max)
(max)
'
00(max)



kNPP
kNNP
AfAAfPPP
un
n
stystgcn



24
26-Apr-13
CE370 : Prof. Abdlehamid Charif 13
d/ Design lap splices
• Depending on the axial force, splices in columns can be tension
splices or compression splices. The latter are of course shorter.
• If the axial force in the column can have positive and negative
signs, tension splice must therefore be used for the column.
• In this example the axial force is compressive.
25
mml
lmml
MPafifdf
MPafifdf
l
mmdf
f
ll
sc
dcsc
yby
yby
sc
by
c
dcsc
656
65622420071.0
420)2413.0(
420071.0
46222420043.0,
25
24.0
Max043.0,
24.0
Max
'

























SBC / ACI allow reductions of lap splice lengths in compression
members provided enough tie (spiral) area is available. Reduction
factors are 0.83 / 0.75 for tied / spiral columns. We will not perform
this reduction here. We use a splice length of 700 mm.
26
b
h
To avoid steel congestion and bar
spacing problems, splicing is
performed by putting new bars
inside the cage.
Lap splices
26-Apr-13
CE370 : Prof. Abdlehamid Charif 14
e/ Select ties and check for shear
• For 22 mm bars, we can use 10-mm ties. Spacing requirement is
the smallest of the following three values:
• Use a spacing of 350 mm (or smaller).
• Shear strength check:
• Check that
• Ties are therefore not required to play role of shear
reinforcement.
• If so, design stirrups as in beams
mmhbmmdmmd sb 040),(Min:(c)04848:(b)35216:(a) 
OK607.712.19175.05.05.0
2.191191192400
33910
2
22
40400)
2
cover(
614
1with5.0
'












kNVkNV
kNNVmmb
mmd
d
hd
db
f
A
P
VVV
uc
cw
s
b
w
c
g
u
cuc


27
f/ Check section safety with regard to combined
bending moment and axial compression
• Axial compression force and bending moment are related by
interaction diagrams. They both cause normal stresses.
• Construction of P-M interaction curves will be covered later.
• Instead of drawing the whole interaction diagram and checking
that the point (Mu , Pu) lies inside the safe zone,
i.e.
we use a different method.
• We will start from conditions such that :
and then check that the corresponding nominal moment is
such that :
un PP 
un MM 
unun PPMM   and
28
26-Apr-13
CE370 : Prof. Abdlehamid Charif 15
• Section subjected to bending moment and compressive axial
force, it is reasonable to assume strain distribution as:
• Top steel strain greater or equal to yield strain which is 0.0021,
the stress is equal to fy. Bottom bar strain less than yield strain.
• Neutral axis depth c is the problem unknown.
mmdhd
mmd
d
d
mmAA
s
b
ss
33961400
6110
2
22
40
2
Cover
4.1140:depthsandareasLayer
12
1
2
21



(2)
(1)
NffAC
ccabfC
cyss
cc
5.454734)2585.0420(4.1140)85.0(
:concretedisplacedforaccountingsteelin topforcenCompressio
722540085.02585.085.0
:forcencompressioConcrete
'
1
'


29
Section safety with regard to combined
bending moment and axial compression
0.003
c
d2
d1 ys  1
ys  2
• Strain, stress and tension force
in bottom steel layer :
(3)
c
c
c
c
fAT
c
c
c
c
Ef
c
c
c
cd
ss
sss
s












339
684240
339
6004.1140
339
600
339
003.0200000
339
003.0003.0
22
22
2
2


30
Section safety with regard to combined
bending moment and axial compression
0.003
c
d2
d1 ys  1
ys  2
26-Apr-13
CE370 : Prof. Abdlehamid Charif 16
31
(3)
(2)
(1)
c
c
c
c
fAT
NffAC
ccabfC
ss
cyss
cc






339
684240
339
6004.1140
:steelbottominforceTension
5.454734)2585.0420(4.1140)85.0(
:concretedisplacedforaccountingsteelin topforcenCompressio
722540085.02585.085.0
:forcencompressioConcrete
22
'
1
'
Section safety with regard to combined
bending moment and axial compression
Compression force (1) and tension force (3) are functions of the
unknown neutral axis depth c.
(3)(2)(1)  TCCP scn
:positive)ison(compressiforcenominalTotal
• These results seem to confirm the strain distribution assumed.
32
mmcammc
cc
cc
c
c
c
NTCC
P
P
PP
TCCP
sc
u
n
un
scn
28.242069.28585.004.285:solutionPositive
02319573609.12456407225
:ofin termsequationquadraticaobtainWebytermsallMultiply
339
0684245.45473472254.2384615
4.2384615
65.0
10.1550
control)-ncompressioincolumnTied(65.0with
:valuesforceultimateanddesignEquating
1
2
3











(4)
(3)(2)(1)
Section safety with regard to combined
bending moment and axial compression
26-Apr-13
CE370 : Prof. Abdlehamid Charif 17
(4)equationmequilibriusatisfyvaluesforceThese
53.12973.45441.2059
OK0005679.0
04.285
04.285339
003.0003.0
OK00236.0
04.285
6104.285
003.0003.0
2
2
1
1
kNTkNCkNC
c
cd
c
dc
sc
ys
ys

































2222
:check thatmustWe
centroidsectionaboutcomputedMoment
21
h
dTd
h
C
ah
CM
MM
scn
un
33
Check assumed steel strains
0.85 fc’
h/2
d2
a Cc
Cs
T
34
• Final comments: This method of checking section safety with
respect to bending moment M is long and must be repeated for
each combination (Pu , Mu).
• The use of P-M interaction diagrams is more effective.
 
 
 
OK.150.25.158
465.24365.0.465.243
2.0339.053.129
061.02.073.454
121214.02.041.2059
2222
:check thatmustWe
21

























mkNMmkNM
MmkNM
M
h
dTd
h
C
ah
CM
MM
un
nn
n
scn
un



Section safety with regard to combined
bending moment and axial compression
0.85 fc’
h/2
d2
a Cc
Cs
T
26-Apr-13
CE370 : Prof. Abdlehamid Charif 18
• The figure shows the P-M
interaction diagram for the
example and the loading
point.
Pu = 1550 kN
Mu = 150 kN.m
• The point lies inside the
safe zone meaning that the
combination is safe.
• Interaction curve
generated by RC-TOOL
software.
35
• We consider a symmetrical rectangular section. The P-M curve
may be approximately drawn from few important points.
• A ) Simple points : Pure compression and pure tension points
with no moment
 
  
  
  
  
styntstynt
stystgc
stystgc
n
stystgc
stystgc
n
stystgc
AfPAfP
AfAAfP
AfAAfP
P
AfAAfP
AfAAfP
P
AfAAfP
90.0:Design:Nominal
:)90.0(pointtensionPureA2)
Spiral:85.0595.085.070.0
Tied:85.052.080.065.0
:strengthdesignSBC/ACI
Spiral:85.085.085.0
Tied:85.080.080.0
:ty)eccentriciaccidentalforaccountto(reducedstrengthnominalSBC/ACI
85.0:strengthncompressioNominal
:pointncompressioPureA1)
'
0
'
0
(max)
'
0
'
0
(max)
'
0




















36
Drawing P-M interaction curve
26-Apr-13
CE370 : Prof. Abdlehamid Charif 19
• A point on the interaction curve is defined by its two coordinates
M (horizontal) and P (vertical).
• Moment M is expressed about gross section centroid.
• We consider a rectangular section (b , h)
subjected to moment about X-axis as shown.
• Section centroid is at a distance h/2 from the top.
• Moment is positive if causing compression in top
• Reinforcement is expressed in terms of steel layers Asi with
distances di from concrete top fiber.
• The total steel area is:
• Tension steel strain corresponds to that in the bottom layer.
• Combining bending and axial compression, failure occurs when
top fiber strain reaches concrete ultimate strain of 0.003
M
b
h
X
di
Asi

i
sist AA
37
B) General points on the interaction curve P-M
• A column is subjected to an axial force (which is
generally a compression force, but may
sometimes be a tensile force) and a bending
moment which causes (if positive) compression
in the top part and tension in the bottom.
• The sign convention is vey important and must
be respected to avoid confusion.
• We assume compression as positive as concrete
tension strength is neglected.
• The derived equations for the steel layers must be
used algebraically as these can be subjected to
either compression or tension forces.
38
Relations between steel strain and
neutral axis depth
0.003
c di
si
st
26-Apr-13
CE370 : Prof. Abdlehamid Charif 20
• Compression is positive.
• Any point on the P-M interaction curve is characterized by its
unique strain distribution across the section. This can be defined by
either steel strain in any layer, or by the neutral axis depth. If one of
these two is known, the other is deduced from similar triangles:
39
Relations between steel strain and
neutral axis depth
depthaxisneutralgiventhefromlayeranyin
strainsteelthedeterminetousedisrelationThis
003.0
003.0
layeranyinstrainsteelgivenafromdepth
axisneutralthedeterminetousedisrelationThis
003.0
003.0
003.0003.0
i
c
dc
cdc
i
dc
dc
i
si
i
si
si
i
si
i










0.003
c di
si
st
(a) Concrete contribution
bafC
MPaf
f
MPaf
cca
cc
c
c
c
'
1
1
85.0:forcencompressioconcreteNominal
30for65.0,
7
05.045.7
Max
30for85.0
known)depth(N.A.
:isblockncompressioofDepth










 





40
Steps for the general interaction point
Concrete displaced by steel layers located inside the compression
block will be considered with steel (in order to account for both
force and moment corrections).
0.003
c di
si
st
a Cc
Fsi
0.85 fc’
h/2 di
26-Apr-13
CE370 : Prof. Abdlehamid Charif 21
(b) Steel layers contribution
• Contribution of each steel layer i is computed as follows
(compression is positive) :
 








block)insidelayerbyconcrete(displacedif85.0
block)ncompressiooutsidelayer(steelif
:Force
If:withbut:Stress
003.0:Strain
'
adffA
adfA
F
fffffEf
c
dc
icsisi
isisi
si
ysiysiysiysissi
i
si


41
Concrete displaced by steel layer i located inside the compression
block (di ≤ a) is considered by subtracting from the steel force a
concrete compression force equal to 0.85 fc’Asi
Steel Young’s modulus Es is equal to 200000 MPa (200 GPa)
Reminder : Be careful with algebraic evaluation of steel
contribution (could be compression or tension)
Total forces and moments (algebraic values)
• Total forces and moments are obtained by combining concrete
and steel contributions :
















i
isicn
i
sicn
h
dF
ah
CM
FCP
222
:momentnominalTotal
:forcenominalTotal
























  i
isicn
i
sicn
h
dF
ah
CMFCP
222

42
Design values are obtained by multiplying by the strength reduction
factor. The latter depends on the known value of the tension steel
strain at the bottom steel layer.
0.003
c di
si
st
a Cc
Fsi
0.85 fc’
h/2 di
26-Apr-13
CE370 : Prof. Abdlehamid Charif 22
• Particular points on the interaction curve
These particular points are:
1. Pure compression point (M = 0 , c = infinity, )
2. Pure tension point (M = 0 , c = - infinity, )
3. Balanced point (tension steel strain = Yield strain)
4. 0.005 tension steel strain point ( )
• Last two points are the limits of the transition zone between
compression-controlled and tension-controlled sections.
• Left hand side of curve (M < 0) is generated with section
upside down.
70.0/65.0
90.0
90.0005.0  st
70.0/65.0 
s
y
yst
E
f
43
Problem 2: Interaction curve points
Tied square column 500 x 500 mm with eight 25-mm
bars in three layers (1.57 % of steel)
Tie diameter ds = 10 mm
0021.0420
85.025 1
'


yy
c
MPaf
MPaf


mmdhd
d
hd
mm
h
dmmd
d
d
s
b
s
b
5.4375.62500
2
cover
250
2
5.6210
2
25
40
2
cover
13
21




















44
Determine all particular points as well as point with c = h.
Draw interaction curve and check safety for load combinations:
(a) Pu = 2000 kN, Mu = 200 kN.m
(b) Pu = 3000 kN, Mu = 230 kN.m
Top / bottom layers with 3 bars each, middle layer with 2 bars
Steel areas: As1 = As3 = 1472.62 mm2 As2 = 981.75 mm2
Total steel area Ast = 3926.99 mm2
Steel depths:
26-Apr-13
CE370 : Prof. Abdlehamid Charif 23
• 1/ Pure compression point ( = 0.65):
• Nominal axial compression force:
• SBC/ACI Maximum nominal force:
• Design force:
• 2/ Pure tension point ( = 0.90):
• Nominal tension strength:
• Design tension strength:

  stystgc AfAAfP  '
0 85.0
  kNNP 387.6878687838799.392642099.39265005002585.00 
kNPPn 710.550280.0 0(max) 
kNPn 761.35767096.550265.0(max) 

kNNAfP stynt 3358.16498.164933599.3926420 
kNAfP stynt 402.148490.0 
45
• 3/ Balanced point B ( = 0.65):
• This point is defined by
• Neutral axis depth:
• Neutral axis depth c = 257.3529 mm
• Depth of compression block:
• Concrete compression force:
• Steel layer 1: Strain (comp.)
• Stress:
• Force: With displaced concrete
0021.03  yst 
0.003
0.0021
0021.0003.0
003.0
5.437
003.0
003.0
3
3




s
dc

mmca 750.2183529.25785.01  
kNNbafC cc 21875.232475.232421850075.2182585.085.0 '

MPaff ysys 42011  
mmad 75.2185.621 
    kNNffAF csss 2072.587225.5872072585.042062.147285.0 '
111 
00227.03
353.257
5.623529.257
003.0003.0 1
1 




c
dc
s
46
26-Apr-13
CE370 : Prof. Abdlehamid Charif 24
• Steel layer 2: Strain: (comp.)
• Stress:
• Force: No displaced concrete
• Steel layer 3: Strain: (tension)
• Stress: fs3 = - fy = - 420 MPa
• Force: No displaced concrete
MPaEf sss 14.170000857.020000022  
mmad 75.2182502 
kNNfAF sss 8272.16195.1682714.1775.981222 
0021.03  ys 
kNNfAF sss 5004.6184.61850042062.1472333 
mmad 75.2185.4373 
0000857.0
353.257
250353.257
003.0003.0 2
2 




c
dc
s
47
• Total forces and moments:
• Total nominal force:
• Using (kN) for force and (m) for distance, total nominal moment:
 
i
sicn kNFCP 75275.23095004.6188272.162072.58721875.2324
 












i
isicn
h
dF
ah
CM
222
mkNMkNP nn .39.35934.150165.0  
mkN
Mn
.9134.552
2
5.0
4375.05004.618
2
5.0
25.08272.16
2
5.0
0625.02072.587
2
21875.0
2
5.0
21875.2324


























48
26-Apr-13
CE370 : Prof. Abdlehamid Charif 25
• 4/ Point D with 0.005 tensile steel strain ( = 0.90):
• This point is defined by :
• Following the same steps, we find:
• Neutral axis depth c = 164.0625 mm
• Depth of compression block: a = 139.4531 mm
• Concrete compression force: Cc = 1481.6895 kN
• Steel layer 1: Strain (compression)
• Stress fs1 = 371.4286 MPa
• Force with displaced concrete (since d1 < a):
Fs1 = As1( fs1 - 0.85 x f’
c) = 515.6799 kN
• Steel layer 2: Strain (tension)
• Stress fs2 = - 314.2857 MPa
• Force Fs2 = As2 x fs2 No displaced concrete (since d2 > a):
Fs2 = - 308.550 kN
005.03  sst  0.003
0.005
00186.01 s
00157.02 s
49
• Steel layer 3: Strain (tension)
• Stress fs3 = - 420.0 MPa
• Force Fs3 = As3 x fs3 No displaced concrete (since d3 > a):
Fs3 = - 618.5004 kN
• Total nominal and design forces and moments:
• Pn = 1070.3190 kN Mn = 479.7681 kN.m
•  Pn = 963.2871 kN  Mn = 431.7913 kN.m
005.03 s
50
26-Apr-13
CE370 : Prof. Abdlehamid Charif 26
• 5/ Full compression Point C with c = h ( = 0.65) :
• This point is defined by the neutral axis depth c = h = 500 mm
It corresponds to the onset of tension in the
section, that is the smallest neutral axis depth
with no tension in the section.
• Depth of compression block: a = 425.0 mm
• Concrete compression force: Cc = 4515.625 kN
• Steel layer 1: Strain (compression)
• Stress fs1 = fy = 420.0 MPa
• Force with displaced concrete (since d1 < a):
• Fs1 = As1(fs1 - 0.85 x f’
c) = 587.2072 kN
0.003
c = h
00263.01 s
51
• Steel layer 2: Strain = 0.00150 (compression)
• Stress fs2 = 300.0 MPa
• Force with displaced concrete (since d2 < a):
• Fs2 = As2( fs2 - 0.85 x f’
c) = 273.6628 kN
• Steel layer 3: Strain = 0.00038 compression)
• Stress fs3 = 75.0 MPa
• Force Fs3 = As3 x fs3 No displaced concrete (since d3 > a):
• Fs3 = 110.4465 kN
• Total nominal and design forces and moments:
• Pn = 5486.9415 kN Mn = 258.7286 kN.m
•  Pn = 3566.5120 kN  Mn = 168.1736 kN.m
52
26-Apr-13
CE370 : Prof. Abdlehamid Charif 27
• All these points match the curve delivered by RC-TOOL software
• The next figure represents an approximate drawing from the few
particular points.
• RC-TOOL curve is generated with hundreds of points and gives
details for any desired point.
Point Pn (kN) Mn (kN.m) Pn (kN) Mn (kN.m)
Pure compression
 = 0.65 6878.387 0 3576.761 0
Point C (c = h)
 = 0.65 5486.9415 258.7286 3566.5120 168.1736
Point B (balanced)
 = 0.65 2309.75275 552.9134 1501.340 359.394
Point D (0.005 strain)
 = 0.90 1070.3190 479.7681 963.2871 431.7913
Beam bending
 = 0.90 0 329.1185 0 296.2067
Pure tension
 = 0.90 -1649.336 0 -1484.402 0
53
Table shows all results including beam bending point (P = 0)
Approximate drawing of interaction curve
54
• The load combination point
(Pu = 2000 kN, Mu = 200 kN.m)
is inside the safe zone. This
combination is safe.
• The second combination
(Pu = 3000 kN, Mu = 230 kN.m)
is unsafe as the corresponding
point is outside the safe zone,
but close to the border.
• It is desirable for this
combination to use a more
accurate interaction curve.
26-Apr-13
CE370 : Prof. Abdlehamid Charif 28
P-M interaction curve generated by RC-TOOL software
55
• Both previous load
combinations are safe
• RC-TOOL software
performs safety check
for any combination.
• Beam bending point
• Beam bending point is located on the horizontal axis (P = 0).
Both the neutral axis depth and steel strain are unknown. They
must be determined using equilibrium equations. For sections
with more than two layers, this may require several iterations.
RC-TOOL performs all these iterations.
• Beam analysis and design is therefore only a particular case
with P = 0.
56
26-Apr-13
CE370 : Prof. Abdlehamid Charif 29
Comparing balanced point B and 0.005 steel strain point D
• Balanced point B and 0.005 strain point D are limits of
transition zone with variable strength reduction factor. Above
point B is the compression-control zone and below point D is
the tension-control zone. The axial force (nominal and design)
in point B is greater than that of point D.
• However for moments, we have:
• For nominal moments MnB > MnD
• For design moments MnB < MnD
• Transition zone generates in some cases design curves with
non-convex parts. The strain compatibility technique used in
RC-TOOL software tracks all the points whatever the non-
convexity. Some other programs determine interaction curve
using axial force looping and may not track correctly the
transition zone (between points B and D).
57
Problem 3
Tied column of section (300 x 500 mm)
with six 20-mm bars in two layers
Determine, for the P-Mx interaction curve,
the following nominal and design points:
a) Point with tension steel strain = 0.006
b) Point with neutral axis depth c = 300 mm
c) Point with neutral axis depth c = 200 mm
Clear cover = 40 mm Tie diameter = 10 mm
For Mx : Two steel layers with three bars each.
Note: For moment My , there are three layers.
As1 = As2 = 942. 48 mm2 Ast = 1884.96 mm2
d1 = Cover +db/2 + ds = 60 mm
d2 = h - d1 = 440 mm
0021.0
420
85.0
25
1
'




y
y
c
MPaf
MPaf


58
300 mm
500mm
Mx
26-Apr-13
CE370 : Prof. Abdlehamid Charif 30
59
a) Point with tension steel strain = 0.006 (at bottom layer 2)
mmca
mmdc
s
st
667.124667.14685.0
667.146
006.0003.0
003.0
440
003.0
003.0
:depthblockncompressioanddepthaxisNeutral
006.0
1
2
2
2










kNNbafC cc 75.794794750300667.1242585.085.0
:forcencompressioConcrete
'

    kNNffAF
mmad
MPaEf
c
dc
csss
sssys
s
124.3143141242585.055.35448.94285.0
blockncompressioinsideLayer667.12460:Force
55.354:Stress
on)(Compressi0017727.0
667.146
60667.146
003.0003.0:Strain
:1layerSteel
'
111
1
111
1
1










0.003
0.006
60
kNNfAF
mmad
MPaff
c
dc
sss
ysys
s
s
842.39539584242048.942
blockncompressiooutsideLayer667.124440:Force
0.420:Stress
(Tension)006.0
667.146
440667.146
003.0003.0:Strain
90.0006.0:2layerSteel
222
2
22
2
2
2












mkNMkNP
mkNM
M
h
dF
ah
CM
kNP
FCP
nn
n
n
i
isicn
n
i
sicn
.637.255and730.64190.0
.042.284
2
5.0
44.0842.395
2
5.0
06.0124.314
2
124667.0
2
5.0
75.794
222
:momentnominalTotal
032.713842.395124.31475.794
:forcenominalTotal







































26-Apr-13
CE370 : Prof. Abdlehamid Charif 31
61
b) Point with neutral axis depth c = 300 mm
0.003
2s
1s300 mm
kNNC
bafC
mmca
c
cc
625.16251625625
3002552585.085.0
:forcencompressioConcrete
0.2550.30085.0
:depthblocknCompressio
'
1


 
    kNNffAF
mmad
MPaff
c
dc
csss
ysys
s
814.3753758142585.00.42048.94285.0
blockncompressioinsideLayer0.25560:Force
0.420:Stress
on)(Compressi0024.0
0.300
600.300
003.0003.0:Strain
:1layerSteel
'
111
1
11
1
1










62
kNNfAF
mmad
MPaEf
c
dc
sss
sssys
s
894.26326389428048.942
blockncompressiooutsideLayer0.255440:Force
0.2800014.0200000:Stress
(Tension)0014.0
0.300
4400.300
003.0003.0:Strain
:2layerSteel
222
2
222
2
2










mkNMkNP
mkNM
M
h
dF
ah
CM
kNP
FCP
nn
yst
n
n
i
isicn
n
i
sicn
.444.208and404.1129
65.0:controlnCompressio
0014.0:2layerbottominstrainTensile
.684.320
2
5.0
44.0894.263
2
5.0
06.0814.375
2
255.0
2
5.0
625.1625
222
:momentnominalTotal
545.1737894.263814.375625.1625
:forcenominalTotal
2











































26-Apr-13
CE370 : Prof. Abdlehamid Charif 32
63
c) Point with neutral axis depth c = 200 mm
0.003
2s
1s200 mm
kNNC
bafC
mmca
c
cc
750.10831083750
3001702585.085.0
:forcencompressioConcrete
0.1700.20085.0
:depthblocknCompressio
'
1


 
    kNNffAF
mmad
MPaff
c
dc
csss
ysys
s
814.3753758142585.00.42048.94285.0
blockncompressioinsideLayer0.25560:Force
0.420:Stress
on)(Compressi0021.0
0.200
600.200
003.0003.0:Strain
:1layerSteel
'
111
1
11
1
1










64
kNNfAF
mmad
MPaff
c
dc
sss
ysys
s
842.39539584242048.942
blockncompressiooutsideLayer0.255440:Force
0.420:Stress
(Tension)0036.0
0.200
4400.200
003.0003.0:Strain
:2layerSteel
222
2
22
2
2










mkNMkNP
mkNM
M
h
dF
ah
CM
kNP
FCP
nn
y
yt
tyst
n
n
i
isicn
n
i
sicn
.610.253and959.828
7793.0
0021.0005.0
0021.00036.0
25.065.0
005.0
25.065.0:zoneTransition
005.00036.0:2layerbottominstrainTensile
.433.325
2
5.0
44.0842.395
2
5.0
06.0814.375
2
170.0
2
5.0
750.1083
222
:momentnominalTotal
722.1063842.395814.375750.1083
:forcenominalTotal
2



















































26-Apr-13
CE370 : Prof. Abdlehamid Charif 33
65
P-M interaction curve
generated by
RC-TOOL software
66
• Circular columns are frequent in
buildings and structures, for
architectural or safety (spiral) reasons.
• They can be tied or spiral.
• For uniaxial bending (section with
vertical symmetry), steel bars must be
arranged as shown.
• With an even bar number, arrangement
(b) gives a smaller bending capacity
and must be used for safety reasons.
• An odd bar number causes bending
unsymmetry. Positive and negative
moments are slightly different in both
bar arrangements.
Circular columns
26-Apr-13
CE370 : Prof. Abdlehamid Charif 34
67
b
s
b
N
drr
d
d
d


2
:angleIncrement
:radiusringSteel
2
CoverdepthRadial
0



Circular columns
• Nb steel bars are arranged in a ring with a regular increment angle.
• Depending on the arrangement, bars in the same level are lumped in
a single layer and the corresponding depth, computed from the top
concrete fiber, is determined using geometric and trigonometric
relations. In general a layer contains one or two bars.
68
   
  






 


 
i
isicn rdFMM
ryArA
r
ar
r
ar
:center)circle(aboutmomentnominalTotal
unitsradianUsesin
3
2
cossin
coscos
:angleusingdeterminedaremomentandforceConcrete
32
1



Circular columns
The main difficulty
with circular
columns is the shape
of the concrete
compression block.
26-Apr-13
CE370 : Prof. Abdlehamid Charif 35
69
Problem 4
• Spiral circular column with 600 mm
diameter and six 28-mm bars (1.3 %).
• Spiral diameter = 10 mm, cover = 40 mm.
• Determine P-M interaction points :
 Pure compression / tension points
 Balanced point
 0.005 tension steel strain point
 Point with c = 200 mm
0021.0420
85.025 1
'


yy
c
MPaf
MPaf


22
2
321 5.36945.1231
4
28
2 mmAmmAAA stsss  
• Using bar arrangement (b), there are three steel layers with two
bars each.
70
mmdrd
mmrd
mmrrd
N
mmdrr
mmd
d
d
b
s
b
382.504618.956002:layerBottom
300:layerMiddle
618.95
6
cos236300
2
cos:layerTop
60
36
22
:angleIncrement
23664300:radiusringSteel
64101440
2
CoverdepthRadial
13
2
01
0
0





















solution 4
26-Apr-13
CE370 : Prof. Abdlehamid Charif 36
71
a) Pure compression point
 
 
kNP
PPrPP
kNPP
r
rPP
kNNP
P
AfAAfP
n
n
n
n
stystgc
479.4451
595.085.070.0:strengthncompressioDesign
256.635985.0
85.0:factorReductioncolumnSpiral
:forcencompressionominalmaximumSBC/ACI
478.74817481478
5.36944205.36943002585.0
85.0:forcencompressioNominal
0.70:control-ncompressioIncolumnSpiral
(max)
000(max)
0(max)
0(max)
0
2
0
'
0













b) Pure tension point
kNP
kNNAfP
nt
stynt
521.1396690.155190.0:Designl
690.155115516905.3694420:Nominal



72
0.003
0.0021
c) Balanced point (yield strain at bottom steel layer)
mmca
mmdc
s
yst
191.252695.29685.0
695.296
0021.0003.0
003.0
382.504
003.0
003.0
:depthsblockncompressioandN.A.0021.0
1
3
3
3










 
 
 
  mkNmmNM
rfyAfM
kNNC
AfC
mmA
rA
rad
r
ar
c
ccc
c
cc
.02.368.1002.368sin300
3
2
2585.0
sin
3
2
85.085.0:momentConcrete
170.23972397170
1128082585.085.0:forcencompressioConcrete
112808cossin41075.1300
cossin:areablocknCompressio
41075.183.80
300
191.252300
coscos
:angleusingdeterminedmomentandforceConcrete
63
3''
'
22
2
011











 





 
 






26-Apr-13
CE370 : Prof. Abdlehamid Charif 37
73
    kNNffAF
mmad
MPaEf
c
dc
csss
sssys
s
601.4744746012585.0634.4065.123185.0
blockncompressioinsideLayer695.296618.95:Force
634.406:Stress
on)(Compressi00203317.0
695.296
618.95695.296
003.0003.0:Strain
:1layerSteel
'
111
1
111
1
1










kNNfAF
mmad
MPaEf
c
dc
sss
sssys
s
231.88231684.65.1231
blockncompressiooutsideLayer695.2960.300:Force
684.6:Stress
(Tension)00003342.0
695.296
0.300695.296
003.0003.0:Strain
:2layerSteel
222
2
222
2
2










74
kNNfAF
mmad
MPaff
sss
ysys
ys
230.5175172304205.1231
blockncompressiooutsideLayer695.296:Force
0.420:Stress
column)(spiral70.00021.0:3layerSteel
333
3
22
3






 
     
mkNMkNP
mkNM
M
rdFMM
kNP
FCP
nn
n
n
i
isicn
n
i
sicn
.51.399and42.164270.0
.73.570
3.0504382.0230.5173.03.0231.83.0095618.0601.47402.368
:momentnominalTotal
31.2346230.517231.8601.474170.2397
:forcenominalTotal









26-Apr-13
CE370 : Prof. Abdlehamid Charif 38
75
0.003
0.005
d) Point with 0.005 tensile steel strain
mmca
mmdc
s
st
772.160143.18985.0
143.189
005.0003.0
003.0
382.504
003.0
003.0
:depthsblockncompressioandN.A.005.0
1
3
3
3










 
 
 
  mkNmmNM
rfyAfM
kNNC
AfC
mmA
rA
rad
r
ar
c
ccc
c
cc
.84.265.1084.265sin300
3
2
2585.0
sin
3
2
85.085.0:momentConcrete
95.12941294953
609392585.085.0:forcencompressioConcrete
60939cossin0882.1300
cossin:areablocknCompressio
0882.1348.62
300
772.160300
coscos
:angleusingdeterminedmomentandforceConcrete
63
3''
'
22
2
011











 





 
 






76
    kNNffAF
mmad
MPaEf
c
dc
csss
sssys
s
19.3393391922585.068.2965.123185.0
blockncompressioinsideLayer143.189618.95:Force
68.296:Stress
on)(Compressi0014834.0
143.189
618.95143.189
003.0003.0:Strain
:1layerSteel
'
111
1
111
1
1










kNNfAF
mmad
MPaEf
c
dc
sss
sssys
s
07.43343306966.3515.1231
blockncompressiooutsideLayer143.1890.300:Force
66.351:Stress
(Tension)0017583.0
143.189
0.300143.189
003.0003.0:Strain
:2layerSteel
222
2
222
2
2










26-Apr-13
CE370 : Prof. Abdlehamid Charif 39
77
kNNfAF
mmad
MPaff
sss
ysys
ys
23.5175172304205.1231
blockncompressiooutsideLayer695.296:Force
0.420:Stress
90.0005.0:3layerSteel
333
3
22
3






 
     
mkNMkNP
mkNM
M
rdFMM
kNP
FCP
nn
n
n
i
isicn
n
i
sicn
.79.396and46.61590.0
.88.440
3.0504382.023.5173.03.007.4333.0095618.019.33984.265
:momentnominalTotal
84.68323.51707.43319.33995.1294
:forcenominalTotal









78
e) Point with neutral axis depth c = 200 mm
mmca 0.1700.20085.0
:depthblocknCompressio
1  
0.003
2s
1s200 mm
3s
 
 
 
  mkNmmNM
rfyAfM
kNNC
AfC
mmA
rA
rad
r
ar
c
ccc
c
cc
.99.279.1099.279sin300
3
2
2585.0
sin
3
2
85.085.0:momentConcrete
09.14001400088
658862585.085.0:forcencompressioConcrete
65886cossin1226.1300
cossin:areablocknCompressio
1226.1321.64
300
0.170300
coscos
:angleusingdeterminedmomentandforceConcrete
63
3''
'
22
2
011











 





 
 






26-Apr-13
CE370 : Prof. Abdlehamid Charif 40
79
    kNNffAF
mmad
MPaEf
c
dc
csss
sssys
s
46.3593594632585.014.3135.123185.0
blockncompressioinsideLayer0.200618.95:Force
14.313:Stress
on)(Compressi0015657.0
0.200
618.950.200
003.0003.0:Strain
:1layerSteel
'
111
1
111
1
1










kNNfAF
mmad
MPaEf
c
dc
sss
sssys
s
45.3693694500.3005.1231
blockncompressiooutsideLayer0.2000.300:Force
0.300:Stress
(Tension)00150.0
0.200
0.3000.200
003.0003.0:Strain
:2layerSteel
222
2
222
2
2










80
kNNfAF
mmad
MPaff
c
dc
sss
ysys
s
23.5175172304205.1231
blockncompressiooutsideLayer0.170:Force
0.420:Stress
(Tension)0045725.0
0.200
832.5040.200
003.0003.0:3layerSteel
333
3
33
3
3










 
     
mkNMkNP
mkNM
M
rdFMM
kNP
FCP
nn
y
yt
st
n
n
i
isicn
n
i
sicn
.48.399and40.759
870.0
0021.0005.0
0021.00045725.0
20.070.0
005.0
20.070.0
zoneTransition005.00045725.00021.0
:factorreductionStrength
.17.459
3.0504382.023.5173.03.045.3693.0095618.046.35999.279
:momentnominalTotal
87.87223.51745.36946.35909.1400
:forcenominalTotal
3y





















26-Apr-13
CE370 : Prof. Abdlehamid Charif 41
81
These results match those produced by RC-TOOL software
Flowchart for P-M interaction curve
• Loop for neutral axis values from maximum compression to
maximum tension
 For each value of c :
Compute concrete contribution
Compute all steel layers contribution
Compute and save nominal force and moment
Compute and save corresponding strength reduction factor
• Repeat all the previous steps for negative moments (section turned
upside down)
• Draw nominal interaction curve and design curve by joining the
saved points
• Add the horizontal line limit corresponding to ACI / SBC design
compression strength Pn(max) 82
26-Apr-13
CE370 : Prof. Abdlehamid Charif 42
83
P-M interaction curve for a rectangular section
Two equal steel layers One bottom steel layer
Typical P-M interaction curves
Design of RC columns
• Design of columns is more complex than that of
beams as the required steel reinforcement cannot be
directly derived from closed form equations.
• Trial and error strategy is required for column design.
• An initial reinforcement must be assumed and then
checked using the interaction diagrams.
• If unsafe, the steel reinforcement must be increased.
• If safe but with a point very far from the border, then
the design is not economical and may be revised.
• Use of software is recommended for column design.
84
26-Apr-13
CE370 : Prof. Abdlehamid Charif 43
• Design of columns using P-M interaction diagrams
• Safe design requires that all load combination points
(Pu , Mu) lie inside or on border of the design curve.
• This requires many cycles of trial and error with
successive updating of reinforcement.
• Only appropriate software such as RC-TOOL can
perform these complex operations.
• An optimal design will correspond to a loading point
lying on the border of the design curve.
• RC-TOOL offers many design options including
standard design with one or two layers, two equal
layers or many layers.
• Stress and strain distributions are also delivered
85
86
Design of a square column with three steel layers
26-Apr-13
CE370 : Prof. Abdlehamid Charif 44
87
Design of a square column subjected to a
negative moment and a tensile axial force
RC-TOOL design
• The next two figures show design results for a
column with 500 x 500 mm section subjected to an
ultimate compression force of 2000 kN and an
ultimate moment of 350 kN.m, using two steel layers
at 60 and 440 mm depths.
• The first design is performed with symmetrical
reinforcement and delivers a steel ratio of 1.356 %.
The second design is standard (no symmetry
imposed) and gives a smaller steel ratio of 0.774 %.
In both cases, the loading point lies on the border of
the design curve.
88
26-Apr-13
CE370 : Prof. Abdlehamid Charif 45
RC design with two equal steel
layers.
Symmetric interaction curve.
Because of the compression
force, the top steel layer is more
stressed than the bottom one.
A standard design (no steel
symmetry imposed) should
deliver more top reinforcement.
89
Standard RC design with one
or two steel layers
Un-symmetric interaction curve.
Bottom steel is hardly required.
Optimal design delivers a very
small amount of bottom tension
steel just in order to obtain a
tension controlled section.
90

More Related Content

What's hot

CE 72.52 - Lecture 7 - Strut and Tie Models
CE 72.52 - Lecture 7 - Strut and Tie ModelsCE 72.52 - Lecture 7 - Strut and Tie Models
CE 72.52 - Lecture 7 - Strut and Tie ModelsFawad Najam
 
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)Hossam Shafiq II
 
CE 72.52 - Lecture 5 - Column Design
CE 72.52 - Lecture 5 - Column DesignCE 72.52 - Lecture 5 - Column Design
CE 72.52 - Lecture 5 - Column DesignFawad Najam
 
Progression of Structural Design Approaches by Dr. Naveed Anwar
Progression of Structural Design Approaches by Dr. Naveed AnwarProgression of Structural Design Approaches by Dr. Naveed Anwar
Progression of Structural Design Approaches by Dr. Naveed AnwarAIT Solutions
 
SAP2000 Piperack Tutorial 2010.pdf
SAP2000 Piperack Tutorial 2010.pdfSAP2000 Piperack Tutorial 2010.pdf
SAP2000 Piperack Tutorial 2010.pdfsdads1
 
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...Hossam Shafiq II
 
Performance Based Design, Value Engineering and Peer Review by Dr. Naveed Anwar
Performance Based Design, Value Engineering  and Peer Review by Dr. Naveed AnwarPerformance Based Design, Value Engineering  and Peer Review by Dr. Naveed Anwar
Performance Based Design, Value Engineering and Peer Review by Dr. Naveed AnwarAIT Solutions
 
Designing a Concrete Beam Using the New AS3600:2018 - Webinar Slides - ClearC...
Designing a Concrete Beam Using the New AS3600:2018 - Webinar Slides - ClearC...Designing a Concrete Beam Using the New AS3600:2018 - Webinar Slides - ClearC...
Designing a Concrete Beam Using the New AS3600:2018 - Webinar Slides - ClearC...ClearCalcs
 
CE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
CE72.52 - Lecture 3b - Section Behavior - Shear and TorsionCE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
CE72.52 - Lecture 3b - Section Behavior - Shear and TorsionFawad Najam
 
Mini project For M.tech Structural Engineering Deflection of Simply supported...
Mini project For M.tech Structural Engineering Deflection of Simply supported...Mini project For M.tech Structural Engineering Deflection of Simply supported...
Mini project For M.tech Structural Engineering Deflection of Simply supported...vaignan
 
Column base plates_prof_thomas_murray
Column base plates_prof_thomas_murrayColumn base plates_prof_thomas_murray
Column base plates_prof_thomas_murrayAlberto Rosado
 
CE 72.32 (January 2016 Semester) Lecture 7 - Structural Analysis for Gravity ...
CE 72.32 (January 2016 Semester) Lecture 7 - Structural Analysis for Gravity ...CE 72.32 (January 2016 Semester) Lecture 7 - Structural Analysis for Gravity ...
CE 72.32 (January 2016 Semester) Lecture 7 - Structural Analysis for Gravity ...Fawad Najam
 
Lateral load resisting systems
Lateral load resisting systemsLateral load resisting systems
Lateral load resisting systemsAhmad T.
 
AITC Coupling Beam Design Procedure (20151106)
AITC Coupling Beam Design Procedure (20151106)AITC Coupling Beam Design Procedure (20151106)
AITC Coupling Beam Design Procedure (20151106)Fawad Najam
 
Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)Alessandro Palmeri
 
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...Hossam Shafiq II
 

What's hot (20)

CE 72.52 - Lecture 7 - Strut and Tie Models
CE 72.52 - Lecture 7 - Strut and Tie ModelsCE 72.52 - Lecture 7 - Strut and Tie Models
CE 72.52 - Lecture 7 - Strut and Tie Models
 
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
 
CE 72.52 - Lecture 5 - Column Design
CE 72.52 - Lecture 5 - Column DesignCE 72.52 - Lecture 5 - Column Design
CE 72.52 - Lecture 5 - Column Design
 
Progression of Structural Design Approaches by Dr. Naveed Anwar
Progression of Structural Design Approaches by Dr. Naveed AnwarProgression of Structural Design Approaches by Dr. Naveed Anwar
Progression of Structural Design Approaches by Dr. Naveed Anwar
 
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
 
SAP2000 Piperack Tutorial 2010.pdf
SAP2000 Piperack Tutorial 2010.pdfSAP2000 Piperack Tutorial 2010.pdf
SAP2000 Piperack Tutorial 2010.pdf
 
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
 
How To Design Concrete Structures Using Eurocode 2
How To Design Concrete Structures Using Eurocode 2How To Design Concrete Structures Using Eurocode 2
How To Design Concrete Structures Using Eurocode 2
 
Performance Based Design, Value Engineering and Peer Review by Dr. Naveed Anwar
Performance Based Design, Value Engineering  and Peer Review by Dr. Naveed AnwarPerformance Based Design, Value Engineering  and Peer Review by Dr. Naveed Anwar
Performance Based Design, Value Engineering and Peer Review by Dr. Naveed Anwar
 
Designing a Concrete Beam Using the New AS3600:2018 - Webinar Slides - ClearC...
Designing a Concrete Beam Using the New AS3600:2018 - Webinar Slides - ClearC...Designing a Concrete Beam Using the New AS3600:2018 - Webinar Slides - ClearC...
Designing a Concrete Beam Using the New AS3600:2018 - Webinar Slides - ClearC...
 
CE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
CE72.52 - Lecture 3b - Section Behavior - Shear and TorsionCE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
CE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
 
Mini project For M.tech Structural Engineering Deflection of Simply supported...
Mini project For M.tech Structural Engineering Deflection of Simply supported...Mini project For M.tech Structural Engineering Deflection of Simply supported...
Mini project For M.tech Structural Engineering Deflection of Simply supported...
 
Column base plates_prof_thomas_murray
Column base plates_prof_thomas_murrayColumn base plates_prof_thomas_murray
Column base plates_prof_thomas_murray
 
CE 72.32 (January 2016 Semester) Lecture 7 - Structural Analysis for Gravity ...
CE 72.32 (January 2016 Semester) Lecture 7 - Structural Analysis for Gravity ...CE 72.32 (January 2016 Semester) Lecture 7 - Structural Analysis for Gravity ...
CE 72.32 (January 2016 Semester) Lecture 7 - Structural Analysis for Gravity ...
 
Etabs modeling - Design of slab according to EC2
Etabs modeling  - Design of slab according to EC2Etabs modeling  - Design of slab according to EC2
Etabs modeling - Design of slab according to EC2
 
Lateral load resisting systems
Lateral load resisting systemsLateral load resisting systems
Lateral load resisting systems
 
AITC Coupling Beam Design Procedure (20151106)
AITC Coupling Beam Design Procedure (20151106)AITC Coupling Beam Design Procedure (20151106)
AITC Coupling Beam Design Procedure (20151106)
 
Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)
 
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...
 
Shell theory
Shell theoryShell theory
Shell theory
 

Similar to Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Design I & Prof. Abdelhamid Charif)

Design of Beam- RCC Singly Reinforced Beam
Design of Beam- RCC Singly Reinforced BeamDesign of Beam- RCC Singly Reinforced Beam
Design of Beam- RCC Singly Reinforced BeamSHAZEBALIKHAN1
 
RCC column_Shortly Axially Loaded column.pptx
RCC column_Shortly Axially Loaded column.pptxRCC column_Shortly Axially Loaded column.pptx
RCC column_Shortly Axially Loaded column.pptxHaswanthKollu
 
Compression member
Compression memberCompression member
Compression memberVikas Mehta
 
Axially loaded columns
Axially loaded columnsAxially loaded columns
Axially loaded columnsYash Patel
 
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...Hossam Shafiq II
 
chapter 4 flexural design of beam 2021.pdf
chapter 4 flexural design of beam 2021.pdfchapter 4 flexural design of beam 2021.pdf
chapter 4 flexural design of beam 2021.pdfAshrafZaman33
 
Design of short columns using helical reinforcement
Design of short columns using helical reinforcementDesign of short columns using helical reinforcement
Design of short columns using helical reinforcementshivam gautam
 
COMPOSITE BEAMS.pdf
COMPOSITE BEAMS.pdfCOMPOSITE BEAMS.pdf
COMPOSITE BEAMS.pdfZeinab Awada
 
Compression_members1.ppt
Compression_members1.pptCompression_members1.ppt
Compression_members1.pptRijuDasgupta
 
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...Hossam Shafiq II
 
Conceps of RCC-PCC.pptx
Conceps of RCC-PCC.pptxConceps of RCC-PCC.pptx
Conceps of RCC-PCC.pptxastor11
 
Introduction to design of rcc column
Introduction to design of rcc columnIntroduction to design of rcc column
Introduction to design of rcc columnPHURTSHERINGSHERPA
 

Similar to Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Design I & Prof. Abdelhamid Charif) (20)

Building project rc column
Building project rc columnBuilding project rc column
Building project rc column
 
Design of Beam- RCC Singly Reinforced Beam
Design of Beam- RCC Singly Reinforced BeamDesign of Beam- RCC Singly Reinforced Beam
Design of Beam- RCC Singly Reinforced Beam
 
RCC column_Shortly Axially Loaded column.pptx
RCC column_Shortly Axially Loaded column.pptxRCC column_Shortly Axially Loaded column.pptx
RCC column_Shortly Axially Loaded column.pptx
 
Lecture note on column design
Lecture note on column designLecture note on column design
Lecture note on column design
 
Reinforced column design
Reinforced column design Reinforced column design
Reinforced column design
 
Reinforced concrete column
Reinforced concrete columnReinforced concrete column
Reinforced concrete column
 
Compression member
Compression memberCompression member
Compression member
 
Axially loaded columns
Axially loaded columnsAxially loaded columns
Axially loaded columns
 
Deep beam
Deep beamDeep beam
Deep beam
 
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
 
chapter 4 flexural design of beam 2021.pdf
chapter 4 flexural design of beam 2021.pdfchapter 4 flexural design of beam 2021.pdf
chapter 4 flexural design of beam 2021.pdf
 
Column design.ppt
Column design.pptColumn design.ppt
Column design.ppt
 
Design of short columns using helical reinforcement
Design of short columns using helical reinforcementDesign of short columns using helical reinforcement
Design of short columns using helical reinforcement
 
Steel column base44
Steel column base44Steel column base44
Steel column base44
 
Details of REINFORCEMENT Summary
Details of REINFORCEMENT SummaryDetails of REINFORCEMENT Summary
Details of REINFORCEMENT Summary
 
COMPOSITE BEAMS.pdf
COMPOSITE BEAMS.pdfCOMPOSITE BEAMS.pdf
COMPOSITE BEAMS.pdf
 
Compression_members1.ppt
Compression_members1.pptCompression_members1.ppt
Compression_members1.ppt
 
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...
 
Conceps of RCC-PCC.pptx
Conceps of RCC-PCC.pptxConceps of RCC-PCC.pptx
Conceps of RCC-PCC.pptx
 
Introduction to design of rcc column
Introduction to design of rcc columnIntroduction to design of rcc column
Introduction to design of rcc column
 

More from Hossam Shafiq II

Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-AghaBasics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-AghaHossam Shafiq II
 
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Hossam Shafiq II
 
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...Hossam Shafiq II
 
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...Hossam Shafiq II
 
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...Hossam Shafiq II
 
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Hossam Shafiq II
 
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...Hossam Shafiq II
 
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....Hossam Shafiq II
 
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...Hossam Shafiq II
 
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...Hossam Shafiq II
 
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...Hossam Shafiq II
 
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...Hossam Shafiq II
 
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...Hossam Shafiq II
 
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...Hossam Shafiq II
 
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...Hossam Shafiq II
 
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...Hossam Shafiq II
 
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...Hossam Shafiq II
 
Lec07 Analysis and Design of Doubly Reinforced Beam (Reinforced Concrete Desi...
Lec07 Analysis and Design of Doubly Reinforced Beam (Reinforced Concrete Desi...Lec07 Analysis and Design of Doubly Reinforced Beam (Reinforced Concrete Desi...
Lec07 Analysis and Design of Doubly Reinforced Beam (Reinforced Concrete Desi...Hossam Shafiq II
 
Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...
Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...
Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...Hossam Shafiq II
 
Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...
Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...
Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...Hossam Shafiq II
 

More from Hossam Shafiq II (20)

Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-AghaBasics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
 
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
 
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
 
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
 
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
 
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
 
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
 
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
 
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
 
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
 
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
 
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
 
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
 
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
 
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
 
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
 
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
 
Lec07 Analysis and Design of Doubly Reinforced Beam (Reinforced Concrete Desi...
Lec07 Analysis and Design of Doubly Reinforced Beam (Reinforced Concrete Desi...Lec07 Analysis and Design of Doubly Reinforced Beam (Reinforced Concrete Desi...
Lec07 Analysis and Design of Doubly Reinforced Beam (Reinforced Concrete Desi...
 
Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...
Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...
Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...
 
Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...
Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...
Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...
 

Recently uploaded

Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...121011101441
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxPurva Nikam
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncssuser2ae721
 

Recently uploaded (20)

Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptx
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
 

Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Design I & Prof. Abdelhamid Charif)

  • 1. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 1 CE 370 REINFORCED CONCRETE-I Prof. A. Charif Columns 1 Columns - Combined axial force and bending Short columns • Columns = vertical (or near vertical) members supporting axial compression forces, bending moments and shear forces • Vertical loads from various floors are cumulated and transmitted by columns to foundations • Columns play a major role in structural safety. • As compression members, failure of columns is more dangerous than in beams. 2
  • 2. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 2 • Stability effects (buckling) must be considered for columns and compression members especially if they are slender (long) • For the majority of columns, referred to as “short columns”, slenderness effects can be neglected. Slender columns are studied in CE 470. • A column is usually subjected to an axial compression force and two bending moments (biaxial bending) transmitted by beams and girders connected to it. It is also subjected to two shear forces and a torsion moment. • Column reinforcement is distributed along the border in both directions in order to resist biaxial bending. • This course deals with the combination of an axial force with one moment only. Biaxial bending is studied in CE 470. 3 Short columns • RC columns are either tied (more than 90 %) or spiral (5 to 10 %). • Special composite columns are sometimes used. 4 Types of columns
  • 3. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 3 Tied columns In tied columns which may be of any shape, independent ties are used. All reinforcing bars must be enclosed by lateral ties Tie spacing requirement is the smallest of the following three values: With: db = main bar diameter, ds = tie (stirrup) diameter (b, h) = section dimensions. The role of ties is: 1. Hold and restrain main bars from buckling 2. Hold steel cage during construction 3. May confine concrete and provide ductility 4. Serve as shear reinforcement  ),(Min,48,16Min hbddS sb 5 • Tie diameter ds should be at least 10 mm if longitudinal bars have 32 mm diameter or smaller. • For higher bar diameters, ds should be at least 12 mm. • The minimum number of bars in columns and compression members is four for rectangular or circular ties and three for triangular ties. • The maximum angle in a tie is 135o • The maximum distance between an untied bar and a tied one is 150 mm • First tie at a distance of half spacing above slab and above footing. • Last tie at a distance of half spacing below lowest reinforcement bar of slab. 6 Tied columns
  • 4. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 4 Typical tied column sections 7 Spiral columns Spiral columns are usually circular Continuous spiral plays same role as ties and provides lateral confinement opposing lateral expansion and thus improving column ductility Spiral pitch S ranges from 40 to 85 mm Spiral columns are used in regions with high seismic activity. Spiral column ductility improves the structure capacity in absorbing seismic energy and resisting seismic forces. Spirals may be used for any section shape but are effective for circular shapes only. 8
  • 5. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 5 • Figure highlights behavioral difference between tied and spiral columns. Tied columns have brittle failures. Spiral columns develop large deformations prior to failure • Improved behavior of spiral columns justifies use of higher strength reduction factor in compression (0.70) as compared to tied columns (0.65) 9 Tied and spiral columns Strength reduction factor for columns • Columns are compression members but may be subjected to axial tension resulting from lateral loading (wind, earthquake). Column section may vary from compression-controlled case to tension-controlled one, with linear transition zone in between • Strength reduction factor depends on steel tension strain 10
  • 6. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 6 Longitudinal reinforcement in columns • The percentage of reinforcement of columns is expressed as the ratio of the total steel area with respect to the full concrete gross section • The ACI / SBC limits (minimum and maximum) for this percentage are 1% and 8%. • In practice, because of bar splicing (usually located at each floor slab), it is recommended not to exceed 4 % for longitudinal reinforcement • For spiral columns: g st t A A  11 spiralinsidecoreofArea: 145.0 ' c y c c g s A f f A A        Strength of columns in axial compression • Under pure axial compression (with no bending), the nominal column strength is obtained from the combination of concrete strength and steel strength as follows: Where is the net concrete area. • However because of possible accidental eccentricities and resulting accidental bending, SBC and ACI codes reduce this nominal capacity as: where r is a reduction factor. r = 0.80 for tied columns r = 0.85 for spiral columns • The maximum design axial compression force is therefore:   stystgc AfAAfP  ' 0 85.0  stg AA  0(max) rPPn        (max) ' 00 ' 00 (max) columnSpiral:85.0595.0595.085.070.0 columnTied:85.052.052.080.065.0 nu stystgc stystgc n PP AfAAfPP AfAAfPP P           12
  • 7. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 7 Column tension strength • Only steel resists tension. The nominal and design tension strengths are then: (Tension is negative) Concrete shear strength for columns • The concrete shear strength is increased by the axial compression force: • if then ties must be designed for shear. styntstynt AfPAfP 90.0  db f A P V w c g u c 614 1 '          uc VV 5.0 13 • Design of concrete section • If unknown the concrete gross section may be determined using axial force only with a reduction factor to account for bending and by considering an initial value of steel ratio from 1 to 2 %. The minimum gross section is: • Tied column: • Spiral column: • This approximate section design must then be followed by a check taking into account the bending moment as will be shown later in an example. )(40.0 ')( tyc u trialg ff P A   )(50.0 ')( tyc u trialg ff P A   14
  • 8. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 8 Axial force - bending moment interaction curves • Both axial force P and bending moment M cause normal stress • Assuming compression as positive, the total stress must not exceed the material strength: I My A P I My A P MP   :stressTotal 1 :becomesEquation :alonemomentBending 1 :aloneforceAxial      ultult ultult ult ult ult ult ult ult ult ult ult ult ult ult M M P P M M P P MI y I yM PAA P I My A P       (a) (a) 15 This linear inequality results in an interaction curve relating the axial force P to the bending moment M. For elastic linear, symmetric materials, (equal strength in tension and compression), this P-M interaction curve has the form shown. A safe combination (M , P) must lie inside or on the border of the shaded area. 1 ultult M M P P 16 Axial force - bending moment interaction curves
  • 9. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 9 17 Elastic linear, symmetric materials, (equal strength in tension and compression) Elastic linear materials, with no tension strength A combination (M , P) is safe if it lies inside or on the border of the shaded area. Axial force - bending moment interaction curves • For reinforced concrete with nonlinear stress-strain curves and where tension strength is provided by steel only, the P-M interaction curves have the form shown in the figures. 18 P-M interaction curves for RC columns
  • 10. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 10 • There are two curves: • (1): Nominal curve Pn - Mn • (2): Design curve • A safe design is inside or on the border of the shaded design curve. • The distance between the two curves is variable depending on the strength reduction factor. The two curves are closer in the tension-control zone • The horizontal line limit corresponds to the code maximum design compression force nn MP   90.0 (max)nP 19 P-M interaction curves for RC columns • P-M interaction curves are very important for column analysis and design which is much more complex than in beams. • For many load combinations, beam design requires designing for the largest moment. • For columns, it is in general never obvious which combination controls design. • In the figure, point 2 is unsafe although it has smaller values of both axial force and bending moment as compared to point 1, which is safe. • Column design requires checking that all load combination points lie inside (or on the border) of the safe design curve. 20 Importance of P-M interaction curves
  • 11. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 11 Importance of P-M interaction curves • For a given constant axial force P, critical design is governed by the largest value of the moment M. Smaller moments are always safe. • However for a given constant moment M, critical design is not obvious. Smaller or greater axial forces may be unsafe. 21 Problem 1: Design of a tied column for given loading • Design the section and reinforcement of a tied column to support the loading: • Material data is: • a/ Select trial section and trial steel ratio: • We select a trial steel ratio of 0.015 (1.5 %). • For a tied column: • This gives a 352-mm square column. We must however take a greater dimension to allow for the bending moment. We take a 400-mm square column. b = h = 400 mm kNVmkNMkNP uuu 60.1501550  MPafMPaf yc 42025'  2 3 )(')( 0.123802 )015.042025(40.0 10.1550 )(40.0 mmA ff P A trialg tyc u trialg       22
  • 12. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 12 b/ Select reinforcement • One bar area for 22 mm diameter is: • Required number of bars is 6.3 but we must use an even number to obtain symmetrical steel. • Use six bars of 22 mm diameter (three bars in each layer). • Total steel area is then: • This represents a ratio of 1.43 %. 2 2400400400015.0 mmAA gtst   2 2 13.380 4 22 mmAb     2 8.2280 mmAst  b h 23 c/ Check maximum compression capacity • We must have: • For a tied column: (max)nu PP      OK0.1550 924.22402240924 85.052.052.080.065.0 (max) (max) ' 00(max)    kNPP kNNP AfAAfPPP un n stystgcn    24
  • 13. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 13 d/ Design lap splices • Depending on the axial force, splices in columns can be tension splices or compression splices. The latter are of course shorter. • If the axial force in the column can have positive and negative signs, tension splice must therefore be used for the column. • In this example the axial force is compressive. 25 mml lmml MPafifdf MPafifdf l mmdf f ll sc dcsc yby yby sc by c dcsc 656 65622420071.0 420)2413.0( 420071.0 46222420043.0, 25 24.0 Max043.0, 24.0 Max '                          SBC / ACI allow reductions of lap splice lengths in compression members provided enough tie (spiral) area is available. Reduction factors are 0.83 / 0.75 for tied / spiral columns. We will not perform this reduction here. We use a splice length of 700 mm. 26 b h To avoid steel congestion and bar spacing problems, splicing is performed by putting new bars inside the cage. Lap splices
  • 14. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 14 e/ Select ties and check for shear • For 22 mm bars, we can use 10-mm ties. Spacing requirement is the smallest of the following three values: • Use a spacing of 350 mm (or smaller). • Shear strength check: • Check that • Ties are therefore not required to play role of shear reinforcement. • If so, design stirrups as in beams mmhbmmdmmd sb 040),(Min:(c)04848:(b)35216:(a)  OK607.712.19175.05.05.0 2.191191192400 33910 2 22 40400) 2 cover( 614 1with5.0 '             kNVkNV kNNVmmb mmd d hd db f A P VVV uc cw s b w c g u cuc   27 f/ Check section safety with regard to combined bending moment and axial compression • Axial compression force and bending moment are related by interaction diagrams. They both cause normal stresses. • Construction of P-M interaction curves will be covered later. • Instead of drawing the whole interaction diagram and checking that the point (Mu , Pu) lies inside the safe zone, i.e. we use a different method. • We will start from conditions such that : and then check that the corresponding nominal moment is such that : un PP  un MM  unun PPMM   and 28
  • 15. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 15 • Section subjected to bending moment and compressive axial force, it is reasonable to assume strain distribution as: • Top steel strain greater or equal to yield strain which is 0.0021, the stress is equal to fy. Bottom bar strain less than yield strain. • Neutral axis depth c is the problem unknown. mmdhd mmd d d mmAA s b ss 33961400 6110 2 22 40 2 Cover 4.1140:depthsandareasLayer 12 1 2 21    (2) (1) NffAC ccabfC cyss cc 5.454734)2585.0420(4.1140)85.0( :concretedisplacedforaccountingsteelin topforcenCompressio 722540085.02585.085.0 :forcencompressioConcrete ' 1 '   29 Section safety with regard to combined bending moment and axial compression 0.003 c d2 d1 ys  1 ys  2 • Strain, stress and tension force in bottom steel layer : (3) c c c c fAT c c c c Ef c c c cd ss sss s             339 684240 339 6004.1140 339 600 339 003.0200000 339 003.0003.0 22 22 2 2   30 Section safety with regard to combined bending moment and axial compression 0.003 c d2 d1 ys  1 ys  2
  • 16. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 16 31 (3) (2) (1) c c c c fAT NffAC ccabfC ss cyss cc       339 684240 339 6004.1140 :steelbottominforceTension 5.454734)2585.0420(4.1140)85.0( :concretedisplacedforaccountingsteelin topforcenCompressio 722540085.02585.085.0 :forcencompressioConcrete 22 ' 1 ' Section safety with regard to combined bending moment and axial compression Compression force (1) and tension force (3) are functions of the unknown neutral axis depth c. (3)(2)(1)  TCCP scn :positive)ison(compressiforcenominalTotal • These results seem to confirm the strain distribution assumed. 32 mmcammc cc cc c c c NTCC P P PP TCCP sc u n un scn 28.242069.28585.004.285:solutionPositive 02319573609.12456407225 :ofin termsequationquadraticaobtainWebytermsallMultiply 339 0684245.45473472254.2384615 4.2384615 65.0 10.1550 control)-ncompressioincolumnTied(65.0with :valuesforceultimateanddesignEquating 1 2 3            (4) (3)(2)(1) Section safety with regard to combined bending moment and axial compression
  • 17. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 17 (4)equationmequilibriusatisfyvaluesforceThese 53.12973.45441.2059 OK0005679.0 04.285 04.285339 003.0003.0 OK00236.0 04.285 6104.285 003.0003.0 2 2 1 1 kNTkNCkNC c cd c dc sc ys ys                                  2222 :check thatmustWe centroidsectionaboutcomputedMoment 21 h dTd h C ah CM MM scn un 33 Check assumed steel strains 0.85 fc’ h/2 d2 a Cc Cs T 34 • Final comments: This method of checking section safety with respect to bending moment M is long and must be repeated for each combination (Pu , Mu). • The use of P-M interaction diagrams is more effective.       OK.150.25.158 465.24365.0.465.243 2.0339.053.129 061.02.073.454 121214.02.041.2059 2222 :check thatmustWe 21                          mkNMmkNM MmkNM M h dTd h C ah CM MM un nn n scn un    Section safety with regard to combined bending moment and axial compression 0.85 fc’ h/2 d2 a Cc Cs T
  • 18. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 18 • The figure shows the P-M interaction diagram for the example and the loading point. Pu = 1550 kN Mu = 150 kN.m • The point lies inside the safe zone meaning that the combination is safe. • Interaction curve generated by RC-TOOL software. 35 • We consider a symmetrical rectangular section. The P-M curve may be approximately drawn from few important points. • A ) Simple points : Pure compression and pure tension points with no moment               styntstynt stystgc stystgc n stystgc stystgc n stystgc AfPAfP AfAAfP AfAAfP P AfAAfP AfAAfP P AfAAfP 90.0:Design:Nominal :)90.0(pointtensionPureA2) Spiral:85.0595.085.070.0 Tied:85.052.080.065.0 :strengthdesignSBC/ACI Spiral:85.085.085.0 Tied:85.080.080.0 :ty)eccentriciaccidentalforaccountto(reducedstrengthnominalSBC/ACI 85.0:strengthncompressioNominal :pointncompressioPureA1) ' 0 ' 0 (max) ' 0 ' 0 (max) ' 0                     36 Drawing P-M interaction curve
  • 19. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 19 • A point on the interaction curve is defined by its two coordinates M (horizontal) and P (vertical). • Moment M is expressed about gross section centroid. • We consider a rectangular section (b , h) subjected to moment about X-axis as shown. • Section centroid is at a distance h/2 from the top. • Moment is positive if causing compression in top • Reinforcement is expressed in terms of steel layers Asi with distances di from concrete top fiber. • The total steel area is: • Tension steel strain corresponds to that in the bottom layer. • Combining bending and axial compression, failure occurs when top fiber strain reaches concrete ultimate strain of 0.003 M b h X di Asi  i sist AA 37 B) General points on the interaction curve P-M • A column is subjected to an axial force (which is generally a compression force, but may sometimes be a tensile force) and a bending moment which causes (if positive) compression in the top part and tension in the bottom. • The sign convention is vey important and must be respected to avoid confusion. • We assume compression as positive as concrete tension strength is neglected. • The derived equations for the steel layers must be used algebraically as these can be subjected to either compression or tension forces. 38 Relations between steel strain and neutral axis depth 0.003 c di si st
  • 20. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 20 • Compression is positive. • Any point on the P-M interaction curve is characterized by its unique strain distribution across the section. This can be defined by either steel strain in any layer, or by the neutral axis depth. If one of these two is known, the other is deduced from similar triangles: 39 Relations between steel strain and neutral axis depth depthaxisneutralgiventhefromlayeranyin strainsteelthedeterminetousedisrelationThis 003.0 003.0 layeranyinstrainsteelgivenafromdepth axisneutralthedeterminetousedisrelationThis 003.0 003.0 003.0003.0 i c dc cdc i dc dc i si i si si i si i           0.003 c di si st (a) Concrete contribution bafC MPaf f MPaf cca cc c c c ' 1 1 85.0:forcencompressioconcreteNominal 30for65.0, 7 05.045.7 Max 30for85.0 known)depth(N.A. :isblockncompressioofDepth                  40 Steps for the general interaction point Concrete displaced by steel layers located inside the compression block will be considered with steel (in order to account for both force and moment corrections). 0.003 c di si st a Cc Fsi 0.85 fc’ h/2 di
  • 21. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 21 (b) Steel layers contribution • Contribution of each steel layer i is computed as follows (compression is positive) :           block)insidelayerbyconcrete(displacedif85.0 block)ncompressiooutsidelayer(steelif :Force If:withbut:Stress 003.0:Strain ' adffA adfA F fffffEf c dc icsisi isisi si ysiysiysiysissi i si   41 Concrete displaced by steel layer i located inside the compression block (di ≤ a) is considered by subtracting from the steel force a concrete compression force equal to 0.85 fc’Asi Steel Young’s modulus Es is equal to 200000 MPa (200 GPa) Reminder : Be careful with algebraic evaluation of steel contribution (could be compression or tension) Total forces and moments (algebraic values) • Total forces and moments are obtained by combining concrete and steel contributions :                 i isicn i sicn h dF ah CM FCP 222 :momentnominalTotal :forcenominalTotal                           i isicn i sicn h dF ah CMFCP 222  42 Design values are obtained by multiplying by the strength reduction factor. The latter depends on the known value of the tension steel strain at the bottom steel layer. 0.003 c di si st a Cc Fsi 0.85 fc’ h/2 di
  • 22. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 22 • Particular points on the interaction curve These particular points are: 1. Pure compression point (M = 0 , c = infinity, ) 2. Pure tension point (M = 0 , c = - infinity, ) 3. Balanced point (tension steel strain = Yield strain) 4. 0.005 tension steel strain point ( ) • Last two points are the limits of the transition zone between compression-controlled and tension-controlled sections. • Left hand side of curve (M < 0) is generated with section upside down. 70.0/65.0 90.0 90.0005.0  st 70.0/65.0  s y yst E f 43 Problem 2: Interaction curve points Tied square column 500 x 500 mm with eight 25-mm bars in three layers (1.57 % of steel) Tie diameter ds = 10 mm 0021.0420 85.025 1 '   yy c MPaf MPaf   mmdhd d hd mm h dmmd d d s b s b 5.4375.62500 2 cover 250 2 5.6210 2 25 40 2 cover 13 21                     44 Determine all particular points as well as point with c = h. Draw interaction curve and check safety for load combinations: (a) Pu = 2000 kN, Mu = 200 kN.m (b) Pu = 3000 kN, Mu = 230 kN.m Top / bottom layers with 3 bars each, middle layer with 2 bars Steel areas: As1 = As3 = 1472.62 mm2 As2 = 981.75 mm2 Total steel area Ast = 3926.99 mm2 Steel depths:
  • 23. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 23 • 1/ Pure compression point ( = 0.65): • Nominal axial compression force: • SBC/ACI Maximum nominal force: • Design force: • 2/ Pure tension point ( = 0.90): • Nominal tension strength: • Design tension strength:    stystgc AfAAfP  ' 0 85.0   kNNP 387.6878687838799.392642099.39265005002585.00  kNPPn 710.550280.0 0(max)  kNPn 761.35767096.550265.0(max)   kNNAfP stynt 3358.16498.164933599.3926420  kNAfP stynt 402.148490.0  45 • 3/ Balanced point B ( = 0.65): • This point is defined by • Neutral axis depth: • Neutral axis depth c = 257.3529 mm • Depth of compression block: • Concrete compression force: • Steel layer 1: Strain (comp.) • Stress: • Force: With displaced concrete 0021.03  yst  0.003 0.0021 0021.0003.0 003.0 5.437 003.0 003.0 3 3     s dc  mmca 750.2183529.25785.01   kNNbafC cc 21875.232475.232421850075.2182585.085.0 '  MPaff ysys 42011   mmad 75.2185.621      kNNffAF csss 2072.587225.5872072585.042062.147285.0 ' 111  00227.03 353.257 5.623529.257 003.0003.0 1 1      c dc s 46
  • 24. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 24 • Steel layer 2: Strain: (comp.) • Stress: • Force: No displaced concrete • Steel layer 3: Strain: (tension) • Stress: fs3 = - fy = - 420 MPa • Force: No displaced concrete MPaEf sss 14.170000857.020000022   mmad 75.2182502  kNNfAF sss 8272.16195.1682714.1775.981222  0021.03  ys  kNNfAF sss 5004.6184.61850042062.1472333  mmad 75.2185.4373  0000857.0 353.257 250353.257 003.0003.0 2 2      c dc s 47 • Total forces and moments: • Total nominal force: • Using (kN) for force and (m) for distance, total nominal moment:   i sicn kNFCP 75275.23095004.6188272.162072.58721875.2324               i isicn h dF ah CM 222 mkNMkNP nn .39.35934.150165.0   mkN Mn .9134.552 2 5.0 4375.05004.618 2 5.0 25.08272.16 2 5.0 0625.02072.587 2 21875.0 2 5.0 21875.2324                           48
  • 25. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 25 • 4/ Point D with 0.005 tensile steel strain ( = 0.90): • This point is defined by : • Following the same steps, we find: • Neutral axis depth c = 164.0625 mm • Depth of compression block: a = 139.4531 mm • Concrete compression force: Cc = 1481.6895 kN • Steel layer 1: Strain (compression) • Stress fs1 = 371.4286 MPa • Force with displaced concrete (since d1 < a): Fs1 = As1( fs1 - 0.85 x f’ c) = 515.6799 kN • Steel layer 2: Strain (tension) • Stress fs2 = - 314.2857 MPa • Force Fs2 = As2 x fs2 No displaced concrete (since d2 > a): Fs2 = - 308.550 kN 005.03  sst  0.003 0.005 00186.01 s 00157.02 s 49 • Steel layer 3: Strain (tension) • Stress fs3 = - 420.0 MPa • Force Fs3 = As3 x fs3 No displaced concrete (since d3 > a): Fs3 = - 618.5004 kN • Total nominal and design forces and moments: • Pn = 1070.3190 kN Mn = 479.7681 kN.m •  Pn = 963.2871 kN  Mn = 431.7913 kN.m 005.03 s 50
  • 26. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 26 • 5/ Full compression Point C with c = h ( = 0.65) : • This point is defined by the neutral axis depth c = h = 500 mm It corresponds to the onset of tension in the section, that is the smallest neutral axis depth with no tension in the section. • Depth of compression block: a = 425.0 mm • Concrete compression force: Cc = 4515.625 kN • Steel layer 1: Strain (compression) • Stress fs1 = fy = 420.0 MPa • Force with displaced concrete (since d1 < a): • Fs1 = As1(fs1 - 0.85 x f’ c) = 587.2072 kN 0.003 c = h 00263.01 s 51 • Steel layer 2: Strain = 0.00150 (compression) • Stress fs2 = 300.0 MPa • Force with displaced concrete (since d2 < a): • Fs2 = As2( fs2 - 0.85 x f’ c) = 273.6628 kN • Steel layer 3: Strain = 0.00038 compression) • Stress fs3 = 75.0 MPa • Force Fs3 = As3 x fs3 No displaced concrete (since d3 > a): • Fs3 = 110.4465 kN • Total nominal and design forces and moments: • Pn = 5486.9415 kN Mn = 258.7286 kN.m •  Pn = 3566.5120 kN  Mn = 168.1736 kN.m 52
  • 27. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 27 • All these points match the curve delivered by RC-TOOL software • The next figure represents an approximate drawing from the few particular points. • RC-TOOL curve is generated with hundreds of points and gives details for any desired point. Point Pn (kN) Mn (kN.m) Pn (kN) Mn (kN.m) Pure compression  = 0.65 6878.387 0 3576.761 0 Point C (c = h)  = 0.65 5486.9415 258.7286 3566.5120 168.1736 Point B (balanced)  = 0.65 2309.75275 552.9134 1501.340 359.394 Point D (0.005 strain)  = 0.90 1070.3190 479.7681 963.2871 431.7913 Beam bending  = 0.90 0 329.1185 0 296.2067 Pure tension  = 0.90 -1649.336 0 -1484.402 0 53 Table shows all results including beam bending point (P = 0) Approximate drawing of interaction curve 54 • The load combination point (Pu = 2000 kN, Mu = 200 kN.m) is inside the safe zone. This combination is safe. • The second combination (Pu = 3000 kN, Mu = 230 kN.m) is unsafe as the corresponding point is outside the safe zone, but close to the border. • It is desirable for this combination to use a more accurate interaction curve.
  • 28. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 28 P-M interaction curve generated by RC-TOOL software 55 • Both previous load combinations are safe • RC-TOOL software performs safety check for any combination. • Beam bending point • Beam bending point is located on the horizontal axis (P = 0). Both the neutral axis depth and steel strain are unknown. They must be determined using equilibrium equations. For sections with more than two layers, this may require several iterations. RC-TOOL performs all these iterations. • Beam analysis and design is therefore only a particular case with P = 0. 56
  • 29. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 29 Comparing balanced point B and 0.005 steel strain point D • Balanced point B and 0.005 strain point D are limits of transition zone with variable strength reduction factor. Above point B is the compression-control zone and below point D is the tension-control zone. The axial force (nominal and design) in point B is greater than that of point D. • However for moments, we have: • For nominal moments MnB > MnD • For design moments MnB < MnD • Transition zone generates in some cases design curves with non-convex parts. The strain compatibility technique used in RC-TOOL software tracks all the points whatever the non- convexity. Some other programs determine interaction curve using axial force looping and may not track correctly the transition zone (between points B and D). 57 Problem 3 Tied column of section (300 x 500 mm) with six 20-mm bars in two layers Determine, for the P-Mx interaction curve, the following nominal and design points: a) Point with tension steel strain = 0.006 b) Point with neutral axis depth c = 300 mm c) Point with neutral axis depth c = 200 mm Clear cover = 40 mm Tie diameter = 10 mm For Mx : Two steel layers with three bars each. Note: For moment My , there are three layers. As1 = As2 = 942. 48 mm2 Ast = 1884.96 mm2 d1 = Cover +db/2 + ds = 60 mm d2 = h - d1 = 440 mm 0021.0 420 85.0 25 1 '     y y c MPaf MPaf   58 300 mm 500mm Mx
  • 30. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 30 59 a) Point with tension steel strain = 0.006 (at bottom layer 2) mmca mmdc s st 667.124667.14685.0 667.146 006.0003.0 003.0 440 003.0 003.0 :depthblockncompressioanddepthaxisNeutral 006.0 1 2 2 2           kNNbafC cc 75.794794750300667.1242585.085.0 :forcencompressioConcrete '      kNNffAF mmad MPaEf c dc csss sssys s 124.3143141242585.055.35448.94285.0 blockncompressioinsideLayer667.12460:Force 55.354:Stress on)(Compressi0017727.0 667.146 60667.146 003.0003.0:Strain :1layerSteel ' 111 1 111 1 1           0.003 0.006 60 kNNfAF mmad MPaff c dc sss ysys s s 842.39539584242048.942 blockncompressiooutsideLayer667.124440:Force 0.420:Stress (Tension)006.0 667.146 440667.146 003.0003.0:Strain 90.0006.0:2layerSteel 222 2 22 2 2 2             mkNMkNP mkNM M h dF ah CM kNP FCP nn n n i isicn n i sicn .637.255and730.64190.0 .042.284 2 5.0 44.0842.395 2 5.0 06.0124.314 2 124667.0 2 5.0 75.794 222 :momentnominalTotal 032.713842.395124.31475.794 :forcenominalTotal                                       
  • 31. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 31 61 b) Point with neutral axis depth c = 300 mm 0.003 2s 1s300 mm kNNC bafC mmca c cc 625.16251625625 3002552585.085.0 :forcencompressioConcrete 0.2550.30085.0 :depthblocknCompressio ' 1         kNNffAF mmad MPaff c dc csss ysys s 814.3753758142585.00.42048.94285.0 blockncompressioinsideLayer0.25560:Force 0.420:Stress on)(Compressi0024.0 0.300 600.300 003.0003.0:Strain :1layerSteel ' 111 1 11 1 1           62 kNNfAF mmad MPaEf c dc sss sssys s 894.26326389428048.942 blockncompressiooutsideLayer0.255440:Force 0.2800014.0200000:Stress (Tension)0014.0 0.300 4400.300 003.0003.0:Strain :2layerSteel 222 2 222 2 2           mkNMkNP mkNM M h dF ah CM kNP FCP nn yst n n i isicn n i sicn .444.208and404.1129 65.0:controlnCompressio 0014.0:2layerbottominstrainTensile .684.320 2 5.0 44.0894.263 2 5.0 06.0814.375 2 255.0 2 5.0 625.1625 222 :momentnominalTotal 545.1737894.263814.375625.1625 :forcenominalTotal 2                                           
  • 32. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 32 63 c) Point with neutral axis depth c = 200 mm 0.003 2s 1s200 mm kNNC bafC mmca c cc 750.10831083750 3001702585.085.0 :forcencompressioConcrete 0.1700.20085.0 :depthblocknCompressio ' 1         kNNffAF mmad MPaff c dc csss ysys s 814.3753758142585.00.42048.94285.0 blockncompressioinsideLayer0.25560:Force 0.420:Stress on)(Compressi0021.0 0.200 600.200 003.0003.0:Strain :1layerSteel ' 111 1 11 1 1           64 kNNfAF mmad MPaff c dc sss ysys s 842.39539584242048.942 blockncompressiooutsideLayer0.255440:Force 0.420:Stress (Tension)0036.0 0.200 4400.200 003.0003.0:Strain :2layerSteel 222 2 22 2 2           mkNMkNP mkNM M h dF ah CM kNP FCP nn y yt tyst n n i isicn n i sicn .610.253and959.828 7793.0 0021.0005.0 0021.00036.0 25.065.0 005.0 25.065.0:zoneTransition 005.00036.0:2layerbottominstrainTensile .433.325 2 5.0 44.0842.395 2 5.0 06.0814.375 2 170.0 2 5.0 750.1083 222 :momentnominalTotal 722.1063842.395814.375750.1083 :forcenominalTotal 2                                                   
  • 33. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 33 65 P-M interaction curve generated by RC-TOOL software 66 • Circular columns are frequent in buildings and structures, for architectural or safety (spiral) reasons. • They can be tied or spiral. • For uniaxial bending (section with vertical symmetry), steel bars must be arranged as shown. • With an even bar number, arrangement (b) gives a smaller bending capacity and must be used for safety reasons. • An odd bar number causes bending unsymmetry. Positive and negative moments are slightly different in both bar arrangements. Circular columns
  • 34. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 34 67 b s b N drr d d d   2 :angleIncrement :radiusringSteel 2 CoverdepthRadial 0    Circular columns • Nb steel bars are arranged in a ring with a regular increment angle. • Depending on the arrangement, bars in the same level are lumped in a single layer and the corresponding depth, computed from the top concrete fiber, is determined using geometric and trigonometric relations. In general a layer contains one or two bars. 68                    i isicn rdFMM ryArA r ar r ar :center)circle(aboutmomentnominalTotal unitsradianUsesin 3 2 cossin coscos :angleusingdeterminedaremomentandforceConcrete 32 1    Circular columns The main difficulty with circular columns is the shape of the concrete compression block.
  • 35. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 35 69 Problem 4 • Spiral circular column with 600 mm diameter and six 28-mm bars (1.3 %). • Spiral diameter = 10 mm, cover = 40 mm. • Determine P-M interaction points :  Pure compression / tension points  Balanced point  0.005 tension steel strain point  Point with c = 200 mm 0021.0420 85.025 1 '   yy c MPaf MPaf   22 2 321 5.36945.1231 4 28 2 mmAmmAAA stsss   • Using bar arrangement (b), there are three steel layers with two bars each. 70 mmdrd mmrd mmrrd N mmdrr mmd d d b s b 382.504618.956002:layerBottom 300:layerMiddle 618.95 6 cos236300 2 cos:layerTop 60 36 22 :angleIncrement 23664300:radiusringSteel 64101440 2 CoverdepthRadial 13 2 01 0 0                      solution 4
  • 36. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 36 71 a) Pure compression point     kNP PPrPP kNPP r rPP kNNP P AfAAfP n n n n stystgc 479.4451 595.085.070.0:strengthncompressioDesign 256.635985.0 85.0:factorReductioncolumnSpiral :forcencompressionominalmaximumSBC/ACI 478.74817481478 5.36944205.36943002585.0 85.0:forcencompressioNominal 0.70:control-ncompressioIncolumnSpiral (max) 000(max) 0(max) 0(max) 0 2 0 ' 0              b) Pure tension point kNP kNNAfP nt stynt 521.1396690.155190.0:Designl 690.155115516905.3694420:Nominal    72 0.003 0.0021 c) Balanced point (yield strain at bottom steel layer) mmca mmdc s yst 191.252695.29685.0 695.296 0021.0003.0 003.0 382.504 003.0 003.0 :depthsblockncompressioandN.A.0021.0 1 3 3 3                   mkNmmNM rfyAfM kNNC AfC mmA rA rad r ar c ccc c cc .02.368.1002.368sin300 3 2 2585.0 sin 3 2 85.085.0:momentConcrete 170.23972397170 1128082585.085.0:forcencompressioConcrete 112808cossin41075.1300 cossin:areablocknCompressio 41075.183.80 300 191.252300 coscos :angleusingdeterminedmomentandforceConcrete 63 3'' ' 22 2 011                            
  • 37. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 37 73     kNNffAF mmad MPaEf c dc csss sssys s 601.4744746012585.0634.4065.123185.0 blockncompressioinsideLayer695.296618.95:Force 634.406:Stress on)(Compressi00203317.0 695.296 618.95695.296 003.0003.0:Strain :1layerSteel ' 111 1 111 1 1           kNNfAF mmad MPaEf c dc sss sssys s 231.88231684.65.1231 blockncompressiooutsideLayer695.2960.300:Force 684.6:Stress (Tension)00003342.0 695.296 0.300695.296 003.0003.0:Strain :2layerSteel 222 2 222 2 2           74 kNNfAF mmad MPaff sss ysys ys 230.5175172304205.1231 blockncompressiooutsideLayer695.296:Force 0.420:Stress column)(spiral70.00021.0:3layerSteel 333 3 22 3               mkNMkNP mkNM M rdFMM kNP FCP nn n n i isicn n i sicn .51.399and42.164270.0 .73.570 3.0504382.0230.5173.03.0231.83.0095618.0601.47402.368 :momentnominalTotal 31.2346230.517231.8601.474170.2397 :forcenominalTotal         
  • 38. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 38 75 0.003 0.005 d) Point with 0.005 tensile steel strain mmca mmdc s st 772.160143.18985.0 143.189 005.0003.0 003.0 382.504 003.0 003.0 :depthsblockncompressioandN.A.005.0 1 3 3 3                   mkNmmNM rfyAfM kNNC AfC mmA rA rad r ar c ccc c cc .84.265.1084.265sin300 3 2 2585.0 sin 3 2 85.085.0:momentConcrete 95.12941294953 609392585.085.0:forcencompressioConcrete 60939cossin0882.1300 cossin:areablocknCompressio 0882.1348.62 300 772.160300 coscos :angleusingdeterminedmomentandforceConcrete 63 3'' ' 22 2 011                             76     kNNffAF mmad MPaEf c dc csss sssys s 19.3393391922585.068.2965.123185.0 blockncompressioinsideLayer143.189618.95:Force 68.296:Stress on)(Compressi0014834.0 143.189 618.95143.189 003.0003.0:Strain :1layerSteel ' 111 1 111 1 1           kNNfAF mmad MPaEf c dc sss sssys s 07.43343306966.3515.1231 blockncompressiooutsideLayer143.1890.300:Force 66.351:Stress (Tension)0017583.0 143.189 0.300143.189 003.0003.0:Strain :2layerSteel 222 2 222 2 2          
  • 39. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 39 77 kNNfAF mmad MPaff sss ysys ys 23.5175172304205.1231 blockncompressiooutsideLayer695.296:Force 0.420:Stress 90.0005.0:3layerSteel 333 3 22 3               mkNMkNP mkNM M rdFMM kNP FCP nn n n i isicn n i sicn .79.396and46.61590.0 .88.440 3.0504382.023.5173.03.007.4333.0095618.019.33984.265 :momentnominalTotal 84.68323.51707.43319.33995.1294 :forcenominalTotal          78 e) Point with neutral axis depth c = 200 mm mmca 0.1700.20085.0 :depthblocknCompressio 1   0.003 2s 1s200 mm 3s         mkNmmNM rfyAfM kNNC AfC mmA rA rad r ar c ccc c cc .99.279.1099.279sin300 3 2 2585.0 sin 3 2 85.085.0:momentConcrete 09.14001400088 658862585.085.0:forcencompressioConcrete 65886cossin1226.1300 cossin:areablocknCompressio 1226.1321.64 300 0.170300 coscos :angleusingdeterminedmomentandforceConcrete 63 3'' ' 22 2 011                            
  • 40. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 40 79     kNNffAF mmad MPaEf c dc csss sssys s 46.3593594632585.014.3135.123185.0 blockncompressioinsideLayer0.200618.95:Force 14.313:Stress on)(Compressi0015657.0 0.200 618.950.200 003.0003.0:Strain :1layerSteel ' 111 1 111 1 1           kNNfAF mmad MPaEf c dc sss sssys s 45.3693694500.3005.1231 blockncompressiooutsideLayer0.2000.300:Force 0.300:Stress (Tension)00150.0 0.200 0.3000.200 003.0003.0:Strain :2layerSteel 222 2 222 2 2           80 kNNfAF mmad MPaff c dc sss ysys s 23.5175172304205.1231 blockncompressiooutsideLayer0.170:Force 0.420:Stress (Tension)0045725.0 0.200 832.5040.200 003.0003.0:3layerSteel 333 3 33 3 3                   mkNMkNP mkNM M rdFMM kNP FCP nn y yt st n n i isicn n i sicn .48.399and40.759 870.0 0021.0005.0 0021.00045725.0 20.070.0 005.0 20.070.0 zoneTransition005.00045725.00021.0 :factorreductionStrength .17.459 3.0504382.023.5173.03.045.3693.0095618.046.35999.279 :momentnominalTotal 87.87223.51745.36946.35909.1400 :forcenominalTotal 3y                     
  • 41. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 41 81 These results match those produced by RC-TOOL software Flowchart for P-M interaction curve • Loop for neutral axis values from maximum compression to maximum tension  For each value of c : Compute concrete contribution Compute all steel layers contribution Compute and save nominal force and moment Compute and save corresponding strength reduction factor • Repeat all the previous steps for negative moments (section turned upside down) • Draw nominal interaction curve and design curve by joining the saved points • Add the horizontal line limit corresponding to ACI / SBC design compression strength Pn(max) 82
  • 42. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 42 83 P-M interaction curve for a rectangular section Two equal steel layers One bottom steel layer Typical P-M interaction curves Design of RC columns • Design of columns is more complex than that of beams as the required steel reinforcement cannot be directly derived from closed form equations. • Trial and error strategy is required for column design. • An initial reinforcement must be assumed and then checked using the interaction diagrams. • If unsafe, the steel reinforcement must be increased. • If safe but with a point very far from the border, then the design is not economical and may be revised. • Use of software is recommended for column design. 84
  • 43. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 43 • Design of columns using P-M interaction diagrams • Safe design requires that all load combination points (Pu , Mu) lie inside or on border of the design curve. • This requires many cycles of trial and error with successive updating of reinforcement. • Only appropriate software such as RC-TOOL can perform these complex operations. • An optimal design will correspond to a loading point lying on the border of the design curve. • RC-TOOL offers many design options including standard design with one or two layers, two equal layers or many layers. • Stress and strain distributions are also delivered 85 86 Design of a square column with three steel layers
  • 44. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 44 87 Design of a square column subjected to a negative moment and a tensile axial force RC-TOOL design • The next two figures show design results for a column with 500 x 500 mm section subjected to an ultimate compression force of 2000 kN and an ultimate moment of 350 kN.m, using two steel layers at 60 and 440 mm depths. • The first design is performed with symmetrical reinforcement and delivers a steel ratio of 1.356 %. The second design is standard (no symmetry imposed) and gives a smaller steel ratio of 0.774 %. In both cases, the loading point lies on the border of the design curve. 88
  • 45. 26-Apr-13 CE370 : Prof. Abdlehamid Charif 45 RC design with two equal steel layers. Symmetric interaction curve. Because of the compression force, the top steel layer is more stressed than the bottom one. A standard design (no steel symmetry imposed) should deliver more top reinforcement. 89 Standard RC design with one or two steel layers Un-symmetric interaction curve. Bottom steel is hardly required. Optimal design delivers a very small amount of bottom tension steel just in order to obtain a tension controlled section. 90