Manage Consistent Configurations Across Multiple Kafka Environments with Nagashree B & S Vinod Kumar

Promote, Don't Repeat!
How to manage consistent configurations across multiple Kafka environments
Nagashree B
S Vinod Kumar
Event Streaming Platform Team
Fidelity Investments
The Curse of Scale: Repetition & Inconsistency
Dine in
LIVE
Party Order
Choose Bun
Type
Select Patty Cheese?
Veggies of
choice
Pack for
Delivery
Ready!!
Customize your Burger
Create Topic
Change Topic
Config
Grant Access Schemas? MVP
DEV
The Curse of Scale: Repetition & Inconsistency
QA
PROD
retention = 3 days
retention = 2 days
ACLs
P
C
C
Topic1
P0
P1
P2
Topic1
P0
P1
P2
P3
retention = 3 days
Inconsistency
Inconsistency
ACLs
Topic1
P0
P1
P2
ACLs
P
C
API Management Plane
4
Cluster
Topology
Topic1
P1
P0
Topic Management
• Create Topic
• Modify Topic
Configurations
• Scale Topic
• Delete Topic
Access Data Plane
• Add Producer
• Add Consumer
• Remove Producer
• Remove Consumer
Schema Management
• Register Subject
• Add Schemas
• Remove Schemas
• Change Compatibility
Persist
state
➢ Multi-cluster model
➢ Active-Active replication
across Regions
➢ Separation of Data Plane
and Management Plane
API
Management
Plane
Topic1
P1
P0
5
DEV QA/PERF PROD
API Management Plane
5
Topic Management
• Create Topic
• Modify Topic
Configurations
• Scale Topic
• Delete Topic
Access Data Plane
• Add Producer
• Add Consumer
• Remove Producer
• Remove Consumer
Schema Management
• Register Subject
• Add Schemas
• Remove Schemas
• Change Compatibility
Persist
state
5
API
Management
Plane
➢ Multi-cluster model
➢ Active-Active replication
across Regions
➢ Separation of Data Plane
and Management Plane
New
Creations
&
Updates
Release &
Promote
6
V3.0
V2.0
V1.0
Release
API
DEV
[{
"topic_name": "Topic2",
"number_of_partitions": 10,
"deployment_model": "multi_region",
"max_read_throughput": 10000,
"max_write_throughput_bytes": 10000,
"max_parallel_client_connections": 50,
“scaling_
➢ "configurations": [
{
"retention.ms": 864000
},
{
"min.insync.replica": 2
}
],
➢ "producers": [
{
"dev_user_principal": "dev_user",
"prod_user_principal": "prod_user"
}
]
➢ "consumers": [
{
"dev_user_principal":"dev_consumer_1",
"prod_user_principal":"prod_consumer_1",
"group_id": "group1"
},
{
"dev_user_principal": "dev_consumer_2",
"prod_user_principal":"prod_conusmer_2",
"group_id": "group2"
}
]
}]
GIT
Release API
Application
Owner
Dev Kafka
Cluster
V1.0
V2.0
Release
Snapshots
DEV
7
PROD
QA
DEV
Promote
API
QA
DEV
PROD
Customize configs using scaling
factors
Customize configs using scaling
factors
QA is the New PROD
JSON changes to be added is
displayed as response
Apply latest release changes
to the higher env cluster
Promote API
Existing Resource
Configs in QA Cluster
~
SRE
Return JSON
changes
True
False
Release type
== dryrun
Incoming change
Retention to 3 days
JSON
V2.0
QA
V1.0
JSON
V1.0
JSON
V1.0
JSON
V2.0
JSON
V2.0
JSON
V3.0
JSON
V3.0
JSON
V3.0
JSON
V3.0
JSON
Thank You!
Kafka Summit London 2023
Nagashree B
/bnagashree
S Vinod Kumar
/s-vinod-kumar
F I N D Y O U R F I D E L I T Y
1 sur 8

Recommandé

What is Apache Kafka and What is an Event Streaming Platform? par
What is Apache Kafka and What is an Event Streaming Platform?What is Apache Kafka and What is an Event Streaming Platform?
What is Apache Kafka and What is an Event Streaming Platform?confluent
2.9K vues63 diapositives
Kubernetes 1.16 and rancher 2.3 enhancements par
Kubernetes 1.16 and rancher 2.3 enhancementsKubernetes 1.16 and rancher 2.3 enhancements
Kubernetes 1.16 and rancher 2.3 enhancementsSaiyam Pathak
177 vues25 diapositives
Data-Streaming at DKV par
Data-Streaming at DKVData-Streaming at DKV
Data-Streaming at DKVconfluent
102 vues16 diapositives
Unbreakable Sharepoint 2016 With SQL Server 2016 availability groups par
Unbreakable Sharepoint 2016 With SQL Server 2016 availability groupsUnbreakable Sharepoint 2016 With SQL Server 2016 availability groups
Unbreakable Sharepoint 2016 With SQL Server 2016 availability groupsIsabelle Van Campenhoudt
962 vues51 diapositives
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli... par
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...Flink Forward
264 vues57 diapositives
Zero Down Time Move From Apache Kafka to Confluent With Justin Dempsey | Curr... par
Zero Down Time Move From Apache Kafka to Confluent With Justin Dempsey | Curr...Zero Down Time Move From Apache Kafka to Confluent With Justin Dempsey | Curr...
Zero Down Time Move From Apache Kafka to Confluent With Justin Dempsey | Curr...HostedbyConfluent
561 vues30 diapositives

Contenu connexe

Similaire à Manage Consistent Configurations Across Multiple Kafka Environments with Nagashree B & S Vinod Kumar

VMworld Europe 2014: Taking Reporting and Command Line Automation to the Next... par
VMworld Europe 2014: Taking Reporting and Command Line Automation to the Next...VMworld Europe 2014: Taking Reporting and Command Line Automation to the Next...
VMworld Europe 2014: Taking Reporting and Command Line Automation to the Next...VMworld
578 vues46 diapositives
Deep Dive Series #3: Schema Validation + Structured Audit Logs par
Deep Dive Series #3: Schema Validation + Structured Audit LogsDeep Dive Series #3: Schema Validation + Structured Audit Logs
Deep Dive Series #3: Schema Validation + Structured Audit Logsconfluent
628 vues10 diapositives
Twitter’s Apache Kafka Adoption Journey | Ming Liu, Twitter par
Twitter’s Apache Kafka Adoption Journey | Ming Liu, TwitterTwitter’s Apache Kafka Adoption Journey | Ming Liu, Twitter
Twitter’s Apache Kafka Adoption Journey | Ming Liu, TwitterHostedbyConfluent
460 vues15 diapositives
Introduction to Apache Kafka par
Introduction to Apache KafkaIntroduction to Apache Kafka
Introduction to Apache KafkaRicardo Bravo
110 vues40 diapositives
WSO2Con USA 2015: Keynote - Kubernetes – A Platform for Automating Deployment... par
WSO2Con USA 2015: Keynote - Kubernetes – A Platform for Automating Deployment...WSO2Con USA 2015: Keynote - Kubernetes – A Platform for Automating Deployment...
WSO2Con USA 2015: Keynote - Kubernetes – A Platform for Automating Deployment...WSO2
717 vues62 diapositives
WSO2Con US 2015 Kubernetes: a platform for automating deployment, scaling, an... par
WSO2Con US 2015 Kubernetes: a platform for automating deployment, scaling, an...WSO2Con US 2015 Kubernetes: a platform for automating deployment, scaling, an...
WSO2Con US 2015 Kubernetes: a platform for automating deployment, scaling, an...Brian Grant
35.5K vues62 diapositives

Similaire à Manage Consistent Configurations Across Multiple Kafka Environments with Nagashree B & S Vinod Kumar(20)

VMworld Europe 2014: Taking Reporting and Command Line Automation to the Next... par VMworld
VMworld Europe 2014: Taking Reporting and Command Line Automation to the Next...VMworld Europe 2014: Taking Reporting and Command Line Automation to the Next...
VMworld Europe 2014: Taking Reporting and Command Line Automation to the Next...
VMworld578 vues
Deep Dive Series #3: Schema Validation + Structured Audit Logs par confluent
Deep Dive Series #3: Schema Validation + Structured Audit LogsDeep Dive Series #3: Schema Validation + Structured Audit Logs
Deep Dive Series #3: Schema Validation + Structured Audit Logs
confluent628 vues
Twitter’s Apache Kafka Adoption Journey | Ming Liu, Twitter par HostedbyConfluent
Twitter’s Apache Kafka Adoption Journey | Ming Liu, TwitterTwitter’s Apache Kafka Adoption Journey | Ming Liu, Twitter
Twitter’s Apache Kafka Adoption Journey | Ming Liu, Twitter
WSO2Con USA 2015: Keynote - Kubernetes – A Platform for Automating Deployment... par WSO2
WSO2Con USA 2015: Keynote - Kubernetes – A Platform for Automating Deployment...WSO2Con USA 2015: Keynote - Kubernetes – A Platform for Automating Deployment...
WSO2Con USA 2015: Keynote - Kubernetes – A Platform for Automating Deployment...
WSO2717 vues
WSO2Con US 2015 Kubernetes: a platform for automating deployment, scaling, an... par Brian Grant
WSO2Con US 2015 Kubernetes: a platform for automating deployment, scaling, an...WSO2Con US 2015 Kubernetes: a platform for automating deployment, scaling, an...
WSO2Con US 2015 Kubernetes: a platform for automating deployment, scaling, an...
Brian Grant35.5K vues
Openstack days sv building highly available services using kubernetes (preso) par Allan Naim
Openstack days sv   building highly available services using kubernetes (preso)Openstack days sv   building highly available services using kubernetes (preso)
Openstack days sv building highly available services using kubernetes (preso)
Allan Naim444 vues
How Apache Kafka® Works par confluent
How Apache Kafka® WorksHow Apache Kafka® Works
How Apache Kafka® Works
confluent11.4K vues
Unbreakable SharePoint 2016 with SQL Server 2016 Always On Availability groups par serge luca
Unbreakable SharePoint 2016 with SQL Server 2016 Always On Availability groupsUnbreakable SharePoint 2016 with SQL Server 2016 Always On Availability groups
Unbreakable SharePoint 2016 with SQL Server 2016 Always On Availability groups
serge luca3.8K vues
Set your Data in Motion with Confluent & Apache Kafka Tech Talk Series LME par confluent
Set your Data in Motion with Confluent & Apache Kafka Tech Talk Series LMESet your Data in Motion with Confluent & Apache Kafka Tech Talk Series LME
Set your Data in Motion with Confluent & Apache Kafka Tech Talk Series LME
confluent348 vues
Kafka for Microservices – You absolutely need Avro Schemas! | Gerardo Gutierr... par HostedbyConfluent
Kafka for Microservices – You absolutely need Avro Schemas! | Gerardo Gutierr...Kafka for Microservices – You absolutely need Avro Schemas! | Gerardo Gutierr...
Kafka for Microservices – You absolutely need Avro Schemas! | Gerardo Gutierr...
Running large scale Kafka upgrades at Yelp (Manpreet Singh,Yelp) Kafka Summit... par confluent
Running large scale Kafka upgrades at Yelp (Manpreet Singh,Yelp) Kafka Summit...Running large scale Kafka upgrades at Yelp (Manpreet Singh,Yelp) Kafka Summit...
Running large scale Kafka upgrades at Yelp (Manpreet Singh,Yelp) Kafka Summit...
confluent1.5K vues
Database Consolidation using Oracle Multitenant par Pini Dibask
Database Consolidation using Oracle MultitenantDatabase Consolidation using Oracle Multitenant
Database Consolidation using Oracle Multitenant
Pini Dibask1.7K vues
Kafka as a service in your organsation par Sion Smith
Kafka as a service in your organsationKafka as a service in your organsation
Kafka as a service in your organsation
Sion Smith6 vues
Deploying Microservices - Makefiles, K8S Config Templates, Git Submodules, He... par Satish Devarapalli
Deploying Microservices - Makefiles, K8S Config Templates, Git Submodules, He...Deploying Microservices - Makefiles, K8S Config Templates, Git Submodules, He...
Deploying Microservices - Makefiles, K8S Config Templates, Git Submodules, He...
SQL AlwaysON for SharePoint HA/DR on Azure Global Azure Bootcamp 2017 Eisenac... par Lars Platzdasch
SQL AlwaysON for SharePoint HA/DR on Azure Global Azure Bootcamp 2017 Eisenac...SQL AlwaysON for SharePoint HA/DR on Azure Global Azure Bootcamp 2017 Eisenac...
SQL AlwaysON for SharePoint HA/DR on Azure Global Azure Bootcamp 2017 Eisenac...
Lars Platzdasch445 vues
An Introduction to time series with Team Apache par Patrick McFadin
An Introduction to time series with Team ApacheAn Introduction to time series with Team Apache
An Introduction to time series with Team Apache
Patrick McFadin1.3K vues
Westpac Bank Tech Talk 1: Dive into Apache Kafka par confluent
Westpac Bank Tech Talk 1: Dive into Apache KafkaWestpac Bank Tech Talk 1: Dive into Apache Kafka
Westpac Bank Tech Talk 1: Dive into Apache Kafka
confluent328 vues
Tableapp architecture migration story for GCPUG.TW par Yen-Wen Chen
Tableapp architecture migration story for GCPUG.TWTableapp architecture migration story for GCPUG.TW
Tableapp architecture migration story for GCPUG.TW
Yen-Wen Chen620 vues

Plus de HostedbyConfluent

Build Real-time Machine Learning Apps on Generative AI with Kafka Streams par
Build Real-time Machine Learning Apps on Generative AI with Kafka StreamsBuild Real-time Machine Learning Apps on Generative AI with Kafka Streams
Build Real-time Machine Learning Apps on Generative AI with Kafka StreamsHostedbyConfluent
62 vues26 diapositives
When Only the Last Writer Wins We All Lose: Active-Active Geo-Replication in ... par
When Only the Last Writer Wins We All Lose: Active-Active Geo-Replication in ...When Only the Last Writer Wins We All Lose: Active-Active Geo-Replication in ...
When Only the Last Writer Wins We All Lose: Active-Active Geo-Replication in ...HostedbyConfluent
26 vues84 diapositives
Apache Kafka's Next-Gen Rebalance Protocol: Towards More Stable and Scalable ... par
Apache Kafka's Next-Gen Rebalance Protocol: Towards More Stable and Scalable ...Apache Kafka's Next-Gen Rebalance Protocol: Towards More Stable and Scalable ...
Apache Kafka's Next-Gen Rebalance Protocol: Towards More Stable and Scalable ...HostedbyConfluent
55 vues97 diapositives
Using Kafka at Scale - A Case Study of Micro Services Data Pipelines at Evern... par
Using Kafka at Scale - A Case Study of Micro Services Data Pipelines at Evern...Using Kafka at Scale - A Case Study of Micro Services Data Pipelines at Evern...
Using Kafka at Scale - A Case Study of Micro Services Data Pipelines at Evern...HostedbyConfluent
50 vues15 diapositives
Rule Based Asset Management Workflow Automation at Netflix par
Rule Based Asset Management Workflow Automation at NetflixRule Based Asset Management Workflow Automation at Netflix
Rule Based Asset Management Workflow Automation at NetflixHostedbyConfluent
31 vues56 diapositives
Scalable E-Commerce Data Pipelines with Kafka: Real-Time Analytics, Batch, ML... par
Scalable E-Commerce Data Pipelines with Kafka: Real-Time Analytics, Batch, ML...Scalable E-Commerce Data Pipelines with Kafka: Real-Time Analytics, Batch, ML...
Scalable E-Commerce Data Pipelines with Kafka: Real-Time Analytics, Batch, ML...HostedbyConfluent
56 vues32 diapositives

Plus de HostedbyConfluent(20)

Build Real-time Machine Learning Apps on Generative AI with Kafka Streams par HostedbyConfluent
Build Real-time Machine Learning Apps on Generative AI with Kafka StreamsBuild Real-time Machine Learning Apps on Generative AI with Kafka Streams
Build Real-time Machine Learning Apps on Generative AI with Kafka Streams
When Only the Last Writer Wins We All Lose: Active-Active Geo-Replication in ... par HostedbyConfluent
When Only the Last Writer Wins We All Lose: Active-Active Geo-Replication in ...When Only the Last Writer Wins We All Lose: Active-Active Geo-Replication in ...
When Only the Last Writer Wins We All Lose: Active-Active Geo-Replication in ...
Apache Kafka's Next-Gen Rebalance Protocol: Towards More Stable and Scalable ... par HostedbyConfluent
Apache Kafka's Next-Gen Rebalance Protocol: Towards More Stable and Scalable ...Apache Kafka's Next-Gen Rebalance Protocol: Towards More Stable and Scalable ...
Apache Kafka's Next-Gen Rebalance Protocol: Towards More Stable and Scalable ...
Using Kafka at Scale - A Case Study of Micro Services Data Pipelines at Evern... par HostedbyConfluent
Using Kafka at Scale - A Case Study of Micro Services Data Pipelines at Evern...Using Kafka at Scale - A Case Study of Micro Services Data Pipelines at Evern...
Using Kafka at Scale - A Case Study of Micro Services Data Pipelines at Evern...
Rule Based Asset Management Workflow Automation at Netflix par HostedbyConfluent
Rule Based Asset Management Workflow Automation at NetflixRule Based Asset Management Workflow Automation at Netflix
Rule Based Asset Management Workflow Automation at Netflix
Scalable E-Commerce Data Pipelines with Kafka: Real-Time Analytics, Batch, ML... par HostedbyConfluent
Scalable E-Commerce Data Pipelines with Kafka: Real-Time Analytics, Batch, ML...Scalable E-Commerce Data Pipelines with Kafka: Real-Time Analytics, Batch, ML...
Scalable E-Commerce Data Pipelines with Kafka: Real-Time Analytics, Batch, ML...
Indeed Flex: The Story of a Revolutionary Recruitment Platform par HostedbyConfluent
Indeed Flex: The Story of a Revolutionary Recruitment PlatformIndeed Flex: The Story of a Revolutionary Recruitment Platform
Indeed Flex: The Story of a Revolutionary Recruitment Platform
Forecasting Kafka Lag Issues with Machine Learning par HostedbyConfluent
Forecasting Kafka Lag Issues with Machine LearningForecasting Kafka Lag Issues with Machine Learning
Forecasting Kafka Lag Issues with Machine Learning
Getting Under the Hood of Kafka Streams: Optimizing Storage Engines to Tune U... par HostedbyConfluent
Getting Under the Hood of Kafka Streams: Optimizing Storage Engines to Tune U...Getting Under the Hood of Kafka Streams: Optimizing Storage Engines to Tune U...
Getting Under the Hood of Kafka Streams: Optimizing Storage Engines to Tune U...
Maximizing Real-Time Data Processing with Apache Kafka and InfluxDB: A Compre... par HostedbyConfluent
Maximizing Real-Time Data Processing with Apache Kafka and InfluxDB: A Compre...Maximizing Real-Time Data Processing with Apache Kafka and InfluxDB: A Compre...
Maximizing Real-Time Data Processing with Apache Kafka and InfluxDB: A Compre...
Accelerating Path to Production for Generative AI-powered Applications par HostedbyConfluent
Accelerating Path to Production for Generative AI-powered ApplicationsAccelerating Path to Production for Generative AI-powered Applications
Accelerating Path to Production for Generative AI-powered Applications
Optimize Costs and Scale Your Streaming Applications with Virtually Unlimited... par HostedbyConfluent
Optimize Costs and Scale Your Streaming Applications with Virtually Unlimited...Optimize Costs and Scale Your Streaming Applications with Virtually Unlimited...
Optimize Costs and Scale Your Streaming Applications with Virtually Unlimited...
Don’t Let Degradation Bring You Down: Automatically Detect & Remediate Degrad... par HostedbyConfluent
Don’t Let Degradation Bring You Down: Automatically Detect & Remediate Degrad...Don’t Let Degradation Bring You Down: Automatically Detect & Remediate Degrad...
Don’t Let Degradation Bring You Down: Automatically Detect & Remediate Degrad...
Go Big or Go Home: Approaching Kafka Replication at Scale par HostedbyConfluent
Go Big or Go Home: Approaching Kafka Replication at ScaleGo Big or Go Home: Approaching Kafka Replication at Scale
Go Big or Go Home: Approaching Kafka Replication at Scale
What's in store? Part Deux; Creating Custom Queries with Kafka Streams IQv2 par HostedbyConfluent
What's in store? Part Deux; Creating Custom Queries with Kafka Streams IQv2What's in store? Part Deux; Creating Custom Queries with Kafka Streams IQv2
What's in store? Part Deux; Creating Custom Queries with Kafka Streams IQv2
A Trifecta of Real-Time Applications: Apache Kafka, Flink, and Druid par HostedbyConfluent
A Trifecta of Real-Time Applications: Apache Kafka, Flink, and DruidA Trifecta of Real-Time Applications: Apache Kafka, Flink, and Druid
A Trifecta of Real-Time Applications: Apache Kafka, Flink, and Druid
From Raw Data to an Interactive Data App in an Hour: Powered by Snowpark Python par HostedbyConfluent
From Raw Data to an Interactive Data App in an Hour: Powered by Snowpark PythonFrom Raw Data to an Interactive Data App in an Hour: Powered by Snowpark Python
From Raw Data to an Interactive Data App in an Hour: Powered by Snowpark Python
Beyond Monoliths: Thrivent’s Lessons in Building a Modern Integration Archite... par HostedbyConfluent
Beyond Monoliths: Thrivent’s Lessons in Building a Modern Integration Archite...Beyond Monoliths: Thrivent’s Lessons in Building a Modern Integration Archite...
Beyond Monoliths: Thrivent’s Lessons in Building a Modern Integration Archite...
Exactly-Once Semantics Revisited: Distributed Transactions across Flink and K... par HostedbyConfluent
Exactly-Once Semantics Revisited: Distributed Transactions across Flink and K...Exactly-Once Semantics Revisited: Distributed Transactions across Flink and K...
Exactly-Once Semantics Revisited: Distributed Transactions across Flink and K...

Dernier

1st parposal presentation.pptx par
1st parposal presentation.pptx1st parposal presentation.pptx
1st parposal presentation.pptxi238212
9 vues3 diapositives
SAP Automation Using Bar Code and FIORI.pdf par
SAP Automation Using Bar Code and FIORI.pdfSAP Automation Using Bar Code and FIORI.pdf
SAP Automation Using Bar Code and FIORI.pdfVirendra Rai, PMP
22 vues38 diapositives
METHOD AND SYSTEM FOR PREDICTING OPTIMAL LOAD FOR WHICH THE YIELD IS MAXIMUM ... par
METHOD AND SYSTEM FOR PREDICTING OPTIMAL LOAD FOR WHICH THE YIELD IS MAXIMUM ...METHOD AND SYSTEM FOR PREDICTING OPTIMAL LOAD FOR WHICH THE YIELD IS MAXIMUM ...
METHOD AND SYSTEM FOR PREDICTING OPTIMAL LOAD FOR WHICH THE YIELD IS MAXIMUM ...Prity Khastgir IPR Strategic India Patent Attorney Amplify Innovation
25 vues9 diapositives
virtual reality.pptx par
virtual reality.pptxvirtual reality.pptx
virtual reality.pptxG036GaikwadSnehal
11 vues15 diapositives
20231123_Camunda Meetup Vienna.pdf par
20231123_Camunda Meetup Vienna.pdf20231123_Camunda Meetup Vienna.pdf
20231123_Camunda Meetup Vienna.pdfPhactum Softwareentwicklung GmbH
33 vues73 diapositives
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N... par
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...James Anderson
66 vues32 diapositives

Dernier(20)

1st parposal presentation.pptx par i238212
1st parposal presentation.pptx1st parposal presentation.pptx
1st parposal presentation.pptx
i2382129 vues
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N... par James Anderson
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
James Anderson66 vues
Unit 1_Lecture 2_Physical Design of IoT.pdf par StephenTec
Unit 1_Lecture 2_Physical Design of IoT.pdfUnit 1_Lecture 2_Physical Design of IoT.pdf
Unit 1_Lecture 2_Physical Design of IoT.pdf
StephenTec12 vues
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院 par IttrainingIttraining
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院
Igniting Next Level Productivity with AI-Infused Data Integration Workflows par Safe Software
Igniting Next Level Productivity with AI-Infused Data Integration Workflows Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Safe Software257 vues
Lilypad @ Labweek, Istanbul, 2023.pdf par Ally339821
Lilypad @ Labweek, Istanbul, 2023.pdfLilypad @ Labweek, Istanbul, 2023.pdf
Lilypad @ Labweek, Istanbul, 2023.pdf
Ally3398219 vues
The details of description: Techniques, tips, and tangents on alternative tex... par BookNet Canada
The details of description: Techniques, tips, and tangents on alternative tex...The details of description: Techniques, tips, and tangents on alternative tex...
The details of description: Techniques, tips, and tangents on alternative tex...
BookNet Canada126 vues
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas... par Bernd Ruecker
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...
Bernd Ruecker33 vues
From chaos to control: Managing migrations and Microsoft 365 with ShareGate! par sammart93
From chaos to control: Managing migrations and Microsoft 365 with ShareGate!From chaos to control: Managing migrations and Microsoft 365 with ShareGate!
From chaos to control: Managing migrations and Microsoft 365 with ShareGate!
sammart939 vues
DALI Basics Course 2023 par Ivory Egg
DALI Basics Course  2023DALI Basics Course  2023
DALI Basics Course 2023
Ivory Egg16 vues
HTTP headers that make your website go faster - devs.gent November 2023 par Thijs Feryn
HTTP headers that make your website go faster - devs.gent November 2023HTTP headers that make your website go faster - devs.gent November 2023
HTTP headers that make your website go faster - devs.gent November 2023
Thijs Feryn21 vues

Manage Consistent Configurations Across Multiple Kafka Environments with Nagashree B & S Vinod Kumar

  • 1. Promote, Don't Repeat! How to manage consistent configurations across multiple Kafka environments Nagashree B S Vinod Kumar Event Streaming Platform Team Fidelity Investments
  • 2. The Curse of Scale: Repetition & Inconsistency Dine in LIVE Party Order Choose Bun Type Select Patty Cheese? Veggies of choice Pack for Delivery Ready!! Customize your Burger
  • 3. Create Topic Change Topic Config Grant Access Schemas? MVP DEV The Curse of Scale: Repetition & Inconsistency QA PROD retention = 3 days retention = 2 days ACLs P C C Topic1 P0 P1 P2 Topic1 P0 P1 P2 P3 retention = 3 days Inconsistency Inconsistency ACLs Topic1 P0 P1 P2 ACLs P C
  • 4. API Management Plane 4 Cluster Topology Topic1 P1 P0 Topic Management • Create Topic • Modify Topic Configurations • Scale Topic • Delete Topic Access Data Plane • Add Producer • Add Consumer • Remove Producer • Remove Consumer Schema Management • Register Subject • Add Schemas • Remove Schemas • Change Compatibility Persist state ➢ Multi-cluster model ➢ Active-Active replication across Regions ➢ Separation of Data Plane and Management Plane API Management Plane Topic1 P1 P0
  • 5. 5 DEV QA/PERF PROD API Management Plane 5 Topic Management • Create Topic • Modify Topic Configurations • Scale Topic • Delete Topic Access Data Plane • Add Producer • Add Consumer • Remove Producer • Remove Consumer Schema Management • Register Subject • Add Schemas • Remove Schemas • Change Compatibility Persist state 5 API Management Plane ➢ Multi-cluster model ➢ Active-Active replication across Regions ➢ Separation of Data Plane and Management Plane New Creations & Updates Release & Promote
  • 6. 6 V3.0 V2.0 V1.0 Release API DEV [{ "topic_name": "Topic2", "number_of_partitions": 10, "deployment_model": "multi_region", "max_read_throughput": 10000, "max_write_throughput_bytes": 10000, "max_parallel_client_connections": 50, “scaling_ ➢ "configurations": [ { "retention.ms": 864000 }, { "min.insync.replica": 2 } ], ➢ "producers": [ { "dev_user_principal": "dev_user", "prod_user_principal": "prod_user" } ] ➢ "consumers": [ { "dev_user_principal":"dev_consumer_1", "prod_user_principal":"prod_consumer_1", "group_id": "group1" }, { "dev_user_principal": "dev_consumer_2", "prod_user_principal":"prod_conusmer_2", "group_id": "group2" } ] }] GIT Release API Application Owner Dev Kafka Cluster V1.0 V2.0 Release Snapshots DEV
  • 7. 7 PROD QA DEV Promote API QA DEV PROD Customize configs using scaling factors Customize configs using scaling factors QA is the New PROD JSON changes to be added is displayed as response Apply latest release changes to the higher env cluster Promote API Existing Resource Configs in QA Cluster ~ SRE Return JSON changes True False Release type == dryrun Incoming change Retention to 3 days JSON V2.0 QA V1.0 JSON V1.0 JSON V1.0 JSON V2.0 JSON V2.0 JSON V3.0 JSON V3.0 JSON V3.0 JSON V3.0 JSON
  • 8. Thank You! Kafka Summit London 2023 Nagashree B /bnagashree S Vinod Kumar /s-vinod-kumar F I N D Y O U R F I D E L I T Y