Nous avons mis à jour notre politique de confidentialité. Cliquez ici pour consulter les détails. Cliquez ici pour consulter les détails.
Activez votre essai gratuit de 30 jours pour accéder à une lecture illimitée
Activez votre essai gratuit de 30 jours pour continuer votre lecture.
Télécharger pour lire hors ligne
The key enhancement in the medium access control (MAC) layer is frame aggregation introduced by the
IEEE 802.11n/ac standard to accommodate the growing traffic demand in the WLAN by allowing multiple
packets aggregated per transmission. Frame aggregation efficiently reduces control overhead in the MAC
layer, such as the MAC header and thus it helps to enhance transmission efficiency and throughput
performance of WLAN. However, heterogeneous traffic demand among streams in the WLAN downlink
MU-MIMO channel creates a challenge to efficiently utilize the benefits of frame aggregation.
Transmission efficiency is also compromised during frame size setting determination because when a
frame size is larger, the impact of the overhead frame can be lower, but they are also more vulnerable to
transmission errors. Thus, this trade-off between maximizing frame size and minimizing overhead frames
should be addressed by employing an adaptive frame aggregation technique to derive the optimal frame
size that would maximize the throughput in WLAN downlink MU-MIMO channel. Moreover, when frame
aggregation approach is employed, more frames must wait before transmission in a buffer which causes a
delay in the performance of WLAN. Thus, analysing the trade-off between maximizing throughput and
minimizing delay is a critical issue that should also be addressed to enhance the performance of WLAN.
However, the majority of the existing adaptive aggregation algorithms in the WLAN downlink MU-MIMO
channel are focused to maximize the throughput or minimize the delay. The main contribution of this paper
is to propose a machine learning-based frame size optimization algorithm by extending our earlier
approach in considering the cost of delay to maximize the system throughput of WLAN. The effectiveness of
the proposed scheme is evaluated over the FIFO Baseline Approach and earlier conventional approaches
under the effects of various traffic patterns, channel conditions, and the number of STAs.
The key enhancement in the medium access control (MAC) layer is frame aggregation introduced by the
IEEE 802.11n/ac standard to accommodate the growing traffic demand in the WLAN by allowing multiple
packets aggregated per transmission. Frame aggregation efficiently reduces control overhead in the MAC
layer, such as the MAC header and thus it helps to enhance transmission efficiency and throughput
performance of WLAN. However, heterogeneous traffic demand among streams in the WLAN downlink
MU-MIMO channel creates a challenge to efficiently utilize the benefits of frame aggregation.
Transmission efficiency is also compromised during frame size setting determination because when a
frame size is larger, the impact of the overhead frame can be lower, but they are also more vulnerable to
transmission errors. Thus, this trade-off between maximizing frame size and minimizing overhead frames
should be addressed by employing an adaptive frame aggregation technique to derive the optimal frame
size that would maximize the throughput in WLAN downlink MU-MIMO channel. Moreover, when frame
aggregation approach is employed, more frames must wait before transmission in a buffer which causes a
delay in the performance of WLAN. Thus, analysing the trade-off between maximizing throughput and
minimizing delay is a critical issue that should also be addressed to enhance the performance of WLAN.
However, the majority of the existing adaptive aggregation algorithms in the WLAN downlink MU-MIMO
channel are focused to maximize the throughput or minimize the delay. The main contribution of this paper
is to propose a machine learning-based frame size optimization algorithm by extending our earlier
approach in considering the cost of delay to maximize the system throughput of WLAN. The effectiveness of
the proposed scheme is evaluated over the FIFO Baseline Approach and earlier conventional approaches
under the effects of various traffic patterns, channel conditions, and the number of STAs.
Il semblerait que vous ayez déjà ajouté cette diapositive à .
Vous avez clippé votre première diapositive !
En clippant ainsi les diapos qui vous intéressent, vous pourrez les revoir plus tard. Personnalisez le nom d’un clipboard pour mettre de côté vos diapositives.La famille SlideShare vient de s'agrandir. Profitez de l'accès à des millions de livres numériques, livres audio, magazines et bien plus encore sur Scribd.
Annulez à tout moment.Lecture illimitée
Apprenez plus vite et de façon plus astucieuse avec les meilleurs spécialistes
Téléchargements illimités
Téléchargez et portez vos connaissances avec vous hors ligne et en déplacement
Vous bénéficiez également d'un accés gratuit à Scribd!
Accès instantané à des millions de livres numériques, de livres audio, de magazines, de podcasts, et bien plus encore.
Lisez et écoutez hors ligne depuis n'importe quel appareil.
Accès gratuit à des services premium tels que TuneIn, Mubi, et bien plus encore.
Nous avons mis à jour notre politique de confidentialité pour nous conformer à l'évolution des réglementations mondiales en matière de confidentialité et pour vous informer de la manière dont nous utilisons vos données de façon limitée.
Vous pouvez consulter les détails ci-dessous. En cliquant sur Accepter, vous acceptez la politique de confidentialité mise à jour.
Merci!