SlideShare a Scribd company logo
1 of 10
Download to read offline
IOSR Journal of Computer Engineering (IOSR-JCE)
e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 14, Issue 5 (Sep. - Oct. 2013), PP 78-87
www.iosrjournals.org
www.iosrjournals.org 78 | Page
Text Extraction of Colour Images using Mathematical
Morphology & HAAR Transform
Mansi Agarwal1
, Adesh Kumar2
, Vimal Gupta3
1
(M.Tech Scholar,Computer Science & Engineering, JSS Academy of Technical Education, Noida India
2
(Assistant Professor, Department of Electronics, Instrumentation& Control Engineering, University of
Petroleum & Energy studies, Dehradun India,
3
(Assitant Professor, Department of Computer Science & Engineering, JSS Academy of Technical Education,
Noida, India,
Abstract: Digital image processing is an ever expanding and dynamic area with applications reaching out into
our daily life such as digital signature, authentication, surveillance, medicine, space exploration, automated
industry inspection and many others areas. Theseapplications are involved in different processes like image
enhancement, object detection, features extraction, colour imaging etc. Implementation of such applications on
a general purpose computer can be easier, but every time it is not efficient due to additional constraints on
memory and other peripheral devices. Out of the five senses – sight, hearing, touch, smell and taste, humans use
to perceive their environment. Among all,sight of images is the most powerful. More than 99% of the activity of
the human brain is involved in processing images from the visual cortex. A visual image is rich in information.
There is an efficient yet simple method to extract text regions from video sequences or static images. The speed
of Haar discrete wavelet transform (DWT) operates the fastest among all wavelets because its coefficients are
either 1 or -1. It is one of the reasons that Haar DWT is used to detect edges of candidate text regions. Image
sub bands contain both text edges and non-text edges. The intensity of the text edges is also different from that of
the non-text edges. Therefore, thresholdingis used to preliminary remove the non-text edges. Text regions of
colour images are composed of horizontal edges, vertical edges and diagonal edges. Morphological dilation
operators as AND, OR are applied to connect isolated text edges of each detail component sub-band in a
transformed binary image. The simulation is carried out on MATLAB 2012 image processing tool.
Keywords: Discrete Wavelet Transform (DWT), HAAR Transform, Mathematical Morphology
I. Introduction
Integrated image capture, processing, and communication power on a compact, portable, hand-held
device is attracting and has increased interest from computer vision researchers with a goal of applying a diverse
collection of vision tasks on the small hand held device. Thetrend of vision applications is focused on camera
phones and proposes solutions to the major technical challenges involving mobile vision and pattern
recognition.Recent studies in the field of computer vision and pattern recognition show a great amount
of interest in content retrieval from images and videos. This content can be in the form of objects, texture, color,
shape as well as the relationshipsbetween them. The semantic information provided by an image can be
useful for content based image retrieval, as well as for indexing and classification purposes . As statedby
Jung, Kim and Jain in [4], text data is particularly interesting, because text can be used to easily and clearly
describe the contents of an image. Text data can be embedded into an image or video in different font styles,
sizes, colors, orientations and against a complex background, the problem of extracting the candidate text region
becomes a challenging one. Also, current Optical Character Recognition (OCR) techniques can only handle text
against a plain monochrome background and cannot extract text from a textured or complex background.
Different approaches for the extraction of text regions from images have been proposed based on basic
properties of text. Text has some common distinctive characteristics in terms of frequency, spatial cohesion
and orientation information. Spatial cohesion refers to the fact that text characters of the same string appear
close to each other and are of similar height, orientation and spacing. Two of the main methods commonly
used to determine spatial cohesion are based on edge [1] [2] and connected component [3] features of text
characters. The fact that an image can be divided into categories depending on whether or not it
contains any text data can also be used to classify candidate text regions. Thus other methods for text
region detection, utilize classification techniques such as support vector machines, k-means clustering [7]
and neural network based classifiers [10]. The algorithmproposed in [8] uses the focus of attention mechanism
from visual perception to detect text regions. Text in images and video sequences pro-vide highly condensed
information about thecontents of the images or videos sequencesand can be used for video browsing/retrievalin
a large video database. Although texts provide important information about images or video sequences.
Detection and segmentation of video or image sequences is not an easy problem. Text extraction is not easy for
Text Extraction of Colour Images using Mathematical Morphology & HAAR Transform
www.iosrjournals.org 79 | Page
the following reasons. First of all, text sizes may vary from smaller to big and text fonts may vary in a wide
range as well.Secondly, texts present in an image or a videosequence may have multiple colors and appear in
very much cluttered background.
Many papers about the extraction of texts from static image or video sequence have been published in
recent years. Those methods for texts extraction can be classified as either component based or texture based. In
component based text extraction methods, different text regions are detected by analyzing the edges of the
candidate regions or homogenous color/grayscale components that contain the characters. For example, Park et
al. [1] detected eight orientations of edge pixels in the documents using prewitt masks. In imaging, edge pixels
can be classified as either diagonal directional or axial directional. They dilate two kinds of edge pixels using
morphological dilation operators. Logical AND is applied to these two edges to obtain the real text regions.
Zhong et al. [2] located bounding boxesaround text components using the horizontal spatial variance. Non text
regions have lower horizontal spatial variance than that of candidate text regions. The connected components in
each candidate text region are of the same color intensity. They determined the color of texts and locate text
components in each candidate text region. Finally, real text components are filled in each candidate text region.
Chen et al. [3] detected vertical edges and horizontal edges in an image and dilated two kinds of edges using
different dilation operators. The logical AND operator is performed on dilated vertical edges and dilated
horizontal edges to obtain candidate text regions. Real Text regions are then identified using support vector
machine. Text regions usually have a special texture because they consist of identical character components.
These components also contrast the background and hence text regions have a periodic horizontal intensity
variation due to the horizontal alignment of characters. As a result, text regions can be segmented using texture
features. For example, Stephen et al. [4] did the segmentation and labeling of block using the connected
component analysis. Paul et al [5] segmented and classified texts in a newspaper by generic texture analysis.
Small masks are applied to obtain local textural characteristics.
Most of the text extraction methods were applied to uncompressed images. Few of them proposed to
extract texts in the compressed version of images. Zhong et al. [6] extracted captions from the compressed
videos (MPEG video and JPEG image) based on Discrete Cosine Transform (DCT). DCT detects edges in
different directions from the candidate image. Edge regions containing texts are then detected using a threshold
afterward. Acharyya et al. [7] segmented texts in the document images based on wavelet scale-space features.
The method used the M-band wavelet which decomposes an image into some MΓ—M band pass channels so as to
detect the text regions easily. The intensity of the candidate text edges are used to recognize the real text regions
in an M-band image.
Research objective is to extract the text form the colored images using image processing tool. The
extraction of text is carried out from any image using Haar Transform. Character reorganization from the image
and character extraction form the colored image is also the objective of image extraction.A method to extract
texts in images or video sequences using Haar discrete wavelet transform (Haar DWT) is also presented. The
edges detection is accomplished by using 2-D Haar DWT and some of the non-text edges are removed using
thresholding. After it, different morphological dilation operators to connect the isolated candidate text edges in
each detail component sub-band of the binary image. Morphological dilation operators also extract the
characters from the images using mathematical morphological and templates.
II. Mathematical Morphology
Mathematical morphology (MM) [1] is a nonlinear branch of the signal processing field and concerns
the application of set theory concepts to image analysis and processing. Morphology refers to the study of
shapes and structures from a general scientific perspective. Geometric features of images are modified using
morphological filters or operators as nonlinear transformations. These operators transform the original image
into another image through the iteration with other image of a certain shape and size which is known as
structuring element.In general, the structuring element is a set that describes a simple shape that probes an input
image. Morphological filters are based on morphological opening and morphological closing with structuring
elements. The present filters have several inconveniences in some situations. The image structure is changed
general, if undesirable features are eliminated.On the other hand, an image by reconstruction [5][7]has become a
powerful tool that enables us to eliminate undesirable features without necessarily affecting desirable properties.
From a practical perspective images by reconstruction are built by means of a reference image, background and
foreground markers. In the paper morphological image reconstruction based algorithm are used to obtain the
results better than general opening (resp., closing)by reconstruction and to avoid some of the
inconveniences.Image segmentation is one of the most important categories of image processing. The main
purpose of image segmentation is to divide an original image into homogeneous regions. Image segmentation
can be applied as a preprocessing stage for other image processing methods. Several approaches are available
for image segmentation methods for image processing.
Text Extraction of Colour Images using Mathematical Morphology & HAAR Transform
www.iosrjournals.org 80 | Page
2.1 Features of Morphology
The term morphology refers to the study of shapes and structures from a general scientific perspective.
It is also interpreted as shape study using mathematical set theory. In image processing, morphology is the name
of a specific methodology for analyzing the geometric structure inherent within an image. The morphological
filter, which can be constructed on the basis of the underlying morphological operations, can be more suitable
for shape analysis than the standard linear filters since the latter sometimes distort the underlying geometric
form of the image.In general, morphological operators transform the original image into another image through
the interaction with the other image of a certain shape and size, which is known as the structuring element. The
geometric features of an image that are similar in shape and size to the structuring element are preserved.But
other features of image are suppressed default. Therefore, morphological operations can simplify the image data,
preserving their characteristics, shape and eliminate irrelevancies. In view of applications, morphological
operations can be employed for many purposes including segmentation, edge detection, and enhancement of
images. Mathematical morphology is based on geometry. Set theory is the theoretical foundations of
morphological image processing and the mathematical theory of order. General idea to solve the problem for an
image is the use of template shape, which are called structuring elements to quantify the manner in which the
structuring element fits within a given image.
(a) Two image A and B (b) Union (c) Intersection
(d) Complement (e) Difference (f) Reflection of B (g) Translation
Fig. 1 Set Theory operations [11]
Union
The union of two images A and B is written as 𝐴 βˆͺ 𝐡. The meaning of 𝐴 βˆͺ 𝐡 is that it is a set whose elements
are either the elements of A or B or of both. The definition is given by
𝐴 βˆͺ 𝐡 = def⁑{π‘₯ π‘₯ ∈ 𝐴 π‘œπ‘Ÿ π‘₯ ∈ 𝐡
Intersection
The union of two images A and B is written as 𝐴 ∩ 𝐡. The meaning of 𝐴 ∩ 𝐡 is that it is a set whose elements
are common to both images A or B. The definition is given by
𝐴 ∩ 𝐡 = def⁑{π‘₯ π‘₯ ∈ 𝐴 π‘Žπ‘›π‘‘ π‘₯ ∈ 𝐡}
Difference
The difference of two images A and B is written as 𝐴 βˆ’ 𝐡. The difference 𝐴 βˆ’ 𝐡 subtracts from image A which
are in image B. It is also called the relative complement of B relative to A. The definition is given by
𝐴 βˆ’ 𝐡 = def⁑{π‘₯ π‘₯ ∈ 𝐴 π‘Žπ‘›π‘‘ π‘₯ βˆ‰ 𝐡}
Complement
The complement of image A is written Ac
. In complement set it is consisting which is not available in image A.
The definition is given by
𝐴𝑐
= def⁑{π‘₯ π‘₯ βˆ‰ 𝐴}
Reflection
The refection of an image B can be defined as
𝐡1 = { 𝑀 𝑀 = βˆ’π‘ π‘“π‘œπ‘Ÿ 𝑏 ∈ 𝐡}
Text Extraction of Colour Images using Mathematical Morphology & HAAR Transform
www.iosrjournals.org 81 | Page
Translation
In translation the origin of an image A is shifted to some points, can be defined as
𝐴1 = { 𝑐 𝑐 = π‘Ž + 𝑧 π‘“π‘œπ‘Ÿ π‘Ž ∈ 𝐴}
Figure 1 shows the all set operations sequentially.
2.2 Logical Operations
OR operation is similar to the union operation. AND operation is similar to intersection operation. Not
operation is similar to complement operation. If the pixels of image A and B are complement to each other,
then the resultant image pixel is black, else the resultant pixel is white.
(a) Not operation of A
(b) AND operation
(c) OR operation
(d) XOR logic
Fig. 2 Logical operations [11]
2.3.1 Binary Dilation
Definition: Binary Dilation
With A and B assets in Z
2
, the dilation of A by B (usually A is an image and B is the structuring element),
denoted by AβŠ•B, is defined as
AβŠ•B= { z Π„ Z
2
β”‚z= a + b , for a Π„ A and b Π„ B}
Dilationis defined as a union of translation of the original image with respect to the structuring element.
AβŠ•B = (𝐴)𝑏𝑏Є𝐡
Fig. 3 Illustration of Binary Dilation on Digital Setting Dilation is found by placing the center of the
template over each of the foreground pixels of the original image and then taking the union of all the
resulting copies of the structuring element using translation.
Text Extraction of Colour Images using Mathematical Morphology & HAAR Transform
www.iosrjournals.org 82 | Page
From figure 3, it is clear how dilation modifies the original image with respect to the shape of the
structuring element. Dilation generally has an effect of expanding an image; so consequently, small holes inside
foreground can be filled.In another sense, dilation can be a morphological operation on a binary image defined
as
AβŠ•B = { Z β”‚ (𝐡) z  A β‰  βˆ…}
This equation is based on obtaining the reflection of B about its origin and shifting this reflection by Z.
In dilation the set of all displacements such that B and A overlap with A by B isusing at least one element.Based
on this interpretation, the equation above may be written as
AβŠ•B = {Z β”‚[ (𝐡) z  A] C 𝐴}
Although dilation is based on set theory, but convolution is based on arithmetic operations, the basic process
β€œflipping” B about its origin and successively β€œdisplacing” it so that it slides over set Ais analogous to the
convolution process. Even though dilation of an image A by structuring element B can be defined in several
ways, all definitions have the same meaning and results in the same output.
2.3.2 Binary Erosion
Definitions: Binary Erosion
Erosion of a binary image A by structuring element B, denoted by AΘB, is defined as
AΘB = {Zβ”‚ Z+ b Π„ A ,βˆ€ b Π„B}
Whereas image dilation can be represented as a union of translates, erosion can be represented as an intersection
of the negative translates. Erosion can be redefined as
AΘB = π΄π‘βˆˆπ΅ βˆ’ 𝑏
Where β€žβ€“bβ€Ÿ is the scalar multiple of the vector b by -1. Figure 4 shows the binary erosion.
Fig.4 Illustration of binary erosion on digital setting
The erosion of the original image by the structuring element can be described intuitively by template translation
as seen in the dilation process. Erosion shrinks the original image and eliminates small enough peaks.
2.3.3 Binary opening
Definition: Binary Opening
Opening is a morphological operation based on erosion and dilation. The opening of a binary image A
by the structuring element B, denoted by (𝐴 ∘ 𝐡) is defined
𝐴 ∘ 𝐡 = 𝐴 ⊝ 𝐡 βŠ• 𝐡
First erode A by B, and then dilate the result by B. In other words, opening is the unification of all B
objects entirely contained in A. Figure 5 shows the opening of two images A and B.
(a)
(b)
Text Extraction of Colour Images using Mathematical Morphology & HAAR Transform
www.iosrjournals.org 83 | Page
Fig. 5 (a) input image A and B (b) erosion(c) Opening [11]
2.3.4 Closing
The closing is the opposite of opening. In opening dilation operation is followed by an erosion process.
First, dilate A by B, and then erode the result by B. In other words, closing is the group of points, which the
intersection of object B around them with object A is not empty. Figure 6 shows the closing of two images A
and B.
𝐴 βˆ™ 𝐡 = 𝐴 βŠ• 𝐡 βŠ• 𝐡
(a)
(b)
(C)
Fig. 6(a) image A and B (b) Dilation process (c) Closing [11]
III. Haar Transform & Image Extraction
In Haar Transform, is a method to extract texts in images using Haar discrete wavelet transform (Haar
DWT). The edges detection is accomplished by using 2-D Haar DWT and some of the non-text edges are
removed using thresholding. In the DWT transform, an image signal can be analyzed by passing it through an
analysis filter bank followed by decimation operation. This filter is the combination of a low pass filter and high
pass filter at each decomposition level.
Text Extraction of Colour Images using Mathematical Morphology & HAAR Transform
www.iosrjournals.org 84 | Page
Fig.7 Haar Transform decomposition
. When the signal passes through these filters, it splits into bands. The coarse information is extracted by the
low pass filter which corresponds to an averaging operation. The detail information of the signal is extracted by
high pass filter because it is corresponds to differencing operation. Two dimensional transform is done by the
separation of 1D transforms and output of image is decimated by 2, first with respect to row and then following
the filtering of sub images. Now sub images are separated by 2 with respect to column. Afterward, we use
different morphological dilation operators to connect the isolated candidate text edges in each detail component
sub-band of the binary image. Although the color component may differ in a text region but the information
about colors does not help extracting texts from images. For gray-level image, input image is processed directly
starting at discrete wavelet transform. This operation separates the image into four possible bands LL, LH, HL
and HH respectively.
..
Fig. 8 Flow chart of the proposed text
If the input image is colored, its RGB components are combined to give an intensity image Y as
follows
Y = 0.299R + 0.587 G + 0.114 B …….(1)
Image Y is then processed with discrete wavelet transform and the whole extraction algorithm
afterward. The flow chart of the proposed algorithm is shown in figure 8. If the input image itself is stored in the
DWT compressed form, DWT operation can be omitted in the proposed algorithm.
3.1 Haar discrete wavelet transform
The discrete wavelet transform is a very useful tool for signal processing and image analysis especially
in multi-resolution representation. In DWT signals are decomposed into different components in the frequency
domain. 1-D DWT decomposes an input sequence into two components the average component and the detail
component by calculations with a low-pass filter and a high-pass filter [9]. Two-dimensional discrete wavelet
Text Extraction of Colour Images using Mathematical Morphology & HAAR Transform
www.iosrjournals.org 85 | Page
transform (2-D DWT) decomposes an input image into four sub-bands, one average component (LL) and three
detail components (LH, HL, HH) as shown in figure 9. In image processing, the multi-resolution of 2-D DWT
has been employed to detect edges of an original image. However, 2-D DWT can detect three kinds of edges at
a time while traditional edge detection filters cannot. As shown in figure 10the traditional edge detection filters
detect three kinds of edges by using four kinds of mask operators. Therefore, processing times of the traditional
edge detection filters is slower than 2-D DWT.
LL HL
LH HH
Fig. 9 2-D DWT decomposition scheme
Figure 10 shows a gray level image. The 9-7 taps DWT filters decompose this gray image into four sub-
bands as shown in Figure 10 (b). As we can see, three kinds of edges present in the detail component sub-bands
but look unobvious. The detected edges in image become more obvious and the processing time decreases, if we
replace the 9-7 taps DWT filters with Haar DWT. The operation for Haar DWT is simpler than that of any other
wavelets and applied to image processing especially in multi-resolution representation. Haar DWT has the
following important features [17].
ο‚· Haar wavelets are real, symmetric and orthogonal.
ο‚· Its boundary conditions are the simplest among all wavelet-based methods.
ο‚· The minimum support property allows arbitrary spatial grid intervals.
ο‚· It can be used to analyze texture and detect edges of characters.
ο‚· The high-pass filter and the low-pass filter coefficientsare simple (either 1 or –1).
Figure 11 shows an example of 256 x 256 images, in which it is divided into 128 x 128 LL, LH, HL and LL
bands. Further the image is divided into 64 x 64 LLLL, LLLH, LLHL and LLHH bands as shown in figure 12
(a) and (b).
Fig. 10 Traditional edge detection using mask operation
Fig.11 Decomposition scheme of Haar Transform
Text Extraction of Colour Images using Mathematical Morphology & HAAR Transform
www.iosrjournals.org 86 | Page
Fig. 12(a) Original gray image (b) DWT coefficients
Figure 13 (a) matrix shows the example of a 4Γ—4 colour image. The wavelet coefficients can be
obtained in gray-level image using addition and subtraction. 2-D DWT is achieved by two ordered 1-D DWT
operations based on row and column values. First of all, row operation is performed to obtain the result shown
in figure 13 (b)matrix. Then it is transformed by the column operation and the final resulted 2-D Haar DWT is
shown in Figure 13(c) matrix. 2-D Haar DWT decomposes a gray-level image into one average component sub-
band and three detail component sub-bands.
π‘Ž 𝑏
𝑒 𝑓
𝑐 𝑑
𝑔 𝑕
𝑖 𝑗
π‘š 𝑛
π‘˜ 𝑙
π‘œ 𝑝
(π‘Ž + 𝑏) (𝑐 + 𝑑)
(𝑒 + 𝑓) (𝑔 + 𝑕)
(π‘Ž βˆ’ 𝑏) (𝑐 βˆ’ 𝑑)
(𝑒 βˆ’ 𝑓) (𝑔 βˆ’ 𝑕)
(𝑖 + 𝑗) (π‘˜ + 𝑙)
(π‘š + 𝑛) (π‘œ + 𝑝)
(𝑖 βˆ’ 𝑗) (π‘˜ βˆ’ 𝑙)
(π‘š βˆ’ 𝑛) (π‘œ βˆ’ 𝑝)
π‘Ž + 𝑏 + (𝑒 + 𝑓) 𝑐 + 𝑑 + (𝑔 + 𝑕)
𝑖 + 𝑗 + (π‘š + 𝑛) π‘˜ + 𝑙 + (π‘œ + 𝑝)
π‘Ž βˆ’ 𝑏 + (𝑒 βˆ’ 𝑓) 𝑐 βˆ’ 𝑑 + (𝑔 βˆ’ 𝑕)
𝑖 βˆ’ 𝑗 + (π‘š βˆ’ 𝑛) π‘˜ βˆ’ 𝑙 + (π‘œ βˆ’ 𝑝)
π‘Ž + 𝑏 βˆ’ (𝑒 + 𝑓) 𝑐 + 𝑑 βˆ’ (𝑔 + 𝑕)
𝑖 + 𝑗 βˆ’ (π‘š + 𝑛) π‘˜ + 𝑙 βˆ’ (π‘œ + 𝑝)
π‘Ž βˆ’ 𝑏 βˆ’ (𝑒 βˆ’ 𝑓) 𝑐 βˆ’ 𝑑 βˆ’ (𝑔 βˆ’ 𝑕)
𝑖 βˆ’ 𝑗 βˆ’ (π‘š βˆ’ 𝑛) π‘˜ βˆ’ 𝑙 βˆ’ (π‘œ βˆ’ 𝑝)
Figure 13 Matrixes (a) The original image (b) the row operation of 2-D Haar DWT and (c) column
IV. Result & Discussion
The simulation work of MATLAB text extraction is tested on different jpg and bmp colour images and
the text extraction is done successfully. For different test cases the results are shown the figure 14.
Haar Transform is a good method to transform the text from the colour images. A method of text
extraction from images is proposed using the Haar Discrete Wavelet Transform, the Sobel edge detector, the
weighted OR operator, thresholding and the morphological dilation operator. Mathematical morphological
techniques are used for the detection of text and characters. We have created the templates for the all characters
and these templates are used for the edge detection using mathematical morphological operators. These
mathematical tools are integrated to detect the text regions from the complicated images. The proposed method
is robust against language and font size of the texts. The proposed method is also used to decompose the blocks
including multi-line texts into single line text. According to the experimental results, the proposed method is
proved to be efficient for extracting the text regions from the images. In future we can use the techniques to
extract the special characters and large volume of data.
(a) (b)
Text Extraction of Colour Images using Mathematical Morphology & HAAR Transform
www.iosrjournals.org 87 | Page
(c) (d) (e)
(f) (g)
Fig. 14 Tested images for text and character extraction
V. Conclusion
The text extraction on the colour images using mathematical morphology and Haar DWT is done
successfully. Applications of text extraction are huge including the making of digital copies of the ancient
scripture to everyday life bills etc. It may be required to be of digital form. This setup can be used to recover
textual information from surveillance footage, satellite imaging, tollbooth as in a hybrid approach is used to
extract textual information form a video scene. Major application of it is that it can be used in license plate
recognition of a vehicle as in an approach to determine license plate number. In the future work we can explore
the techniques to recognize the special characters from colour images.
References
[1] Xiaoqing Liu and JagathSamarabandu, An Edge-based text region extraction algorithm for Indoor mobile robot navigation,
Proceedings of the IEEE, July 2005.
[2] Xiaoqing Liu and JagathSamarabandu, Multiscale edge-based Text extraction from Complex images, IEEE, 2006.
[3] JulindaGllavata, Ralph Ewerth and Bernd Freisleben, A Robust algorithm for Text detection in images, Proceedings of the 3rd
international symposium on Image and Signal Processing and Analysis, 2003.
[4] Keechul Jung, KwangIn Kim and Anil K. Jain, Text information extraction in images and video: a survey, The journal of the Pattern
Recognition society, 2004.
[5] Kongqiao Wang and Jari A. Kangas, Character location in scene images from digital camera, The journal of the Pattern
Recognition society, March 2003.
[6] K.C. Kim, H.R. Byun, Y.J. Song, Y.W. Choi, S.Y. Chi, K.K. Kim and Y.K Chung, Scene Text Extraction in Natural Scene
Images using Hierarchical Feature Combining and verification, Proceedings of the 17thInternational Conference on Pattern
Recognition (ICPR β€Ÿ04), IEEE.
[7] Victor Wu, RaghavanManmatha, and Edward M. Riseman, TextFinder: An Automatic System to Detect and Recognize
Text in Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 21, No. 11, November 1999.
[8] Xiaoqing Liu and JagathSamarabandu, A Simple and Fast Text Localization Algorithm for Indoor Mobile Robot
Navigation, Proceedings of SPIE-IS&T Electronic Imaging, SPIE Vol. 5672, 2005.
[9] Qixiang Ye, Qingming Huang, Wen Gao and Debin Zhao, Fast and Robust text detection in images and video frames, Image
and Vision Computing 23, 2005.
[10] Rainer Lienhart and Axel Wernicke, Localizing and Segmenting Text in Images and Videos, IEEE Transactions on Circuits and
Systems for Video Technology, Vol.12, No.4, April 2002.
[11] R.C. Gonzales and R.E. Woods, Digital Image Processing, Addison-Wesley, Reading, 1992.
[12] J.D. Foley, A. van Dam, S.K. Feiner and J.F. Hughes, Computer Graphics, Principles and Practice, Addison-Wesley, Reading,
1990.
[13] Park, C. J., Moon, K. A., Oh, Weon- Geun, and Choi, H. M. 2000. An efficient of character string positions using morphological
operator. IEEE International Conference on Systems, Man, and Cybernetics, 3, 8-11: 1616-1620.
[14] Zhong, Yu., Karu, K., and Jain, A.K. 1995. Locating text in complex color images. Proceedings of the Third International
Conference on Document Analysis and Recognition, 1, 14-16: 146-149.
[15] Chen, Datong, Bourlard, H., and Thiran J. P., 2001. Text identification in complex background using SVM. IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, Proceedings of the 2001, 2, 8-14:621-626.
[16] Lam, S. W., Wang, D., and Srihari, S. N., 1990. Reading newspaper text.International Conference on Pattern Recognition
Proceedings, 10th. I, 16-21: 703-705.
[17] W. Sowmya, Roy PailyIn, β€œFPGA implementation of Image Enhancement Algorithm” International conference on Communication
and signal processing(ICCSP) IEEE pp 584-588, 2011
[18] K. Sri Rama Krishna, A. Guruva Reddy, M. N. Giri Prasad β€œA Fault Tolerant FPGA based image Enhancement Filter using Self
Healing Algorithm” International Journal of Engineering Science and Technology Vol 2, pp 4922-4928 2010.
[19] ArnabSinha and SumanaGupta,β€œA Fast Nonparametric Non causal MRF-Based Texture Synthesis Scheme Using a Novel FKDE
Algorithm” IEEE Transactions on Image Processing, No.3, March 2010.
[20] Yuichi Tanaka,Madoka Hasegawa, Shigeo Kato, Masaaki Ikehara, and Truong Q. Nguyen, β€œAdaptive Directional Wavelet
Transform Based on Directional Pre filtering”, IEEE Transactions on Image Processing, Volume 19, No.4, April 2010.

More Related Content

What's hot

A Survey On Thresholding Operators of Text Extraction In Videos
A Survey On Thresholding Operators of Text Extraction In VideosA Survey On Thresholding Operators of Text Extraction In Videos
A Survey On Thresholding Operators of Text Extraction In VideosCSCJournals
Β 
Das09112008
Das09112008Das09112008
Das09112008sunnyjohn
Β 
A Texture Based Methodology for Text Region Extraction from Low Resolution Na...
A Texture Based Methodology for Text Region Extraction from Low Resolution Na...A Texture Based Methodology for Text Region Extraction from Low Resolution Na...
A Texture Based Methodology for Text Region Extraction from Low Resolution Na...CSCJournals
Β 
A comparative study on content based image retrieval methods
A comparative study on content based image retrieval methodsA comparative study on content based image retrieval methods
A comparative study on content based image retrieval methodsIJLT EMAS
Β 
A Survey on Portable Camera-Based Assistive Text and Product Label Reading Fr...
A Survey on Portable Camera-Based Assistive Text and Product Label Reading Fr...A Survey on Portable Camera-Based Assistive Text and Product Label Reading Fr...
A Survey on Portable Camera-Based Assistive Text and Product Label Reading Fr...IRJET Journal
Β 
Improved wolf algorithm on document images detection using optimum mean techn...
Improved wolf algorithm on document images detection using optimum mean techn...Improved wolf algorithm on document images detection using optimum mean techn...
Improved wolf algorithm on document images detection using optimum mean techn...journalBEEI
Β 
Text extraction from natural scene image, a survey
Text extraction from natural scene image, a surveyText extraction from natural scene image, a survey
Text extraction from natural scene image, a surveySOYEON KIM
Β 
Self-Directing Text Detection and Removal from Images with Smoothing
Self-Directing Text Detection and Removal from Images with SmoothingSelf-Directing Text Detection and Removal from Images with Smoothing
Self-Directing Text Detection and Removal from Images with SmoothingPriyanka Wagh
Β 
Scene Text Detection of Curved Text Using Gradiant Vector Flow Method
Scene Text Detection of Curved Text Using Gradiant Vector Flow MethodScene Text Detection of Curved Text Using Gradiant Vector Flow Method
Scene Text Detection of Curved Text Using Gradiant Vector Flow MethodIJTET Journal
Β 
An implementation of novel genetic based clustering algorithm for color image...
An implementation of novel genetic based clustering algorithm for color image...An implementation of novel genetic based clustering algorithm for color image...
An implementation of novel genetic based clustering algorithm for color image...TELKOMNIKA JOURNAL
Β 
Cc31331335
Cc31331335Cc31331335
Cc31331335IJMER
Β 
IRJET-MText Extraction from Images using Convolutional Neural Network
IRJET-MText Extraction from Images using Convolutional Neural NetworkIRJET-MText Extraction from Images using Convolutional Neural Network
IRJET-MText Extraction from Images using Convolutional Neural NetworkIRJET Journal
Β 
IRJET- A Survey on MSER Based Scene Text Detection
IRJET-  	  A Survey on MSER Based Scene Text DetectionIRJET-  	  A Survey on MSER Based Scene Text Detection
IRJET- A Survey on MSER Based Scene Text DetectionIRJET Journal
Β 
Comparative analysis of c99 and topictiling text segmentation algorithms
Comparative analysis of c99 and topictiling text segmentation algorithmsComparative analysis of c99 and topictiling text segmentation algorithms
Comparative analysis of c99 and topictiling text segmentation algorithmseSAT Journals
Β 
Comparative analysis of c99 and topictiling text
Comparative analysis of c99 and topictiling textComparative analysis of c99 and topictiling text
Comparative analysis of c99 and topictiling texteSAT Publishing House
Β 
Graph fusion of finger multimodal biometrics
Graph fusion of finger multimodal biometricsGraph fusion of finger multimodal biometrics
Graph fusion of finger multimodal biometricsAnu Antony
Β 
Multilabel Image Annotation using Multimodal Analysis
Multilabel Image Annotation using Multimodal AnalysisMultilabel Image Annotation using Multimodal Analysis
Multilabel Image Annotation using Multimodal Analysisijtsrd
Β 

What's hot (19)

A Survey On Thresholding Operators of Text Extraction In Videos
A Survey On Thresholding Operators of Text Extraction In VideosA Survey On Thresholding Operators of Text Extraction In Videos
A Survey On Thresholding Operators of Text Extraction In Videos
Β 
Das09112008
Das09112008Das09112008
Das09112008
Β 
A Texture Based Methodology for Text Region Extraction from Low Resolution Na...
A Texture Based Methodology for Text Region Extraction from Low Resolution Na...A Texture Based Methodology for Text Region Extraction from Low Resolution Na...
A Texture Based Methodology for Text Region Extraction from Low Resolution Na...
Β 
E1803012329
E1803012329E1803012329
E1803012329
Β 
A comparative study on content based image retrieval methods
A comparative study on content based image retrieval methodsA comparative study on content based image retrieval methods
A comparative study on content based image retrieval methods
Β 
A Survey on Portable Camera-Based Assistive Text and Product Label Reading Fr...
A Survey on Portable Camera-Based Assistive Text and Product Label Reading Fr...A Survey on Portable Camera-Based Assistive Text and Product Label Reading Fr...
A Survey on Portable Camera-Based Assistive Text and Product Label Reading Fr...
Β 
Improved wolf algorithm on document images detection using optimum mean techn...
Improved wolf algorithm on document images detection using optimum mean techn...Improved wolf algorithm on document images detection using optimum mean techn...
Improved wolf algorithm on document images detection using optimum mean techn...
Β 
Text extraction from natural scene image, a survey
Text extraction from natural scene image, a surveyText extraction from natural scene image, a survey
Text extraction from natural scene image, a survey
Β 
Self-Directing Text Detection and Removal from Images with Smoothing
Self-Directing Text Detection and Removal from Images with SmoothingSelf-Directing Text Detection and Removal from Images with Smoothing
Self-Directing Text Detection and Removal from Images with Smoothing
Β 
Scene Text Detection of Curved Text Using Gradiant Vector Flow Method
Scene Text Detection of Curved Text Using Gradiant Vector Flow MethodScene Text Detection of Curved Text Using Gradiant Vector Flow Method
Scene Text Detection of Curved Text Using Gradiant Vector Flow Method
Β 
An implementation of novel genetic based clustering algorithm for color image...
An implementation of novel genetic based clustering algorithm for color image...An implementation of novel genetic based clustering algorithm for color image...
An implementation of novel genetic based clustering algorithm for color image...
Β 
Cc31331335
Cc31331335Cc31331335
Cc31331335
Β 
IRJET-MText Extraction from Images using Convolutional Neural Network
IRJET-MText Extraction from Images using Convolutional Neural NetworkIRJET-MText Extraction from Images using Convolutional Neural Network
IRJET-MText Extraction from Images using Convolutional Neural Network
Β 
IRJET- A Survey on MSER Based Scene Text Detection
IRJET-  	  A Survey on MSER Based Scene Text DetectionIRJET-  	  A Survey on MSER Based Scene Text Detection
IRJET- A Survey on MSER Based Scene Text Detection
Β 
40120140501009
4012014050100940120140501009
40120140501009
Β 
Comparative analysis of c99 and topictiling text segmentation algorithms
Comparative analysis of c99 and topictiling text segmentation algorithmsComparative analysis of c99 and topictiling text segmentation algorithms
Comparative analysis of c99 and topictiling text segmentation algorithms
Β 
Comparative analysis of c99 and topictiling text
Comparative analysis of c99 and topictiling textComparative analysis of c99 and topictiling text
Comparative analysis of c99 and topictiling text
Β 
Graph fusion of finger multimodal biometrics
Graph fusion of finger multimodal biometricsGraph fusion of finger multimodal biometrics
Graph fusion of finger multimodal biometrics
Β 
Multilabel Image Annotation using Multimodal Analysis
Multilabel Image Annotation using Multimodal AnalysisMultilabel Image Annotation using Multimodal Analysis
Multilabel Image Annotation using Multimodal Analysis
Β 

Viewers also liked

DESIGN OF A MODE DECOUPLING FOR VOLTAGE CONTROL OF WIND-DRIVEN IG SYSTEM
DESIGN OF A MODE DECOUPLING FOR VOLTAGE CONTROL OF WIND-DRIVEN IG SYSTEMDESIGN OF A MODE DECOUPLING FOR VOLTAGE CONTROL OF WIND-DRIVEN IG SYSTEM
DESIGN OF A MODE DECOUPLING FOR VOLTAGE CONTROL OF WIND-DRIVEN IG SYSTEMIOSR Journals
Β 
An effective citation metadata extraction process based on BibPro parser
An effective citation metadata extraction process based on BibPro parserAn effective citation metadata extraction process based on BibPro parser
An effective citation metadata extraction process based on BibPro parserIOSR Journals
Β 
Scalability Enhancement of Push/Pull Server functions by converting Stateless...
Scalability Enhancement of Push/Pull Server functions by converting Stateless...Scalability Enhancement of Push/Pull Server functions by converting Stateless...
Scalability Enhancement of Push/Pull Server functions by converting Stateless...IOSR Journals
Β 
An Overview of TRIZ Problem-Solving Methodology and its Applications
An Overview of TRIZ Problem-Solving Methodology and its ApplicationsAn Overview of TRIZ Problem-Solving Methodology and its Applications
An Overview of TRIZ Problem-Solving Methodology and its ApplicationsIOSR Journals
Β 
A Video Watermarking Scheme to Hinder Camcorder Piracy
A Video Watermarking Scheme to Hinder Camcorder PiracyA Video Watermarking Scheme to Hinder Camcorder Piracy
A Video Watermarking Scheme to Hinder Camcorder PiracyIOSR Journals
Β 
Two Factor Authentication Using Smartphone Generated One Time Password
Two Factor Authentication Using Smartphone Generated One Time PasswordTwo Factor Authentication Using Smartphone Generated One Time Password
Two Factor Authentication Using Smartphone Generated One Time PasswordIOSR Journals
Β 
Decadence Strategy
Decadence StrategyDecadence Strategy
Decadence StrategyKeely Galgano
Β 
The Wind Powered Generator
The Wind Powered GeneratorThe Wind Powered Generator
The Wind Powered GeneratorIOSR Journals
Β 
Voltage Enhancement in Distribution System using Voltage Improvement Factor
Voltage Enhancement in Distribution System using Voltage Improvement FactorVoltage Enhancement in Distribution System using Voltage Improvement Factor
Voltage Enhancement in Distribution System using Voltage Improvement FactorIOSR Journals
Β 
Automatic generation control of two area interconnected power system using pa...
Automatic generation control of two area interconnected power system using pa...Automatic generation control of two area interconnected power system using pa...
Automatic generation control of two area interconnected power system using pa...IOSR Journals
Β 
Electronic and Vibrational Properties of Pbsns3
Electronic and Vibrational Properties of Pbsns3Electronic and Vibrational Properties of Pbsns3
Electronic and Vibrational Properties of Pbsns3IOSR Journals
Β 
Π˜Ρ€ΠΊΡƒΡ‚ΡΠΊ - сСрСдина Π—Π΅ΠΌΠ»ΠΈ
Π˜Ρ€ΠΊΡƒΡ‚ΡΠΊ - сСрСдина Π—Π΅ΠΌΠ»ΠΈΠ˜Ρ€ΠΊΡƒΡ‚ΡΠΊ - сСрСдина Π—Π΅ΠΌΠ»ΠΈ
Π˜Ρ€ΠΊΡƒΡ‚ΡΠΊ - сСрСдина Π—Π΅ΠΌΠ»ΠΈNatalya Dyrda
Β 
Effects of Chemical Constituents on Insect Pest Population in West African Ok...
Effects of Chemical Constituents on Insect Pest Population in West African Ok...Effects of Chemical Constituents on Insect Pest Population in West African Ok...
Effects of Chemical Constituents on Insect Pest Population in West African Ok...IOSR Journals
Β 
Π»ΠΈΡ†Π΅ΠΉ ΠΏΡƒΡˆΠΊΠΈΠ½Π°
Π»ΠΈΡ†Π΅ΠΉ ΠΏΡƒΡˆΠΊΠΈΠ½Π°Π»ΠΈΡ†Π΅ΠΉ ΠΏΡƒΡˆΠΊΠΈΠ½Π°
Π»ΠΈΡ†Π΅ΠΉ ΠΏΡƒΡˆΠΊΠΈΠ½Π°Natalya Dyrda
Β 
Design Test-bed for assessing load utilising using Multicast Forwarding Appro...
Design Test-bed for assessing load utilising using Multicast Forwarding Appro...Design Test-bed for assessing load utilising using Multicast Forwarding Appro...
Design Test-bed for assessing load utilising using Multicast Forwarding Appro...IOSR Journals
Β 
Films cool q3
Films cool q3Films cool q3
Films cool q3Temibaybee
Β 
Ρ†Π°Ρ€ΡΠΊΠΎΡΠ΅Π»ΡŒΡΠΊΠΈΠΉ Π»ΠΈΡ†Π΅ΠΉ
Ρ†Π°Ρ€ΡΠΊΠΎΡΠ΅Π»ΡŒΡΠΊΠΈΠΉ Π»ΠΈΡ†Π΅ΠΉΡ†Π°Ρ€ΡΠΊΠΎΡΠ΅Π»ΡŒΡΠΊΠΈΠΉ Π»ΠΈΡ†Π΅ΠΉ
Ρ†Π°Ρ€ΡΠΊΠΎΡΠ΅Π»ΡŒΡΠΊΠΈΠΉ Π»ΠΈΡ†Π΅ΠΉNatalya Dyrda
Β 

Viewers also liked (20)

DESIGN OF A MODE DECOUPLING FOR VOLTAGE CONTROL OF WIND-DRIVEN IG SYSTEM
DESIGN OF A MODE DECOUPLING FOR VOLTAGE CONTROL OF WIND-DRIVEN IG SYSTEMDESIGN OF A MODE DECOUPLING FOR VOLTAGE CONTROL OF WIND-DRIVEN IG SYSTEM
DESIGN OF A MODE DECOUPLING FOR VOLTAGE CONTROL OF WIND-DRIVEN IG SYSTEM
Β 
An effective citation metadata extraction process based on BibPro parser
An effective citation metadata extraction process based on BibPro parserAn effective citation metadata extraction process based on BibPro parser
An effective citation metadata extraction process based on BibPro parser
Β 
Scalability Enhancement of Push/Pull Server functions by converting Stateless...
Scalability Enhancement of Push/Pull Server functions by converting Stateless...Scalability Enhancement of Push/Pull Server functions by converting Stateless...
Scalability Enhancement of Push/Pull Server functions by converting Stateless...
Β 
An Overview of TRIZ Problem-Solving Methodology and its Applications
An Overview of TRIZ Problem-Solving Methodology and its ApplicationsAn Overview of TRIZ Problem-Solving Methodology and its Applications
An Overview of TRIZ Problem-Solving Methodology and its Applications
Β 
L01246974
L01246974L01246974
L01246974
Β 
A Video Watermarking Scheme to Hinder Camcorder Piracy
A Video Watermarking Scheme to Hinder Camcorder PiracyA Video Watermarking Scheme to Hinder Camcorder Piracy
A Video Watermarking Scheme to Hinder Camcorder Piracy
Β 
test
testtest
test
Β 
Two Factor Authentication Using Smartphone Generated One Time Password
Two Factor Authentication Using Smartphone Generated One Time PasswordTwo Factor Authentication Using Smartphone Generated One Time Password
Two Factor Authentication Using Smartphone Generated One Time Password
Β 
Decadence Strategy
Decadence StrategyDecadence Strategy
Decadence Strategy
Β 
The Wind Powered Generator
The Wind Powered GeneratorThe Wind Powered Generator
The Wind Powered Generator
Β 
Voltage Enhancement in Distribution System using Voltage Improvement Factor
Voltage Enhancement in Distribution System using Voltage Improvement FactorVoltage Enhancement in Distribution System using Voltage Improvement Factor
Voltage Enhancement in Distribution System using Voltage Improvement Factor
Β 
Automatic generation control of two area interconnected power system using pa...
Automatic generation control of two area interconnected power system using pa...Automatic generation control of two area interconnected power system using pa...
Automatic generation control of two area interconnected power system using pa...
Β 
Electronic and Vibrational Properties of Pbsns3
Electronic and Vibrational Properties of Pbsns3Electronic and Vibrational Properties of Pbsns3
Electronic and Vibrational Properties of Pbsns3
Β 
Π˜Ρ€ΠΊΡƒΡ‚ΡΠΊ - сСрСдина Π—Π΅ΠΌΠ»ΠΈ
Π˜Ρ€ΠΊΡƒΡ‚ΡΠΊ - сСрСдина Π—Π΅ΠΌΠ»ΠΈΠ˜Ρ€ΠΊΡƒΡ‚ΡΠΊ - сСрСдина Π—Π΅ΠΌΠ»ΠΈ
Π˜Ρ€ΠΊΡƒΡ‚ΡΠΊ - сСрСдина Π—Π΅ΠΌΠ»ΠΈ
Β 
Effects of Chemical Constituents on Insect Pest Population in West African Ok...
Effects of Chemical Constituents on Insect Pest Population in West African Ok...Effects of Chemical Constituents on Insect Pest Population in West African Ok...
Effects of Chemical Constituents on Insect Pest Population in West African Ok...
Β 
Π»ΠΈΡ†Π΅ΠΉ ΠΏΡƒΡˆΠΊΠΈΠ½Π°
Π»ΠΈΡ†Π΅ΠΉ ΠΏΡƒΡˆΠΊΠΈΠ½Π°Π»ΠΈΡ†Π΅ΠΉ ΠΏΡƒΡˆΠΊΠΈΠ½Π°
Π»ΠΈΡ†Π΅ΠΉ ΠΏΡƒΡˆΠΊΠΈΠ½Π°
Β 
Design Test-bed for assessing load utilising using Multicast Forwarding Appro...
Design Test-bed for assessing load utilising using Multicast Forwarding Appro...Design Test-bed for assessing load utilising using Multicast Forwarding Appro...
Design Test-bed for assessing load utilising using Multicast Forwarding Appro...
Β 
Films cool q3
Films cool q3Films cool q3
Films cool q3
Β 
audition
auditionaudition
audition
Β 
Ρ†Π°Ρ€ΡΠΊΠΎΡΠ΅Π»ΡŒΡΠΊΠΈΠΉ Π»ΠΈΡ†Π΅ΠΉ
Ρ†Π°Ρ€ΡΠΊΠΎΡΠ΅Π»ΡŒΡΠΊΠΈΠΉ Π»ΠΈΡ†Π΅ΠΉΡ†Π°Ρ€ΡΠΊΠΎΡΠ΅Π»ΡŒΡΠΊΠΈΠΉ Π»ΠΈΡ†Π΅ΠΉ
Ρ†Π°Ρ€ΡΠΊΠΎΡΠ΅Π»ΡŒΡΠΊΠΈΠΉ Π»ΠΈΡ†Π΅ΠΉ
Β 

Similar to Text Extraction of Colour Images Using HAAR Transform and Morphology

A Survey On Thresholding Operators of Text Extraction In Videos
A Survey On Thresholding Operators of Text Extraction In VideosA Survey On Thresholding Operators of Text Extraction In Videos
A Survey On Thresholding Operators of Text Extraction In VideosCSCJournals
Β 
Dominating set based arbitrary oriented bilingual scene text localization
Dominating set based arbitrary oriented bilingual scene text  localizationDominating set based arbitrary oriented bilingual scene text  localization
Dominating set based arbitrary oriented bilingual scene text localizationIJECEIAES
Β 
Inpainting scheme for text in video a survey
Inpainting scheme for text in video   a surveyInpainting scheme for text in video   a survey
Inpainting scheme for text in video a surveyeSAT Journals
Β 
Volume 2-issue-6-2119-2124
Volume 2-issue-6-2119-2124Volume 2-issue-6-2119-2124
Volume 2-issue-6-2119-2124Editor IJARCET
Β 
Volume 2-issue-6-2119-2124
Volume 2-issue-6-2119-2124Volume 2-issue-6-2119-2124
Volume 2-issue-6-2119-2124Editor IJARCET
Β 
Character recognition of kannada text in scene images using neural
Character recognition of kannada text in scene images using neuralCharacter recognition of kannada text in scene images using neural
Character recognition of kannada text in scene images using neuralIAEME Publication
Β 
Character recognition of kannada text in scene images using neural
Character recognition of kannada text in scene images using neuralCharacter recognition of kannada text in scene images using neural
Character recognition of kannada text in scene images using neuralIAEME Publication
Β 
IRJET- Text Line Detection in Camera Caputerd Images using Matlab GUI
IRJET- Text Line Detection in Camera Caputerd Images using Matlab GUIIRJET- Text Line Detection in Camera Caputerd Images using Matlab GUI
IRJET- Text Line Detection in Camera Caputerd Images using Matlab GUIIRJET Journal
Β 
Text region extraction from low resolution display board ima
Text region extraction from low resolution display board imaText region extraction from low resolution display board ima
Text region extraction from low resolution display board imaIAEME Publication
Β 
Scene text recognition in mobile applications by character descriptor and str...
Scene text recognition in mobile applications by character descriptor and str...Scene text recognition in mobile applications by character descriptor and str...
Scene text recognition in mobile applications by character descriptor and str...eSAT Journals
Β 
IMAGE TO TEXT TO SPEECH CONVERSION USING MACHINE LEARNING
IMAGE TO TEXT TO SPEECH CONVERSION USING MACHINE LEARNINGIMAGE TO TEXT TO SPEECH CONVERSION USING MACHINE LEARNING
IMAGE TO TEXT TO SPEECH CONVERSION USING MACHINE LEARNINGIRJET Journal
Β 
IRJET- Detection and Recognition of Text for Dusty Image using Long Short...
IRJET-  	  Detection and Recognition of Text for Dusty Image using Long Short...IRJET-  	  Detection and Recognition of Text for Dusty Image using Long Short...
IRJET- Detection and Recognition of Text for Dusty Image using Long Short...IRJET Journal
Β 
A Review on Natural Scene Text Understanding for Computer Vision using Machin...
A Review on Natural Scene Text Understanding for Computer Vision using Machin...A Review on Natural Scene Text Understanding for Computer Vision using Machin...
A Review on Natural Scene Text Understanding for Computer Vision using Machin...IRJET Journal
Β 
CONTENT RECOVERY AND IMAGE RETRIVAL IN IMAGE DATABASE CONTENT RETRIVING IN TE...
CONTENT RECOVERY AND IMAGE RETRIVAL IN IMAGE DATABASE CONTENT RETRIVING IN TE...CONTENT RECOVERY AND IMAGE RETRIVAL IN IMAGE DATABASE CONTENT RETRIVING IN TE...
CONTENT RECOVERY AND IMAGE RETRIVAL IN IMAGE DATABASE CONTENT RETRIVING IN TE...Editor IJMTER
Β 
TEXT DETECTION AND EXTRACTION FROM VIDEOS USING ANN BASED NETWORK
TEXT DETECTION AND EXTRACTION FROM VIDEOS USING ANN BASED NETWORKTEXT DETECTION AND EXTRACTION FROM VIDEOS USING ANN BASED NETWORK
TEXT DETECTION AND EXTRACTION FROM VIDEOS USING ANN BASED NETWORKijscai
Β 
Deep Learning in Text Recognition and Text Detection : A Review
Deep Learning in Text Recognition and Text Detection : A ReviewDeep Learning in Text Recognition and Text Detection : A Review
Deep Learning in Text Recognition and Text Detection : A ReviewIRJET Journal
Β 
Object extraction using edge, motion and saliency information from videos
Object extraction using edge, motion and saliency information from videosObject extraction using edge, motion and saliency information from videos
Object extraction using edge, motion and saliency information from videoseSAT Journals
Β 

Similar to Text Extraction of Colour Images Using HAAR Transform and Morphology (20)

A Survey On Thresholding Operators of Text Extraction In Videos
A Survey On Thresholding Operators of Text Extraction In VideosA Survey On Thresholding Operators of Text Extraction In Videos
A Survey On Thresholding Operators of Text Extraction In Videos
Β 
50320140502001
5032014050200150320140502001
50320140502001
Β 
Dominating set based arbitrary oriented bilingual scene text localization
Dominating set based arbitrary oriented bilingual scene text  localizationDominating set based arbitrary oriented bilingual scene text  localization
Dominating set based arbitrary oriented bilingual scene text localization
Β 
Inpainting scheme for text in video a survey
Inpainting scheme for text in video   a surveyInpainting scheme for text in video   a survey
Inpainting scheme for text in video a survey
Β 
Volume 2-issue-6-2119-2124
Volume 2-issue-6-2119-2124Volume 2-issue-6-2119-2124
Volume 2-issue-6-2119-2124
Β 
Volume 2-issue-6-2119-2124
Volume 2-issue-6-2119-2124Volume 2-issue-6-2119-2124
Volume 2-issue-6-2119-2124
Β 
Character recognition of kannada text in scene images using neural
Character recognition of kannada text in scene images using neuralCharacter recognition of kannada text in scene images using neural
Character recognition of kannada text in scene images using neural
Β 
Character recognition of kannada text in scene images using neural
Character recognition of kannada text in scene images using neuralCharacter recognition of kannada text in scene images using neural
Character recognition of kannada text in scene images using neural
Β 
IRJET- Text Line Detection in Camera Caputerd Images using Matlab GUI
IRJET- Text Line Detection in Camera Caputerd Images using Matlab GUIIRJET- Text Line Detection in Camera Caputerd Images using Matlab GUI
IRJET- Text Line Detection in Camera Caputerd Images using Matlab GUI
Β 
Text region extraction from low resolution display board ima
Text region extraction from low resolution display board imaText region extraction from low resolution display board ima
Text region extraction from low resolution display board ima
Β 
Scene text recognition in mobile applications by character descriptor and str...
Scene text recognition in mobile applications by character descriptor and str...Scene text recognition in mobile applications by character descriptor and str...
Scene text recognition in mobile applications by character descriptor and str...
Β 
IMAGE TO TEXT TO SPEECH CONVERSION USING MACHINE LEARNING
IMAGE TO TEXT TO SPEECH CONVERSION USING MACHINE LEARNINGIMAGE TO TEXT TO SPEECH CONVERSION USING MACHINE LEARNING
IMAGE TO TEXT TO SPEECH CONVERSION USING MACHINE LEARNING
Β 
Ijetr021113
Ijetr021113Ijetr021113
Ijetr021113
Β 
Ijetr021113
Ijetr021113Ijetr021113
Ijetr021113
Β 
IRJET- Detection and Recognition of Text for Dusty Image using Long Short...
IRJET-  	  Detection and Recognition of Text for Dusty Image using Long Short...IRJET-  	  Detection and Recognition of Text for Dusty Image using Long Short...
IRJET- Detection and Recognition of Text for Dusty Image using Long Short...
Β 
A Review on Natural Scene Text Understanding for Computer Vision using Machin...
A Review on Natural Scene Text Understanding for Computer Vision using Machin...A Review on Natural Scene Text Understanding for Computer Vision using Machin...
A Review on Natural Scene Text Understanding for Computer Vision using Machin...
Β 
CONTENT RECOVERY AND IMAGE RETRIVAL IN IMAGE DATABASE CONTENT RETRIVING IN TE...
CONTENT RECOVERY AND IMAGE RETRIVAL IN IMAGE DATABASE CONTENT RETRIVING IN TE...CONTENT RECOVERY AND IMAGE RETRIVAL IN IMAGE DATABASE CONTENT RETRIVING IN TE...
CONTENT RECOVERY AND IMAGE RETRIVAL IN IMAGE DATABASE CONTENT RETRIVING IN TE...
Β 
TEXT DETECTION AND EXTRACTION FROM VIDEOS USING ANN BASED NETWORK
TEXT DETECTION AND EXTRACTION FROM VIDEOS USING ANN BASED NETWORKTEXT DETECTION AND EXTRACTION FROM VIDEOS USING ANN BASED NETWORK
TEXT DETECTION AND EXTRACTION FROM VIDEOS USING ANN BASED NETWORK
Β 
Deep Learning in Text Recognition and Text Detection : A Review
Deep Learning in Text Recognition and Text Detection : A ReviewDeep Learning in Text Recognition and Text Detection : A Review
Deep Learning in Text Recognition and Text Detection : A Review
Β 
Object extraction using edge, motion and saliency information from videos
Object extraction using edge, motion and saliency information from videosObject extraction using edge, motion and saliency information from videos
Object extraction using edge, motion and saliency information from videos
Β 

More from IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
Β 
M0111397100
M0111397100M0111397100
M0111397100
Β 
L011138596
L011138596L011138596
L011138596
Β 
K011138084
K011138084K011138084
K011138084
Β 
J011137479
J011137479J011137479
J011137479
Β 
I011136673
I011136673I011136673
I011136673
Β 
G011134454
G011134454G011134454
G011134454
Β 
H011135565
H011135565H011135565
H011135565
Β 
F011134043
F011134043F011134043
F011134043
Β 
E011133639
E011133639E011133639
E011133639
Β 
D011132635
D011132635D011132635
D011132635
Β 
C011131925
C011131925C011131925
C011131925
Β 
B011130918
B011130918B011130918
B011130918
Β 
A011130108
A011130108A011130108
A011130108
Β 
I011125160
I011125160I011125160
I011125160
Β 
H011124050
H011124050H011124050
H011124050
Β 
G011123539
G011123539G011123539
G011123539
Β 
F011123134
F011123134F011123134
F011123134
Β 
E011122530
E011122530E011122530
E011122530
Β 
D011121524
D011121524D011121524
D011121524
Β 

Recently uploaded

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
Β 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Β 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
Β 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
Β 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
Β 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
Β 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
Β 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
Β 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
Β 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
Β 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
Β 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
Β 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
Β 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
Β 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Β 

Recently uploaded (20)

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Β 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Β 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
Β 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
Β 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
Β 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
Β 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
Β 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
Β 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Β 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
Β 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
Β 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
Β 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
Β 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
Β 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Β 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
Β 
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCRβ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
Β 

Text Extraction of Colour Images Using HAAR Transform and Morphology

  • 1. IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 14, Issue 5 (Sep. - Oct. 2013), PP 78-87 www.iosrjournals.org www.iosrjournals.org 78 | Page Text Extraction of Colour Images using Mathematical Morphology & HAAR Transform Mansi Agarwal1 , Adesh Kumar2 , Vimal Gupta3 1 (M.Tech Scholar,Computer Science & Engineering, JSS Academy of Technical Education, Noida India 2 (Assistant Professor, Department of Electronics, Instrumentation& Control Engineering, University of Petroleum & Energy studies, Dehradun India, 3 (Assitant Professor, Department of Computer Science & Engineering, JSS Academy of Technical Education, Noida, India, Abstract: Digital image processing is an ever expanding and dynamic area with applications reaching out into our daily life such as digital signature, authentication, surveillance, medicine, space exploration, automated industry inspection and many others areas. Theseapplications are involved in different processes like image enhancement, object detection, features extraction, colour imaging etc. Implementation of such applications on a general purpose computer can be easier, but every time it is not efficient due to additional constraints on memory and other peripheral devices. Out of the five senses – sight, hearing, touch, smell and taste, humans use to perceive their environment. Among all,sight of images is the most powerful. More than 99% of the activity of the human brain is involved in processing images from the visual cortex. A visual image is rich in information. There is an efficient yet simple method to extract text regions from video sequences or static images. The speed of Haar discrete wavelet transform (DWT) operates the fastest among all wavelets because its coefficients are either 1 or -1. It is one of the reasons that Haar DWT is used to detect edges of candidate text regions. Image sub bands contain both text edges and non-text edges. The intensity of the text edges is also different from that of the non-text edges. Therefore, thresholdingis used to preliminary remove the non-text edges. Text regions of colour images are composed of horizontal edges, vertical edges and diagonal edges. Morphological dilation operators as AND, OR are applied to connect isolated text edges of each detail component sub-band in a transformed binary image. The simulation is carried out on MATLAB 2012 image processing tool. Keywords: Discrete Wavelet Transform (DWT), HAAR Transform, Mathematical Morphology I. Introduction Integrated image capture, processing, and communication power on a compact, portable, hand-held device is attracting and has increased interest from computer vision researchers with a goal of applying a diverse collection of vision tasks on the small hand held device. Thetrend of vision applications is focused on camera phones and proposes solutions to the major technical challenges involving mobile vision and pattern recognition.Recent studies in the field of computer vision and pattern recognition show a great amount of interest in content retrieval from images and videos. This content can be in the form of objects, texture, color, shape as well as the relationshipsbetween them. The semantic information provided by an image can be useful for content based image retrieval, as well as for indexing and classification purposes . As statedby Jung, Kim and Jain in [4], text data is particularly interesting, because text can be used to easily and clearly describe the contents of an image. Text data can be embedded into an image or video in different font styles, sizes, colors, orientations and against a complex background, the problem of extracting the candidate text region becomes a challenging one. Also, current Optical Character Recognition (OCR) techniques can only handle text against a plain monochrome background and cannot extract text from a textured or complex background. Different approaches for the extraction of text regions from images have been proposed based on basic properties of text. Text has some common distinctive characteristics in terms of frequency, spatial cohesion and orientation information. Spatial cohesion refers to the fact that text characters of the same string appear close to each other and are of similar height, orientation and spacing. Two of the main methods commonly used to determine spatial cohesion are based on edge [1] [2] and connected component [3] features of text characters. The fact that an image can be divided into categories depending on whether or not it contains any text data can also be used to classify candidate text regions. Thus other methods for text region detection, utilize classification techniques such as support vector machines, k-means clustering [7] and neural network based classifiers [10]. The algorithmproposed in [8] uses the focus of attention mechanism from visual perception to detect text regions. Text in images and video sequences pro-vide highly condensed information about thecontents of the images or videos sequencesand can be used for video browsing/retrievalin a large video database. Although texts provide important information about images or video sequences. Detection and segmentation of video or image sequences is not an easy problem. Text extraction is not easy for
  • 2. Text Extraction of Colour Images using Mathematical Morphology & HAAR Transform www.iosrjournals.org 79 | Page the following reasons. First of all, text sizes may vary from smaller to big and text fonts may vary in a wide range as well.Secondly, texts present in an image or a videosequence may have multiple colors and appear in very much cluttered background. Many papers about the extraction of texts from static image or video sequence have been published in recent years. Those methods for texts extraction can be classified as either component based or texture based. In component based text extraction methods, different text regions are detected by analyzing the edges of the candidate regions or homogenous color/grayscale components that contain the characters. For example, Park et al. [1] detected eight orientations of edge pixels in the documents using prewitt masks. In imaging, edge pixels can be classified as either diagonal directional or axial directional. They dilate two kinds of edge pixels using morphological dilation operators. Logical AND is applied to these two edges to obtain the real text regions. Zhong et al. [2] located bounding boxesaround text components using the horizontal spatial variance. Non text regions have lower horizontal spatial variance than that of candidate text regions. The connected components in each candidate text region are of the same color intensity. They determined the color of texts and locate text components in each candidate text region. Finally, real text components are filled in each candidate text region. Chen et al. [3] detected vertical edges and horizontal edges in an image and dilated two kinds of edges using different dilation operators. The logical AND operator is performed on dilated vertical edges and dilated horizontal edges to obtain candidate text regions. Real Text regions are then identified using support vector machine. Text regions usually have a special texture because they consist of identical character components. These components also contrast the background and hence text regions have a periodic horizontal intensity variation due to the horizontal alignment of characters. As a result, text regions can be segmented using texture features. For example, Stephen et al. [4] did the segmentation and labeling of block using the connected component analysis. Paul et al [5] segmented and classified texts in a newspaper by generic texture analysis. Small masks are applied to obtain local textural characteristics. Most of the text extraction methods were applied to uncompressed images. Few of them proposed to extract texts in the compressed version of images. Zhong et al. [6] extracted captions from the compressed videos (MPEG video and JPEG image) based on Discrete Cosine Transform (DCT). DCT detects edges in different directions from the candidate image. Edge regions containing texts are then detected using a threshold afterward. Acharyya et al. [7] segmented texts in the document images based on wavelet scale-space features. The method used the M-band wavelet which decomposes an image into some MΓ—M band pass channels so as to detect the text regions easily. The intensity of the candidate text edges are used to recognize the real text regions in an M-band image. Research objective is to extract the text form the colored images using image processing tool. The extraction of text is carried out from any image using Haar Transform. Character reorganization from the image and character extraction form the colored image is also the objective of image extraction.A method to extract texts in images or video sequences using Haar discrete wavelet transform (Haar DWT) is also presented. The edges detection is accomplished by using 2-D Haar DWT and some of the non-text edges are removed using thresholding. After it, different morphological dilation operators to connect the isolated candidate text edges in each detail component sub-band of the binary image. Morphological dilation operators also extract the characters from the images using mathematical morphological and templates. II. Mathematical Morphology Mathematical morphology (MM) [1] is a nonlinear branch of the signal processing field and concerns the application of set theory concepts to image analysis and processing. Morphology refers to the study of shapes and structures from a general scientific perspective. Geometric features of images are modified using morphological filters or operators as nonlinear transformations. These operators transform the original image into another image through the iteration with other image of a certain shape and size which is known as structuring element.In general, the structuring element is a set that describes a simple shape that probes an input image. Morphological filters are based on morphological opening and morphological closing with structuring elements. The present filters have several inconveniences in some situations. The image structure is changed general, if undesirable features are eliminated.On the other hand, an image by reconstruction [5][7]has become a powerful tool that enables us to eliminate undesirable features without necessarily affecting desirable properties. From a practical perspective images by reconstruction are built by means of a reference image, background and foreground markers. In the paper morphological image reconstruction based algorithm are used to obtain the results better than general opening (resp., closing)by reconstruction and to avoid some of the inconveniences.Image segmentation is one of the most important categories of image processing. The main purpose of image segmentation is to divide an original image into homogeneous regions. Image segmentation can be applied as a preprocessing stage for other image processing methods. Several approaches are available for image segmentation methods for image processing.
  • 3. Text Extraction of Colour Images using Mathematical Morphology & HAAR Transform www.iosrjournals.org 80 | Page 2.1 Features of Morphology The term morphology refers to the study of shapes and structures from a general scientific perspective. It is also interpreted as shape study using mathematical set theory. In image processing, morphology is the name of a specific methodology for analyzing the geometric structure inherent within an image. The morphological filter, which can be constructed on the basis of the underlying morphological operations, can be more suitable for shape analysis than the standard linear filters since the latter sometimes distort the underlying geometric form of the image.In general, morphological operators transform the original image into another image through the interaction with the other image of a certain shape and size, which is known as the structuring element. The geometric features of an image that are similar in shape and size to the structuring element are preserved.But other features of image are suppressed default. Therefore, morphological operations can simplify the image data, preserving their characteristics, shape and eliminate irrelevancies. In view of applications, morphological operations can be employed for many purposes including segmentation, edge detection, and enhancement of images. Mathematical morphology is based on geometry. Set theory is the theoretical foundations of morphological image processing and the mathematical theory of order. General idea to solve the problem for an image is the use of template shape, which are called structuring elements to quantify the manner in which the structuring element fits within a given image. (a) Two image A and B (b) Union (c) Intersection (d) Complement (e) Difference (f) Reflection of B (g) Translation Fig. 1 Set Theory operations [11] Union The union of two images A and B is written as 𝐴 βˆͺ 𝐡. The meaning of 𝐴 βˆͺ 𝐡 is that it is a set whose elements are either the elements of A or B or of both. The definition is given by 𝐴 βˆͺ 𝐡 = def⁑{π‘₯ π‘₯ ∈ 𝐴 π‘œπ‘Ÿ π‘₯ ∈ 𝐡 Intersection The union of two images A and B is written as 𝐴 ∩ 𝐡. The meaning of 𝐴 ∩ 𝐡 is that it is a set whose elements are common to both images A or B. The definition is given by 𝐴 ∩ 𝐡 = def⁑{π‘₯ π‘₯ ∈ 𝐴 π‘Žπ‘›π‘‘ π‘₯ ∈ 𝐡} Difference The difference of two images A and B is written as 𝐴 βˆ’ 𝐡. The difference 𝐴 βˆ’ 𝐡 subtracts from image A which are in image B. It is also called the relative complement of B relative to A. The definition is given by 𝐴 βˆ’ 𝐡 = def⁑{π‘₯ π‘₯ ∈ 𝐴 π‘Žπ‘›π‘‘ π‘₯ βˆ‰ 𝐡} Complement The complement of image A is written Ac . In complement set it is consisting which is not available in image A. The definition is given by 𝐴𝑐 = def⁑{π‘₯ π‘₯ βˆ‰ 𝐴} Reflection The refection of an image B can be defined as 𝐡1 = { 𝑀 𝑀 = βˆ’π‘ π‘“π‘œπ‘Ÿ 𝑏 ∈ 𝐡}
  • 4. Text Extraction of Colour Images using Mathematical Morphology & HAAR Transform www.iosrjournals.org 81 | Page Translation In translation the origin of an image A is shifted to some points, can be defined as 𝐴1 = { 𝑐 𝑐 = π‘Ž + 𝑧 π‘“π‘œπ‘Ÿ π‘Ž ∈ 𝐴} Figure 1 shows the all set operations sequentially. 2.2 Logical Operations OR operation is similar to the union operation. AND operation is similar to intersection operation. Not operation is similar to complement operation. If the pixels of image A and B are complement to each other, then the resultant image pixel is black, else the resultant pixel is white. (a) Not operation of A (b) AND operation (c) OR operation (d) XOR logic Fig. 2 Logical operations [11] 2.3.1 Binary Dilation Definition: Binary Dilation With A and B assets in Z 2 , the dilation of A by B (usually A is an image and B is the structuring element), denoted by AβŠ•B, is defined as AβŠ•B= { z Π„ Z 2 β”‚z= a + b , for a Π„ A and b Π„ B} Dilationis defined as a union of translation of the original image with respect to the structuring element. AβŠ•B = (𝐴)𝑏𝑏Є𝐡 Fig. 3 Illustration of Binary Dilation on Digital Setting Dilation is found by placing the center of the template over each of the foreground pixels of the original image and then taking the union of all the resulting copies of the structuring element using translation.
  • 5. Text Extraction of Colour Images using Mathematical Morphology & HAAR Transform www.iosrjournals.org 82 | Page From figure 3, it is clear how dilation modifies the original image with respect to the shape of the structuring element. Dilation generally has an effect of expanding an image; so consequently, small holes inside foreground can be filled.In another sense, dilation can be a morphological operation on a binary image defined as AβŠ•B = { Z β”‚ (𝐡) z  A β‰  βˆ…} This equation is based on obtaining the reflection of B about its origin and shifting this reflection by Z. In dilation the set of all displacements such that B and A overlap with A by B isusing at least one element.Based on this interpretation, the equation above may be written as AβŠ•B = {Z β”‚[ (𝐡) z  A] C 𝐴} Although dilation is based on set theory, but convolution is based on arithmetic operations, the basic process β€œflipping” B about its origin and successively β€œdisplacing” it so that it slides over set Ais analogous to the convolution process. Even though dilation of an image A by structuring element B can be defined in several ways, all definitions have the same meaning and results in the same output. 2.3.2 Binary Erosion Definitions: Binary Erosion Erosion of a binary image A by structuring element B, denoted by AΘB, is defined as AΘB = {Zβ”‚ Z+ b Π„ A ,βˆ€ b Π„B} Whereas image dilation can be represented as a union of translates, erosion can be represented as an intersection of the negative translates. Erosion can be redefined as AΘB = π΄π‘βˆˆπ΅ βˆ’ 𝑏 Where β€žβ€“bβ€Ÿ is the scalar multiple of the vector b by -1. Figure 4 shows the binary erosion. Fig.4 Illustration of binary erosion on digital setting The erosion of the original image by the structuring element can be described intuitively by template translation as seen in the dilation process. Erosion shrinks the original image and eliminates small enough peaks. 2.3.3 Binary opening Definition: Binary Opening Opening is a morphological operation based on erosion and dilation. The opening of a binary image A by the structuring element B, denoted by (𝐴 ∘ 𝐡) is defined 𝐴 ∘ 𝐡 = 𝐴 ⊝ 𝐡 βŠ• 𝐡 First erode A by B, and then dilate the result by B. In other words, opening is the unification of all B objects entirely contained in A. Figure 5 shows the opening of two images A and B. (a) (b)
  • 6. Text Extraction of Colour Images using Mathematical Morphology & HAAR Transform www.iosrjournals.org 83 | Page Fig. 5 (a) input image A and B (b) erosion(c) Opening [11] 2.3.4 Closing The closing is the opposite of opening. In opening dilation operation is followed by an erosion process. First, dilate A by B, and then erode the result by B. In other words, closing is the group of points, which the intersection of object B around them with object A is not empty. Figure 6 shows the closing of two images A and B. 𝐴 βˆ™ 𝐡 = 𝐴 βŠ• 𝐡 βŠ• 𝐡 (a) (b) (C) Fig. 6(a) image A and B (b) Dilation process (c) Closing [11] III. Haar Transform & Image Extraction In Haar Transform, is a method to extract texts in images using Haar discrete wavelet transform (Haar DWT). The edges detection is accomplished by using 2-D Haar DWT and some of the non-text edges are removed using thresholding. In the DWT transform, an image signal can be analyzed by passing it through an analysis filter bank followed by decimation operation. This filter is the combination of a low pass filter and high pass filter at each decomposition level.
  • 7. Text Extraction of Colour Images using Mathematical Morphology & HAAR Transform www.iosrjournals.org 84 | Page Fig.7 Haar Transform decomposition . When the signal passes through these filters, it splits into bands. The coarse information is extracted by the low pass filter which corresponds to an averaging operation. The detail information of the signal is extracted by high pass filter because it is corresponds to differencing operation. Two dimensional transform is done by the separation of 1D transforms and output of image is decimated by 2, first with respect to row and then following the filtering of sub images. Now sub images are separated by 2 with respect to column. Afterward, we use different morphological dilation operators to connect the isolated candidate text edges in each detail component sub-band of the binary image. Although the color component may differ in a text region but the information about colors does not help extracting texts from images. For gray-level image, input image is processed directly starting at discrete wavelet transform. This operation separates the image into four possible bands LL, LH, HL and HH respectively. .. Fig. 8 Flow chart of the proposed text If the input image is colored, its RGB components are combined to give an intensity image Y as follows Y = 0.299R + 0.587 G + 0.114 B …….(1) Image Y is then processed with discrete wavelet transform and the whole extraction algorithm afterward. The flow chart of the proposed algorithm is shown in figure 8. If the input image itself is stored in the DWT compressed form, DWT operation can be omitted in the proposed algorithm. 3.1 Haar discrete wavelet transform The discrete wavelet transform is a very useful tool for signal processing and image analysis especially in multi-resolution representation. In DWT signals are decomposed into different components in the frequency domain. 1-D DWT decomposes an input sequence into two components the average component and the detail component by calculations with a low-pass filter and a high-pass filter [9]. Two-dimensional discrete wavelet
  • 8. Text Extraction of Colour Images using Mathematical Morphology & HAAR Transform www.iosrjournals.org 85 | Page transform (2-D DWT) decomposes an input image into four sub-bands, one average component (LL) and three detail components (LH, HL, HH) as shown in figure 9. In image processing, the multi-resolution of 2-D DWT has been employed to detect edges of an original image. However, 2-D DWT can detect three kinds of edges at a time while traditional edge detection filters cannot. As shown in figure 10the traditional edge detection filters detect three kinds of edges by using four kinds of mask operators. Therefore, processing times of the traditional edge detection filters is slower than 2-D DWT. LL HL LH HH Fig. 9 2-D DWT decomposition scheme Figure 10 shows a gray level image. The 9-7 taps DWT filters decompose this gray image into four sub- bands as shown in Figure 10 (b). As we can see, three kinds of edges present in the detail component sub-bands but look unobvious. The detected edges in image become more obvious and the processing time decreases, if we replace the 9-7 taps DWT filters with Haar DWT. The operation for Haar DWT is simpler than that of any other wavelets and applied to image processing especially in multi-resolution representation. Haar DWT has the following important features [17]. ο‚· Haar wavelets are real, symmetric and orthogonal. ο‚· Its boundary conditions are the simplest among all wavelet-based methods. ο‚· The minimum support property allows arbitrary spatial grid intervals. ο‚· It can be used to analyze texture and detect edges of characters. ο‚· The high-pass filter and the low-pass filter coefficientsare simple (either 1 or –1). Figure 11 shows an example of 256 x 256 images, in which it is divided into 128 x 128 LL, LH, HL and LL bands. Further the image is divided into 64 x 64 LLLL, LLLH, LLHL and LLHH bands as shown in figure 12 (a) and (b). Fig. 10 Traditional edge detection using mask operation Fig.11 Decomposition scheme of Haar Transform
  • 9. Text Extraction of Colour Images using Mathematical Morphology & HAAR Transform www.iosrjournals.org 86 | Page Fig. 12(a) Original gray image (b) DWT coefficients Figure 13 (a) matrix shows the example of a 4Γ—4 colour image. The wavelet coefficients can be obtained in gray-level image using addition and subtraction. 2-D DWT is achieved by two ordered 1-D DWT operations based on row and column values. First of all, row operation is performed to obtain the result shown in figure 13 (b)matrix. Then it is transformed by the column operation and the final resulted 2-D Haar DWT is shown in Figure 13(c) matrix. 2-D Haar DWT decomposes a gray-level image into one average component sub- band and three detail component sub-bands. π‘Ž 𝑏 𝑒 𝑓 𝑐 𝑑 𝑔 𝑕 𝑖 𝑗 π‘š 𝑛 π‘˜ 𝑙 π‘œ 𝑝 (π‘Ž + 𝑏) (𝑐 + 𝑑) (𝑒 + 𝑓) (𝑔 + 𝑕) (π‘Ž βˆ’ 𝑏) (𝑐 βˆ’ 𝑑) (𝑒 βˆ’ 𝑓) (𝑔 βˆ’ 𝑕) (𝑖 + 𝑗) (π‘˜ + 𝑙) (π‘š + 𝑛) (π‘œ + 𝑝) (𝑖 βˆ’ 𝑗) (π‘˜ βˆ’ 𝑙) (π‘š βˆ’ 𝑛) (π‘œ βˆ’ 𝑝) π‘Ž + 𝑏 + (𝑒 + 𝑓) 𝑐 + 𝑑 + (𝑔 + 𝑕) 𝑖 + 𝑗 + (π‘š + 𝑛) π‘˜ + 𝑙 + (π‘œ + 𝑝) π‘Ž βˆ’ 𝑏 + (𝑒 βˆ’ 𝑓) 𝑐 βˆ’ 𝑑 + (𝑔 βˆ’ 𝑕) 𝑖 βˆ’ 𝑗 + (π‘š βˆ’ 𝑛) π‘˜ βˆ’ 𝑙 + (π‘œ βˆ’ 𝑝) π‘Ž + 𝑏 βˆ’ (𝑒 + 𝑓) 𝑐 + 𝑑 βˆ’ (𝑔 + 𝑕) 𝑖 + 𝑗 βˆ’ (π‘š + 𝑛) π‘˜ + 𝑙 βˆ’ (π‘œ + 𝑝) π‘Ž βˆ’ 𝑏 βˆ’ (𝑒 βˆ’ 𝑓) 𝑐 βˆ’ 𝑑 βˆ’ (𝑔 βˆ’ 𝑕) 𝑖 βˆ’ 𝑗 βˆ’ (π‘š βˆ’ 𝑛) π‘˜ βˆ’ 𝑙 βˆ’ (π‘œ βˆ’ 𝑝) Figure 13 Matrixes (a) The original image (b) the row operation of 2-D Haar DWT and (c) column IV. Result & Discussion The simulation work of MATLAB text extraction is tested on different jpg and bmp colour images and the text extraction is done successfully. For different test cases the results are shown the figure 14. Haar Transform is a good method to transform the text from the colour images. A method of text extraction from images is proposed using the Haar Discrete Wavelet Transform, the Sobel edge detector, the weighted OR operator, thresholding and the morphological dilation operator. Mathematical morphological techniques are used for the detection of text and characters. We have created the templates for the all characters and these templates are used for the edge detection using mathematical morphological operators. These mathematical tools are integrated to detect the text regions from the complicated images. The proposed method is robust against language and font size of the texts. The proposed method is also used to decompose the blocks including multi-line texts into single line text. According to the experimental results, the proposed method is proved to be efficient for extracting the text regions from the images. In future we can use the techniques to extract the special characters and large volume of data. (a) (b)
  • 10. Text Extraction of Colour Images using Mathematical Morphology & HAAR Transform www.iosrjournals.org 87 | Page (c) (d) (e) (f) (g) Fig. 14 Tested images for text and character extraction V. Conclusion The text extraction on the colour images using mathematical morphology and Haar DWT is done successfully. Applications of text extraction are huge including the making of digital copies of the ancient scripture to everyday life bills etc. It may be required to be of digital form. This setup can be used to recover textual information from surveillance footage, satellite imaging, tollbooth as in a hybrid approach is used to extract textual information form a video scene. Major application of it is that it can be used in license plate recognition of a vehicle as in an approach to determine license plate number. In the future work we can explore the techniques to recognize the special characters from colour images. References [1] Xiaoqing Liu and JagathSamarabandu, An Edge-based text region extraction algorithm for Indoor mobile robot navigation, Proceedings of the IEEE, July 2005. [2] Xiaoqing Liu and JagathSamarabandu, Multiscale edge-based Text extraction from Complex images, IEEE, 2006. [3] JulindaGllavata, Ralph Ewerth and Bernd Freisleben, A Robust algorithm for Text detection in images, Proceedings of the 3rd international symposium on Image and Signal Processing and Analysis, 2003. [4] Keechul Jung, KwangIn Kim and Anil K. Jain, Text information extraction in images and video: a survey, The journal of the Pattern Recognition society, 2004. [5] Kongqiao Wang and Jari A. Kangas, Character location in scene images from digital camera, The journal of the Pattern Recognition society, March 2003. [6] K.C. Kim, H.R. Byun, Y.J. Song, Y.W. Choi, S.Y. Chi, K.K. Kim and Y.K Chung, Scene Text Extraction in Natural Scene Images using Hierarchical Feature Combining and verification, Proceedings of the 17thInternational Conference on Pattern Recognition (ICPR β€Ÿ04), IEEE. [7] Victor Wu, RaghavanManmatha, and Edward M. Riseman, TextFinder: An Automatic System to Detect and Recognize Text in Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 21, No. 11, November 1999. [8] Xiaoqing Liu and JagathSamarabandu, A Simple and Fast Text Localization Algorithm for Indoor Mobile Robot Navigation, Proceedings of SPIE-IS&T Electronic Imaging, SPIE Vol. 5672, 2005. [9] Qixiang Ye, Qingming Huang, Wen Gao and Debin Zhao, Fast and Robust text detection in images and video frames, Image and Vision Computing 23, 2005. [10] Rainer Lienhart and Axel Wernicke, Localizing and Segmenting Text in Images and Videos, IEEE Transactions on Circuits and Systems for Video Technology, Vol.12, No.4, April 2002. [11] R.C. Gonzales and R.E. Woods, Digital Image Processing, Addison-Wesley, Reading, 1992. [12] J.D. Foley, A. van Dam, S.K. Feiner and J.F. Hughes, Computer Graphics, Principles and Practice, Addison-Wesley, Reading, 1990. [13] Park, C. J., Moon, K. A., Oh, Weon- Geun, and Choi, H. M. 2000. An efficient of character string positions using morphological operator. IEEE International Conference on Systems, Man, and Cybernetics, 3, 8-11: 1616-1620. [14] Zhong, Yu., Karu, K., and Jain, A.K. 1995. Locating text in complex color images. Proceedings of the Third International Conference on Document Analysis and Recognition, 1, 14-16: 146-149. [15] Chen, Datong, Bourlard, H., and Thiran J. P., 2001. Text identification in complex background using SVM. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings of the 2001, 2, 8-14:621-626. [16] Lam, S. W., Wang, D., and Srihari, S. N., 1990. Reading newspaper text.International Conference on Pattern Recognition Proceedings, 10th. I, 16-21: 703-705. [17] W. Sowmya, Roy PailyIn, β€œFPGA implementation of Image Enhancement Algorithm” International conference on Communication and signal processing(ICCSP) IEEE pp 584-588, 2011 [18] K. Sri Rama Krishna, A. Guruva Reddy, M. N. Giri Prasad β€œA Fault Tolerant FPGA based image Enhancement Filter using Self Healing Algorithm” International Journal of Engineering Science and Technology Vol 2, pp 4922-4928 2010. [19] ArnabSinha and SumanaGupta,β€œA Fast Nonparametric Non causal MRF-Based Texture Synthesis Scheme Using a Novel FKDE Algorithm” IEEE Transactions on Image Processing, No.3, March 2010. [20] Yuichi Tanaka,Madoka Hasegawa, Shigeo Kato, Masaaki Ikehara, and Truong Q. Nguyen, β€œAdaptive Directional Wavelet Transform Based on Directional Pre filtering”, IEEE Transactions on Image Processing, Volume 19, No.4, April 2010.