SlideShare une entreprise Scribd logo
1  sur  77
1
【好風光】
風力發電技術概論
英華威技術總監 Casemir Nils
2014/05/12
2
Table of content 簡報綱要
- Historic of WTG 風機發展簡史
- Actual Wind turbine models 現行的風機機型
- Highlight of wind turbines 風機之最
- Design basics 設計基礎
- From foundation to rotor blades 從基座到葉片
- Foundation 基座
- Tower 塔架
- Machine house (nacelle) 機艙
- Rotor head (hub) 轉子
- Blades 葉片
- Q & A
3
Historic wind mills 歷史上的風車
 Mechanical Wind power
machines
Early samples of windmills were used to
grind grain. In ancient Persia. These were
developed around 600 A.D. They had a
vertical rotor driveshaft and a Horizontal
rotation plane.
早期風機用於研磨穀物。古波斯時期的風機,大約
發展於西元 600 年。這些風機有垂直的轉動軸,
連接水平的自轉平面
Historic wind mills 歷史上的風車
 Windmills in Europe 歐洲的風車
Wind mills have been known in Europe since the 12th Century. From the start, they
were designed as lift – based horizontal axis wind turbines, which is still a basic
principle of moderndays wind turbine generator. 歐洲風車在 12 世紀就有了,起初是
設計用來舉物,而這樣水平軸風輪的的設計,也是現代風力機的基本原理。
Sail WTG – used in Mediterranean for irregation
帆型風車 ,在地中海地區用以灌溉
Post mill: oldest European WTG , design, 12th to
16th Century, using for grain
最老的歐洲風車,於 12~16 世紀用於研磨穀物
Historic Wind Mills 歷史上的風車
 Smock Mill:
As of the 16th Century
Main use: Grinding grain, drainage
16 世紀之後主要用於研磨穀物、汲水
Around in the middle of the 19th
century there were over 200,000
wind mills all over Europe.
大約在 19 世紀中,全歐洲有超過 20
萬座風車
End 2013 in Germany were 23.645
modern WTG installed.
截至 2013 年底,全德國裝設了
23,645 部風機。
5
Historic Wind mills 歷史上的風車
 Wind energy in China 風力在中國
since Han Dynasty (~ 220 a.D) for dewatering.
自漢代開始,用於提水灌 或製鹽溉
6
摘自南台科技大學網站
Historical Wind mills 歷史上的風車
 The American water – pumping wind mill
美式抽水用風車
Technology didn‘t take big steps forward until 19th
century 直到 19 世紀,科技並沒有太多進步
The American „Western Mil“ used to pump
water mainley in North America, was the first
Wind mill in history to pitch automatically out
of the wind during storm
美式西部風車,主要出現在北美,用於抽水。是史上
第一部在暴風時會自動 車的風車剎
~ multi bladed wind turbine (dia. 3 – 5 m)
多葉片風輪 ( 直徑 3~5 公尺 )
~ reciprocating pump for drawing water 汲水用
~ tens of thousands still in operation in Australia,
Argentina, US etc. 在澳洲、阿根廷及美國等地仍有
上千架在使用中
7
Historical wind mills 歷史上的風車
 Electricity – producing wind turbines
供電用風機
In 1887 – 1888, Charles F. Brush constructed
the first fully automatic wind turbine for electricity
production. 在 1887~1888 年間, Brush 建造首座
全自動供電用風機
With a rotor diameter of 17 meters and a total
of 114 blades this machine‘s dimensions were
gigantic by the standard of the time. 這部機器在當
時可說非常巨大,風輪直徑約 17 公尺、共有 114
支葉片
For 20 years this turbine supplied enough
energy to charge a bank of batteries in the
basement of the house. Despite the turbine‘s
enormous size the generator was only rated
12 kW. 在 20 年間,這部風機產生的電足 充飽夠
Brush 房子地下室的電池。不過雖然風機很大,裝
置容量只有 12kW 。 8
Historical wind mills 歷史上的風車
 Electricity – producing wind turbines
供電用風機
Poul la Cour was a Danish Folk High school
teacher. Cour 是一位丹麥的高中老師
Encouraged by the Danish government, which
was exploring different avenues to supply
electricity also to the rural areas of Denmark,
la Cour built an experimental wind turbine in
1891 to power an generator. 丹麥政府當時鼓勵探索
各種不同的供電方式,包含供電到丹麥 間。鄉 Cour
在 1891 年建了一個實驗性的風力發電機。
He used the direct current geranerated by his
wind turbine for electrolyis and stored the
produced hydrogen. In this way, the school
grounds in Askov could be lighted with gas lamps
from 1885 to 1902. 他用風機產生直流電,用以電解
水並儲存電力。因此,在 1885~1902 年間,他的學
校可以用煤氣燈照明。 9
Historical wind mills 歷史上的風車
 Savonius rotor
The Savonius rotor is a vertical axis wind turbine. It was
invented by Finnish engineer Sigurad Savonious around
1925. 這是一種垂直軸風機,於 1925 年由芬蘭工程師
Savonious 發明
Advantages 優點 :
 Simple design and easy assembly 設計簡單、安裝容易
 High torque at relatively low rotational speed
在相對低轉速下仍有高力矩
 Independent of wind direction, no yaw needed
不論風向、不需機組偏航
 Operational even at extremly low wind speed (2 – 3 m/s)
即便在極低風速下仍能運轉
Disdvantages 缺點 :
 Low efficiency (max 28%) 效率低
 Greatly varying load due to continuously changing angle of
attach 風 和風向時常改變,能 無法集中力 量
 The above puts a limit on the size of this size of turbine.
以上因素使得此種風機的尺寸有所限制 10
Historical wind mills 歷史上的風車
 Darrieus rotor
The Darrieus rotor is a type of vertical – axis wind
turbine. It was developed by French engineer
Georges Darrieus and patented in the U.S. in
1931 法國工程師 Georges Darrieus 發明 Darrieus
垂直軸風機並於 1931 年取得美國專利。
Advantages 優點 :
 Function independent of wind direction
運轉不受風向影響
 Generator/gear close to the ground
發電機及齒輪箱接近地面 ( 易維修 )
 Efficiency greater than of the Savonius rotor (~40%)
效能比 Savonius rotor 高約 40%
Disdvantages 缺點 :
 Great varying load due to contiunously changing
Angle of attack 風 和風向時常改變,能 無法集中力 量
 Which results the fatique 也容易產生材料疲勞破壞
the world largest Darrieus rotor named Eole is
more than 100 m height and rated power of 4 MW
世界最大之 Darrieus 垂直軸風機高約 100m ,額定裝置容
量約 4MW
11
Historical wind mills 歷史上的風車
 Development in Germany
In Germany at that time were ideas and trials
by Wihlem Teubert, Ferdinand Porsche and
Hermann Honnef 同時期德國亦有 Wihlem Teubert, Ferdinand
Porsche 及 Hermann Honnef 嘗試發展風機並進行試驗。
Among others a test field with wind turbines
up to 17 kW was installed on the Mathiasberg
hill near Berlin 右上圖為德國 Vision of H. Honnef of an 20 MW
WTG
(500 m height, dia. 160 m), dated 1930.
H. Honnef 於 1930 構思了一台 20MW 的風機,
高 500m ,直徑達 160m( 右下圖 )
柏林近郊之 Mathiasberg
山丘設立了 17kW 的風機
12
Historical wind mills 歷史上的風車
13
 Smith – Putnam turbine Smith-Putnam 風機
Another milestone was the installation of the 1,25 MW Smith –
Putnam wind turbine by Palmer Cosslett Putnam 1941 in Vermont,
USA.
1941 年 Palmer Cosslett Putnam 於美國佛蒙特州設立了第一座百萬
瓦級的風機 (1.25MW) 讓風機邁入了一個重要里程碑。
Except some interruptions, this Wind turbine remained in operation
until 1945 when one of the blades failed.
The materials and the material quality required for turbines this size
simply were not available at the time.
該風機持續運轉直到 1945 年葉片損壞為止,因二次大戰期間物資匱乏
,該風機葉片無法完成修復。
14
Historical wind mills 歷史上的風車
 Ulrich W. Hüttner
In 1951, Ulrich W. Hütter, a German Austrian
wind energy pioneer erected a 10 kW wind
turbine with an rotor dia. of 11 m.
1951 年,這位德裔奧地利籍的風能先驅,架設了
一部 10kW 的風機,風輪直徑 11 公尺。
Some 200 turbines were exported mainly to
south Africa, Argentina and India.
當時約有 200 部機組出口到南非、阿根廷及印度
In 1957 Hütter constructed the prototype of all
modern wind turbines, the StGW – 34 with 100
kW. The rotor diameter was 34 m.
在 1957 年,他裝設了現代風機的原型
機, StGW-34 ,裝置容量 100kW ,風輪直徑 34
公尺。
15
Historical wind mills 歷史上的風車
 Gedser wind turbine Gedser 風機
Johannes Juul, a former student of Poul la
Cour constructed the world‘s first wind turbine
for producing alternating current. Juul 是 Cour
的學生,建造世界第一部生產交流電的風機
This design set the trend for all of todays
modern wind turbines and for a long time it
was also the world largest Wind turbine (200
kW, 24 m dia, 1957)
此設計奠定當今所有現代風機的基礎,也在一
段很長的時間,是當時是上最大的風機
It distinguished itselfs by it‘s high reliability
because it ran for eleven years without
maintenance. .
其之所以特別,在於其高可靠度。這部風機在
沒有維護的情況下,運轉了 11 年。
Historical wind mills 歷史上的風車
 The Danish concept 丹麥概念
 The Gedser wind turbine designed by
Juul was based on the „Danish
concept“ which became very popular
later. Wind turbines used this
principle until the early 1990s.
Juul 設計的 Gedser 風機是基於丹麥
概念,此概念之後也非常流行,直到
1990 年代早期。
16
 Features 特色 :
 The rotor spins at a fixed rotational speed 轉子以固定速度運轉
 Power limitation is ensured by stalling (or stall regulation)
透過 車系統確保限制輸出煞
 The rotor drives an asynchronous generator via a gearbox.
轉子透過齒輪箱驅動一個異步發電機
 Due to fixed rotational speed of the asynchronous generator connected directly to the grid there is
only one wind speed at which the rotor achieves its maximum efficiency.
由於異步發電機的轉速固定,以至於只有在一種風速下,轉子會達到其最高效能
Historical wind mills 歷史上的風車
 Further development 更進一步發展
 Favourable tax policies in California ushered in the breakthrough of wind power
in 1985. 加州的優惠租稅政策,在 1985 年促使風力疾速發展
 Since only the Danes were able to supply operational systems at that time, wind
turbines all sudden became a staple item in Denmark, which was produced
several thousand times a year. Standard size were units of 125 kW and an rotor
dia. of 20 m.
由於當時只有丹麥能供應此類設備,風機頓時在丹麥成為日常生活用品般,一年生
產數千部機組。當時的標準機型是 125kW ,風輪直徑為 20 公尺。
17
Historical wind mills 歷史上的風車
 Development of WTG size demonstrated on wind turbines (Enercon)
風力發電的發展,以 Enercon 的機型開發為例
18
Historical wind mills 歷史上的風車
 Development of WTG size demonstrated on wind turbines (Enercon)
風力發電的發展,以 Enercon 的機型開發為例
19
變動的轉速
透過 車限制輸出煞
透過逆變器後將電送到電網
Historical wind mills 歷史上的風車
 Development of wind energy demonstrated by WTG from Enercon
風力發電的發展,以 Enercon 的機型開發為例
20
變動的轉速
透過 車限制輸出煞
透過逆變器後將電送到電網
ENERCON 齒輪箱
環 樹脂葉片氧
Historical wind mills 歷史上的風車
 Development of wind energy demonstrated by WTG from Enercon
風力發電的發展,以 Enercon 的機型開發為例
21
變動的轉速
變動的風輪葉片角度
透過逆變器後將電送到電網
Historical wind mills 歷史上的風車
 Development of wind energy demonstrated by WTG from Enercon
風力發電的發展,以 Enercon 的機型開發為例
 E 40 – first gearless WTG with 500 kW (1992)
開發於 1992 年,裝置容量 500kW ,是第一部無齒輪箱風機
 Later upgraded to 600 kW with 44 m dia. 之後升級為 600kW ,風輪直徑 44 公尺
 Nacelle design changed 2001 到 2001 年,機艙設計變更
22
actual wind mills 現行的風機機型
 Development of wind energy demonstrated by WTG from Enercon
風力發電的發展,以 Enercon 的機型開發為例
 E 66/1,5 MW First prototype 1995 later upgraded to 1,8 MW. Replaced in 2005 by E 70
原型機開發於 1995 年,後由 1.5MW 升級至 1.8MW 。 2005 年起,被 E70 淘汰。
 E 70/2 MW, first prototype 2004 , hub height 57 to 113 m. Later upgraded to 2,3 MW
開發於 2004 年,機艙高度 57~113 公尺,其後由 2.0MW 升級至 2.3MW 。
 E 82/2 MW: prototype 2005, hub height 78 to 138 m. Later upgraded to 2,3 MW in 2009.
開發於 2005 年,機艙高度 78~138 公尺,其後於 2009 年,由 2.0MW 升級至
2.3MW
 E 82/3 MW: designed for higher wind class, prototype 2010
開發於 2010 年,設計用於高風速等級
 E 92/2,3 MW: prototype 2012 開發於 2012 年
 E 115/3 MW: prototype 2011, hub height 99 to 147 m.
開發於 2011 年,機艙高度 99~147 公尺
 E 112/4,5 MW prototype 2005, after 9 units changed to E 126
開發於 2005 年,在設置 9 部機組後,被 E126 取代
 E 115/3 MW: prototype 2013, hub height 92 to 149 m
開發於 2013 年,機艙高度 92~149 公尺
 E 126/7,6 MW: prototype 2007 – serial production starting 2009
23
Highlights of Wind turbines 風機之最
 Some other wind turbine highlights
 biggest commercial WTG: Enercon E
126 with 7,6 MW. Dia. 127 m, hub
height 135 m, Foundation ar. 3,500 to.
Tower 2,800 to, nacelle 128 to,
Generator 220 to, rotor head 364 to.
最大的商業風機: Enercon
E126 ,裝置容量 7.6MW ,風輪直
徑 127 公尺,基座 3500 噸、塔架
2800 噸、機艙 128 噸、發電機
220 噸、轉子 364 噸
24
Highlights of Wind turbines 風機之最
 Biggest prototype (output):
Vestas V 164 – 8,0: 8 MW,
prototype installed beginning
2014
最大的原型機 ( 輸出功率 ) :
Vestas V164 – 8.0 ,裝置容量
8MW ,設置於 2014 年
25
Highlights of Wind turbines 風機之最
 Biggest prototype (diameter): Samsung S7.0 - 171, prototype
installed beginning 2014
最大的原型機: Samsung S7.0 – 171 ,設置於 2014 年
Highlights of Wind turbines 風機之最
 Biggest hub height 最高的機艙 :
160 m – lattice tower with FL 2500 (2,5 MW Fuhrländer, dia. 90 m). Installed
in 2006
160 公尺高:桁架式塔架, Fuhrländer 的 FL2500 風機 ( 裝置容量
2.5MW ,風輪直徑 90 公尺 ) ,設置於 2006 年
27
Design basics 設計基礎
28
Design basics 設計基礎

PWind = ½ x ρ x F x vx v2 x C
(acc. to Betz 依據貝氏定理 )
ρ = specific gravity
F = rotor area 風輪面積
v = wind speed 風速
 The max theoretical possible efficiency is 16/27 (59,3%)
理論上最大效能為 59.3%
29
Design basics 設計基礎
 Resulting power curve (Enercon E 70 2.3 MW) 功率曲線
30
Design basics 設計基礎
31
風機依國際規範
IEC 61400-22 進
行機型認證,過程
如下。
文件申請
設計基礎評估
設計評估及測
試計畫核准
產品製造評估 機型測試
最終評估
機型認證
Design basics 設計基礎
 Wind speed acc. IEC 61400 - 1
32
Wind Class/Turbulence
風速等級 / 紊流
Annual average
wind speed at hub-
height (m/s) 機艙高
度平均風速 ( 公尺 /
秒 )
Extreme 50-year
gust in m/s
50 年週期極端風
速 ( 公尺 / 秒 )
IV 第四級 6.0 42.0
IIIb Low wind - Lower Turbulence 16%
三 B 低風速 – 低紊流 16%
7.5 52.5
IIIa Low wind - Higher Turbulence 18%
三 A 低風速– 高紊流 18%
7.5 52.5
IIb Medium wind - Lower Turbulence 16%
二 B 中風速– 低紊流 16%
8.5 59.5
IIa Medium wind - Higher Turbulence 18%
二 A 中風速– 高紊流 18%
8.5 59.5
Ib High wind - Lower Turbulence 16%
一 B 高風速– 低紊流 16%
10.0 70
Ia High wind - Higher Turbulence 18%
一 A 高風速– 高紊流 18%
10.0 70
Design basics 設計基礎
 Resulting foundation loads
33
From foundation to rotor blades
從基座到葉片
 Foundation 基座
 The foundation is necessary to
transfer the dead load and the
load from wind force to WTG
to the surrounding ground.
風力發電機本身自重及受風力
、地震力等作用力,需要基礎
將力量傳遞至堅硬地層使結構
穩定安全
 Depending on the
underground flat (shallow)
foundation or Pile foundation
will be used.
基礎可區分為淺基礎及深 / 樁
基礎
34
From foundation to rotor blades
從基座到葉片
 Foundation 基座
 Bolt cage 高拉力鋼棒環圈
 To connect the tower to the foundation
concrete there are two standard
methodes. 連結風機上部鋼結構及下部混
凝土基礎共有兩種型式,分別為高拉力鋼
棒環圈及鋼塔筒。
 Bolt cage are high strength steel with
upper and lower flange, enbedded inside
the concrete. 高拉力鋼棒環圈係由多支高
拉力鋼棒及上、下環型鋼片組成。
35
From foundation to rotor blades
從基座到葉片
 Foundation 基座
 Foundation section 鋼塔筒
 The other standard is foundation section,
an tower piece with bottom flange
enbedded inside foundation concrete
鋼塔筒係由風機塔架往下之延伸段,周圍
設有預留孔,基礎鋼筋將穿過該預留孔佈
與鋼塔筒緊密結合
36
From foundation to rotor blades
從基座到葉片
 Foundation 基座
 Foundation Rebar: SD 420 or SD
490
基礎鋼筋型式為 SD420 或
SD490( 降伏強度 4200 或
4900kg/cm^2)
 Concrete 240 kg/cm² or 280
kg/cm²
混凝土抗壓強度為 240 kg/cm² 或
280 kg/cm²
 In case of pile foundation all
standard piling system can be
used – the connecton to the
foundation will be adjusted.
如果基礎為樁基礎型式,基礎跟樁
的連結型式需特別注意。
37
From foundation to rotor blades
從基座到葉片
 Foundation 基座
 Excavation flat foundation
(bottom)
下圖為淺基礎開 施工照片挖
 Driven pile installation (right)
右圖為樁基礎施工照片
38
From foundation to rotor blades
從基座到葉片
 Foundation 基座
 Installation Foundation section
(bottom)
下圖為鋼塔筒組立施工
 Planted pile installation (right)
右圖為植入樁施工
39
From foundation to rotor blades
從基座到葉片
 Foundation 基座
 Foundation section with first rebar
(bottom) 下圖為鋼塔筒與基礎鋼筋
連接情形以及樁與基礎連接情形
 Plate loading test (right)
右圖為平板載重試驗確認土壤承載
力
40
From foundation to rotor blades
從基座到葉片
 Foundation 基座
 Foundation before concreting
(right) 右圖為基礎灌漿前準備工作
 Foundation concreting finished
(bottom) 下圖為基礎灌漿完成
41
From foundation to rotor blades
從基座到葉片
 Tower 風機塔筒結構
 For the tower following methods can be used:
tubular steel, concrete, lattic tower or even wooden
tower. Combinations of these are possilbe as well –
called Hybrid tower. 風機塔架依材料及型式不同可
分成鋼環塔架、混凝土塔架、桁架式塔架 ( 類似台電
鐵塔 ) 以及木製塔架。以上材料也可複合使用稱為混
合型塔架。
 In Taiwan, due to the lower hub height till now only
tubular steel tower are in use. 因台灣風資源良好,
風機高度不用太高即可獲得優異之輸出效能,所以
目前皆為鋼環塔架
 Tower are made of up to 36 mm thick high strength
steel. Section length are up to 30 m, connection is
done by flanges. 鋼環塔架係由 36mm 厚之高強度
鋼材製成,每節塔架可達 30m 長,塔節間之連接由
法蘭及螺栓接合。
 Enercon is using L – flanges to optimize the stress
flow through the flange. ENERCON 公司之鋼法蘭
設計為 L 型接合,避免應力傳遞集中在接合處產生
破壞
42
From foundation to rotor blades
從基座到葉片
 Tower 風機塔筒結構
 The tower were produced locally, in our
cases from CSMC 本公司之風機塔架鋼環
皆由中鋼機械 ( 中鋼集團 ) 生產製造
 The flanges are bolted by M 48 HV (high
strength bolts) 所有接合螺栓型式為 M48
HV ( 高強度螺栓 )
 Painting in Taiwan is a special painting
normally used in off shore conditions. 公
司於台灣之風機塔架塗漆皆比照離岸侵蝕
環境惡劣之情形辦理
 Total weigh of an 63 m tower is 140 to.
以 63m 高之風機為例,塔架總重約 140 噸。
43
From foundation to rotor blades
從基座到葉片
 Transportation tower section 1 第一節鋼製塔架運輸情形
44
From foundation to rotor blades
從基座到葉片
 Transport section 3 第三節鋼製塔架運輸情形
From foundation to rotor blades
從基座到葉片
 Lifting first tower section 第一節鋼製塔架吊裝情形
46
From foundation to rotor blades
從基座到葉片
 Installation of 1st tower section
第一節鋼製塔架吊裝情形
 Waiting for second tower sectio
第一節鋼製塔架吊裝完成等待
第二節塔架
47
From foundation to rotor blades
從基座到葉片
 Erection of 2nd tower section
第二節鋼製塔架吊裝情形
 Inside tower – passing
platform
塔架內部爬梯及平台照片
48
49
From foundation to rotor blades
從基座到葉片
 Look from top to loop
塔架內部照片 ( 由上往下拍攝 )
 Climbing up the tower
維護保養人員使用爬梯逐層檢
風機查
50
From foundation to rotor blades
從基座到葉片
 Machine house 風機機艙
 The connection part between tower and machine house is the bearing.
連結風機機艙與塔架之構件稱為支承
 The iron cast machine barrier 該支承為鑄造而成
 Machine house 風機機艙
 Fully equipped main carrier
with yaw drives
 Different power and control
cabinets.
機艙內主要有風機轉向控制
系統及各種電力轉換及控制
箱。
51
From foundation to rotor blades
從基座到葉片
 Machine house 風機機艙
 Fully preassembeld machine house with outer
cover, wind measurement units and optional
obstruction lights.
機艙外部除保護機殼外,尚有風向風速計及航
空障礙指示燈 ( 依需求設置 ) 。
52
From foundation to rotor blades
從基座到葉片
53
From foundation to rotor blades
從基座到葉片
 Preassembeled nacelle 機艙於地面預先組裝情形
54
From foundation to rotor blades
從基座到葉片
 Yaw motors left
風機轉向控制系統 ( 左側 )
 Yaw motor right
風機轉向控制系統 ( 右側 )
 Rotor head (Hub) 葉片輪毂
 The hub is the connection from
machine house to the blades.
葉片與機艙之連接係由輪轂接合
 Including axle pin, Generator,
尚有旋轉軸心及發電機
 The picture right showing the axel
pin (blue) with bearings (red) and
the support of the stator (part of
the generator). 右圖藍色部分為軸
心、紅色為軸承以及發電機定子支
構件撐
55
From foundation to rotor blades
從基座到葉片
 Rotor head (Hub) 葉片輪毂
 Enercon is using an direct driven
Generator – weight 55 to for E 70
Enercon 風機採用直驅式發電機,
以 E70 風機為例,發電機重約 55
噸。
 Picture showing the assembled
generator with cooling ducts.
右圖為直驅式發電機及冷卻散熱系
統。
56
From foundation to rotor blades
從基座到葉片
 Rotor head (Hub) 葉片輪毂
 Rotorhub is put on the front of axle
pin, to fix the blades to the WTG.
風機葉片輪 置於軸心前端與葉片毂
緊密接合
 It contains also entire equipment
for pitch etc. 輪 包含葉片旋角控毂
制系統
 Picture showing pitch engine fixed
on rotorhub. 下圖為葉片旋角控制
馬達照片
57
From foundation to rotor blades
從基座到葉片
 Rotor head (Hub) 葉片輪毂
 Picture is showing the complete assembled rotor hub – including cover.
下圖為完整之機艙、機殼及輪 組裝完成圖毂
58
From foundation to rotor blades
從基座到葉片
From foundation to rotor blades
從基座到葉片
 Unloading hub
左圖為葉片輪 海運到港卸載毂
情形
 Transportation generator
右圖為風機發電機運輸情形
59
60
From foundation to rotor blades
從基座到葉片
 Generator (hub)
發電機前端
 Generator (nacelle)
發電機尾端
61
From foundation to rotor blades
從基座到葉片
 Hub (pitch on top)
葉片輪 及旋角控制馬達毂
 Preassembled hub
葉片輪 於地面預先組裝情形毂
62
From foundation to rotor blades
從基座到葉片
 Generator (view from nacelle)
發電機尾端
 Generator (view from hub)
發電機與輪 間毂
63
From foundation to rotor blades
從基座到葉片
 Checking pitch
葉片旋角控制系統檢修照片
 Noise sensor
機艙前緣異音感測器檢修照片
From foundation to rotor blades
從基座到葉片
 Blades 風機葉片
Enerocn blades made of GFK. Enercon 風機葉片主要強化玻璃纖維製成
64
From foundation to rotor blades
從基座到葉片
 Blades 風機葉片
Blades are important for lightening protection – so the contain a tip to collect
the litheining. Conductor to transport the flash to the hub and further to the
tower to ground.
風機之避雷系統相當重要,從葉片內嵌 帶、引雷針至輪 再由塔架將雷擊鋁 毂
導入基礎接地系統。
65
 Blades 風機葉片
 Enercon special is the spoiler to get the wind
close to the center of the nacelle. Enercon
風機之設計可將風能擷取於機艙中心
 Due to the new designed blades the Enercon
WTG has an better air flow (reduced noise)
Enercon 風機葉片之設計可減少紊流及噪音
66
From foundation to rotor blades
從基座到葉片
67
 Blade transport in the harbour
風機葉片海運到港運輸情形
 Blade transport to site
風機葉片運輸情形
From foundation to rotor blades
從基座到葉片
68
From foundation to rotor blades
從基座到葉片
 Unloading blades on site
風機葉片運抵現場
 Blades fixed to hub
葉片連接組裝情形
69
From foundation to rotor blades
從基座到葉片
 Preassembled blades
風機葉片組裝
 Maintenance work inside
blades 葉片內部維護保養情形
70
From foundation to rotor blades
從基座到葉片
71
From foundation to rotor blades
從基座到葉片
72
From foundation to rotor blades
從基座到葉片
73
From foundation to rotor blades
從基座到葉片
74
From foundation to rotor blades
從基座到葉片
Thank you!
Q & A
75
關於英華威
 2002 年在台灣落地生根以來
 與環保團體及其他再生能源業者共同
推動「再生能源發展條例」立法
 開發營運超過 332MW 的風電與光電
( 右圖 )
 每年可供應約 40 萬家戶用電、抵減約
400 萬公噸 CO2
 協助各級學校與社區推動再生能源教
育、辦理風場導覽
關於【好風光】
2011 年 311 福島核災後,全
球越發關注再生能源發展。
有感台灣社會亟欲了解相關
議題,卻常不得其門而入,
作為在台開發再生能源電廠
的先驅之一,英華威公司深
感責任重大。
每月 11 日晚上【好風光】講
座 ( 遇假日順延 ) ,英華威
open house! 讓大 與第一眾
線綠能工作者面對面,深入
了解台灣再生能源潛力,以
及台灣能源轉型的迫切性 !!
順風車–非核 . 綠電 . 好風光

Contenu connexe

Tendances

ANALYSIS AND DESIGN OF G+4 RESIDENTIAL BUILDING contents
ANALYSIS AND DESIGN OF G+4 RESIDENTIAL BUILDING contentsANALYSIS AND DESIGN OF G+4 RESIDENTIAL BUILDING contents
ANALYSIS AND DESIGN OF G+4 RESIDENTIAL BUILDING contentsila vamsi krishna
 
Ppt paper 3 plasma energy technology
Ppt paper 3 plasma energy technologyPpt paper 3 plasma energy technology
Ppt paper 3 plasma energy technologytelecommohn
 
Various Losses in Thin-Film solar cell
Various Losses in Thin-Film solar cellVarious Losses in Thin-Film solar cell
Various Losses in Thin-Film solar cellVikas Kumar Rajput
 
Electric motor systems - DecarbEurope
Electric motor systems - DecarbEuropeElectric motor systems - DecarbEurope
Electric motor systems - DecarbEuropeLeonardo ENERGY
 
How auction design affects the financing of renewable energy projects
How auction design affects the financing of renewable energy projects How auction design affects the financing of renewable energy projects
How auction design affects the financing of renewable energy projects Leonardo ENERGY
 
101 Tips for a Successful Automation Career Appendix C
101 Tips for a Successful Automation Career Appendix C101 Tips for a Successful Automation Career Appendix C
101 Tips for a Successful Automation Career Appendix CISA Interchange
 
Assessment of Photovoltaic Module Failures in the Field
Assessment of Photovoltaic Module Failures in the FieldAssessment of Photovoltaic Module Failures in the Field
Assessment of Photovoltaic Module Failures in the FieldLeonardo ENERGY
 
Chapter 01 - Exploring the Network
Chapter 01 -  Exploring the NetworkChapter 01 -  Exploring the Network
Chapter 01 - Exploring the NetworkYaser Rahmati
 
FEM of the magnetic field of guitar pickups.PDF
FEM of the magnetic field of guitar pickups.PDFFEM of the magnetic field of guitar pickups.PDF
FEM of the magnetic field of guitar pickups.PDFFreelance data analysis
 
Design of Steel Structures Syllabus
Design of Steel Structures SyllabusDesign of Steel Structures Syllabus
Design of Steel Structures SyllabusMuthanna Abbu
 
Bladeless wind energy report
Bladeless wind energy reportBladeless wind energy report
Bladeless wind energy reportASHISHKUMARSAROJ1
 
Bonnett fuelcellpresentationfinal
Bonnett fuelcellpresentationfinalBonnett fuelcellpresentationfinal
Bonnett fuelcellpresentationfinalAtiek Rostika
 
Chapter02.structural design using staad pro
Chapter02.structural design using staad proChapter02.structural design using staad pro
Chapter02.structural design using staad prodevaraj pavan kumar
 
Vortex bladeless wind generator report
Vortex bladeless wind generator reportVortex bladeless wind generator report
Vortex bladeless wind generator reportASHISHKUMARSAROJ1
 
20180705 (簡報) 經濟部:「我國離岸風電推動辦理情形」
20180705 (簡報) 經濟部:「我國離岸風電推動辦理情形」20180705 (簡報) 經濟部:「我國離岸風電推動辦理情形」
20180705 (簡報) 經濟部:「我國離岸風電推動辦理情形」R.O.C.Executive Yuan
 
BATTERIES AND FUEL CELLS
BATTERIES AND FUEL CELLSBATTERIES AND FUEL CELLS
BATTERIES AND FUEL CELLStejashp3
 

Tendances (20)

ANALYSIS AND DESIGN OF G+4 RESIDENTIAL BUILDING contents
ANALYSIS AND DESIGN OF G+4 RESIDENTIAL BUILDING contentsANALYSIS AND DESIGN OF G+4 RESIDENTIAL BUILDING contents
ANALYSIS AND DESIGN OF G+4 RESIDENTIAL BUILDING contents
 
Ppt paper 3 plasma energy technology
Ppt paper 3 plasma energy technologyPpt paper 3 plasma energy technology
Ppt paper 3 plasma energy technology
 
Various Losses in Thin-Film solar cell
Various Losses in Thin-Film solar cellVarious Losses in Thin-Film solar cell
Various Losses in Thin-Film solar cell
 
Electric motor systems - DecarbEurope
Electric motor systems - DecarbEuropeElectric motor systems - DecarbEurope
Electric motor systems - DecarbEurope
 
Vertical wind mill
Vertical wind millVertical wind mill
Vertical wind mill
 
Vortex bladeless
Vortex bladelessVortex bladeless
Vortex bladeless
 
How auction design affects the financing of renewable energy projects
How auction design affects the financing of renewable energy projects How auction design affects the financing of renewable energy projects
How auction design affects the financing of renewable energy projects
 
101 Tips for a Successful Automation Career Appendix C
101 Tips for a Successful Automation Career Appendix C101 Tips for a Successful Automation Career Appendix C
101 Tips for a Successful Automation Career Appendix C
 
Assessment of Photovoltaic Module Failures in the Field
Assessment of Photovoltaic Module Failures in the FieldAssessment of Photovoltaic Module Failures in the Field
Assessment of Photovoltaic Module Failures in the Field
 
Chapter 01 - Exploring the Network
Chapter 01 -  Exploring the NetworkChapter 01 -  Exploring the Network
Chapter 01 - Exploring the Network
 
FEM of the magnetic field of guitar pickups.PDF
FEM of the magnetic field of guitar pickups.PDFFEM of the magnetic field of guitar pickups.PDF
FEM of the magnetic field of guitar pickups.PDF
 
Design of Steel Structures Syllabus
Design of Steel Structures SyllabusDesign of Steel Structures Syllabus
Design of Steel Structures Syllabus
 
Bladeless wind energy report
Bladeless wind energy reportBladeless wind energy report
Bladeless wind energy report
 
Bonnett fuelcellpresentationfinal
Bonnett fuelcellpresentationfinalBonnett fuelcellpresentationfinal
Bonnett fuelcellpresentationfinal
 
Chapter02.structural design using staad pro
Chapter02.structural design using staad proChapter02.structural design using staad pro
Chapter02.structural design using staad pro
 
Vortex bladeless wind generator report
Vortex bladeless wind generator reportVortex bladeless wind generator report
Vortex bladeless wind generator report
 
Cd te solar cell
Cd te solar cellCd te solar cell
Cd te solar cell
 
Fuel cells
Fuel cellsFuel cells
Fuel cells
 
20180705 (簡報) 經濟部:「我國離岸風電推動辦理情形」
20180705 (簡報) 經濟部:「我國離岸風電推動辦理情形」20180705 (簡報) 經濟部:「我國離岸風電推動辦理情形」
20180705 (簡報) 經濟部:「我國離岸風電推動辦理情形」
 
BATTERIES AND FUEL CELLS
BATTERIES AND FUEL CELLSBATTERIES AND FUEL CELLS
BATTERIES AND FUEL CELLS
 

En vedette

【好風光】7/11 台灣能源轉型:能源會議前我們應該知道的二三事 (第二彈)
【好風光】7/11 台灣能源轉型:能源會議前我們應該知道的二三事 (第二彈)【好風光】7/11 台灣能源轉型:能源會議前我們應該知道的二三事 (第二彈)
【好風光】7/11 台灣能源轉型:能源會議前我們應該知道的二三事 (第二彈)英華威風力發電集團
 
wind energy
wind energywind energy
wind energyriapan
 
【好風光】6/11 台灣能源轉型:能源會議前我們應該知道的二三事
【好風光】6/11 台灣能源轉型:能源會議前我們應該知道的二三事【好風光】6/11 台灣能源轉型:能源會議前我們應該知道的二三事
【好風光】6/11 台灣能源轉型:能源會議前我們應該知道的二三事英華威風力發電集團
 
【好風光】0411 世界地球日前認識風力發電
【好風光】0411 世界地球日前認識風力發電【好風光】0411 世界地球日前認識風力發電
【好風光】0411 世界地球日前認識風力發電英華威風力發電集團
 
【好風光】8/18 自己的綠電自己買? 「自願性綠色電價」有何問題
【好風光】8/18 自己的綠電自己買? 「自願性綠色電價」有何問題【好風光】8/18 自己的綠電自己買? 「自願性綠色電價」有何問題
【好風光】8/18 自己的綠電自己買? 「自願性綠色電價」有何問題英華威風力發電集團
 
【好風光】 0311 台灣能源政策與風力發電
【好風光】 0311 台灣能源政策與風力發電【好風光】 0311 台灣能源政策與風力發電
【好風光】 0311 台灣能源政策與風力發電英華威風力發電集團
 
風力發電~電機大師黃聰亮教授演講投影片
風力發電~電機大師黃聰亮教授演講投影片風力發電~電機大師黃聰亮教授演講投影片
風力發電~電機大師黃聰亮教授演講投影片vincent8899
 
20140828-3D列印科技的發展與推動
20140828-3D列印科技的發展與推動20140828-3D列印科技的發展與推動
20140828-3D列印科技的發展與推動R.O.C.Executive Yuan
 
Lean Manufacturing PowerPoint Presentation Sample
Lean Manufacturing PowerPoint Presentation SampleLean Manufacturing PowerPoint Presentation Sample
Lean Manufacturing PowerPoint Presentation SampleAndrew Schwartz
 
Francais Fujitsu Lean & Green Sur Linkedin Rev30nov2009
Francais   Fujitsu   Lean & Green Sur Linkedin Rev30nov2009Francais   Fujitsu   Lean & Green Sur Linkedin Rev30nov2009
Francais Fujitsu Lean & Green Sur Linkedin Rev30nov2009RonMcGregor
 

En vedette (12)

【好風光】7/11 台灣能源轉型:能源會議前我們應該知道的二三事 (第二彈)
【好風光】7/11 台灣能源轉型:能源會議前我們應該知道的二三事 (第二彈)【好風光】7/11 台灣能源轉型:能源會議前我們應該知道的二三事 (第二彈)
【好風光】7/11 台灣能源轉型:能源會議前我們應該知道的二三事 (第二彈)
 
wind energy
wind energywind energy
wind energy
 
【好風光】6/11 台灣能源轉型:能源會議前我們應該知道的二三事
【好風光】6/11 台灣能源轉型:能源會議前我們應該知道的二三事【好風光】6/11 台灣能源轉型:能源會議前我們應該知道的二三事
【好風光】6/11 台灣能源轉型:能源會議前我們應該知道的二三事
 
【好風光】0411 世界地球日前認識風力發電
【好風光】0411 世界地球日前認識風力發電【好風光】0411 世界地球日前認識風力發電
【好風光】0411 世界地球日前認識風力發電
 
【好風光】8/18 自己的綠電自己買? 「自願性綠色電價」有何問題
【好風光】8/18 自己的綠電自己買? 「自願性綠色電價」有何問題【好風光】8/18 自己的綠電自己買? 「自願性綠色電價」有何問題
【好風光】8/18 自己的綠電自己買? 「自願性綠色電價」有何問題
 
【好風光】 0311 台灣能源政策與風力發電
【好風光】 0311 台灣能源政策與風力發電【好風光】 0311 台灣能源政策與風力發電
【好風光】 0311 台灣能源政策與風力發電
 
圖表解讀
圖表解讀圖表解讀
圖表解讀
 
風力發電~電機大師黃聰亮教授演講投影片
風力發電~電機大師黃聰亮教授演講投影片風力發電~電機大師黃聰亮教授演講投影片
風力發電~電機大師黃聰亮教授演講投影片
 
20140828-3D列印科技的發展與推動
20140828-3D列印科技的發展與推動20140828-3D列印科技的發展與推動
20140828-3D列印科技的發展與推動
 
Lean Process Improvement Techniques
Lean Process Improvement TechniquesLean Process Improvement Techniques
Lean Process Improvement Techniques
 
Lean Manufacturing PowerPoint Presentation Sample
Lean Manufacturing PowerPoint Presentation SampleLean Manufacturing PowerPoint Presentation Sample
Lean Manufacturing PowerPoint Presentation Sample
 
Francais Fujitsu Lean & Green Sur Linkedin Rev30nov2009
Francais   Fujitsu   Lean & Green Sur Linkedin Rev30nov2009Francais   Fujitsu   Lean & Green Sur Linkedin Rev30nov2009
Francais Fujitsu Lean & Green Sur Linkedin Rev30nov2009
 

【好風光】5/12 自己的電自己發! 風力發電工程我也懂

  • 2. 2 Table of content 簡報綱要 - Historic of WTG 風機發展簡史 - Actual Wind turbine models 現行的風機機型 - Highlight of wind turbines 風機之最 - Design basics 設計基礎 - From foundation to rotor blades 從基座到葉片 - Foundation 基座 - Tower 塔架 - Machine house (nacelle) 機艙 - Rotor head (hub) 轉子 - Blades 葉片 - Q & A
  • 3. 3 Historic wind mills 歷史上的風車  Mechanical Wind power machines Early samples of windmills were used to grind grain. In ancient Persia. These were developed around 600 A.D. They had a vertical rotor driveshaft and a Horizontal rotation plane. 早期風機用於研磨穀物。古波斯時期的風機,大約 發展於西元 600 年。這些風機有垂直的轉動軸, 連接水平的自轉平面
  • 4. Historic wind mills 歷史上的風車  Windmills in Europe 歐洲的風車 Wind mills have been known in Europe since the 12th Century. From the start, they were designed as lift – based horizontal axis wind turbines, which is still a basic principle of moderndays wind turbine generator. 歐洲風車在 12 世紀就有了,起初是 設計用來舉物,而這樣水平軸風輪的的設計,也是現代風力機的基本原理。 Sail WTG – used in Mediterranean for irregation 帆型風車 ,在地中海地區用以灌溉 Post mill: oldest European WTG , design, 12th to 16th Century, using for grain 最老的歐洲風車,於 12~16 世紀用於研磨穀物
  • 5. Historic Wind Mills 歷史上的風車  Smock Mill: As of the 16th Century Main use: Grinding grain, drainage 16 世紀之後主要用於研磨穀物、汲水 Around in the middle of the 19th century there were over 200,000 wind mills all over Europe. 大約在 19 世紀中,全歐洲有超過 20 萬座風車 End 2013 in Germany were 23.645 modern WTG installed. 截至 2013 年底,全德國裝設了 23,645 部風機。 5
  • 6. Historic Wind mills 歷史上的風車  Wind energy in China 風力在中國 since Han Dynasty (~ 220 a.D) for dewatering. 自漢代開始,用於提水灌 或製鹽溉 6 摘自南台科技大學網站
  • 7. Historical Wind mills 歷史上的風車  The American water – pumping wind mill 美式抽水用風車 Technology didn‘t take big steps forward until 19th century 直到 19 世紀,科技並沒有太多進步 The American „Western Mil“ used to pump water mainley in North America, was the first Wind mill in history to pitch automatically out of the wind during storm 美式西部風車,主要出現在北美,用於抽水。是史上 第一部在暴風時會自動 車的風車剎 ~ multi bladed wind turbine (dia. 3 – 5 m) 多葉片風輪 ( 直徑 3~5 公尺 ) ~ reciprocating pump for drawing water 汲水用 ~ tens of thousands still in operation in Australia, Argentina, US etc. 在澳洲、阿根廷及美國等地仍有 上千架在使用中 7
  • 8. Historical wind mills 歷史上的風車  Electricity – producing wind turbines 供電用風機 In 1887 – 1888, Charles F. Brush constructed the first fully automatic wind turbine for electricity production. 在 1887~1888 年間, Brush 建造首座 全自動供電用風機 With a rotor diameter of 17 meters and a total of 114 blades this machine‘s dimensions were gigantic by the standard of the time. 這部機器在當 時可說非常巨大,風輪直徑約 17 公尺、共有 114 支葉片 For 20 years this turbine supplied enough energy to charge a bank of batteries in the basement of the house. Despite the turbine‘s enormous size the generator was only rated 12 kW. 在 20 年間,這部風機產生的電足 充飽夠 Brush 房子地下室的電池。不過雖然風機很大,裝 置容量只有 12kW 。 8
  • 9. Historical wind mills 歷史上的風車  Electricity – producing wind turbines 供電用風機 Poul la Cour was a Danish Folk High school teacher. Cour 是一位丹麥的高中老師 Encouraged by the Danish government, which was exploring different avenues to supply electricity also to the rural areas of Denmark, la Cour built an experimental wind turbine in 1891 to power an generator. 丹麥政府當時鼓勵探索 各種不同的供電方式,包含供電到丹麥 間。鄉 Cour 在 1891 年建了一個實驗性的風力發電機。 He used the direct current geranerated by his wind turbine for electrolyis and stored the produced hydrogen. In this way, the school grounds in Askov could be lighted with gas lamps from 1885 to 1902. 他用風機產生直流電,用以電解 水並儲存電力。因此,在 1885~1902 年間,他的學 校可以用煤氣燈照明。 9
  • 10. Historical wind mills 歷史上的風車  Savonius rotor The Savonius rotor is a vertical axis wind turbine. It was invented by Finnish engineer Sigurad Savonious around 1925. 這是一種垂直軸風機,於 1925 年由芬蘭工程師 Savonious 發明 Advantages 優點 :  Simple design and easy assembly 設計簡單、安裝容易  High torque at relatively low rotational speed 在相對低轉速下仍有高力矩  Independent of wind direction, no yaw needed 不論風向、不需機組偏航  Operational even at extremly low wind speed (2 – 3 m/s) 即便在極低風速下仍能運轉 Disdvantages 缺點 :  Low efficiency (max 28%) 效率低  Greatly varying load due to continuously changing angle of attach 風 和風向時常改變,能 無法集中力 量  The above puts a limit on the size of this size of turbine. 以上因素使得此種風機的尺寸有所限制 10
  • 11. Historical wind mills 歷史上的風車  Darrieus rotor The Darrieus rotor is a type of vertical – axis wind turbine. It was developed by French engineer Georges Darrieus and patented in the U.S. in 1931 法國工程師 Georges Darrieus 發明 Darrieus 垂直軸風機並於 1931 年取得美國專利。 Advantages 優點 :  Function independent of wind direction 運轉不受風向影響  Generator/gear close to the ground 發電機及齒輪箱接近地面 ( 易維修 )  Efficiency greater than of the Savonius rotor (~40%) 效能比 Savonius rotor 高約 40% Disdvantages 缺點 :  Great varying load due to contiunously changing Angle of attack 風 和風向時常改變,能 無法集中力 量  Which results the fatique 也容易產生材料疲勞破壞 the world largest Darrieus rotor named Eole is more than 100 m height and rated power of 4 MW 世界最大之 Darrieus 垂直軸風機高約 100m ,額定裝置容 量約 4MW 11
  • 12. Historical wind mills 歷史上的風車  Development in Germany In Germany at that time were ideas and trials by Wihlem Teubert, Ferdinand Porsche and Hermann Honnef 同時期德國亦有 Wihlem Teubert, Ferdinand Porsche 及 Hermann Honnef 嘗試發展風機並進行試驗。 Among others a test field with wind turbines up to 17 kW was installed on the Mathiasberg hill near Berlin 右上圖為德國 Vision of H. Honnef of an 20 MW WTG (500 m height, dia. 160 m), dated 1930. H. Honnef 於 1930 構思了一台 20MW 的風機, 高 500m ,直徑達 160m( 右下圖 ) 柏林近郊之 Mathiasberg 山丘設立了 17kW 的風機 12
  • 13. Historical wind mills 歷史上的風車 13  Smith – Putnam turbine Smith-Putnam 風機 Another milestone was the installation of the 1,25 MW Smith – Putnam wind turbine by Palmer Cosslett Putnam 1941 in Vermont, USA. 1941 年 Palmer Cosslett Putnam 於美國佛蒙特州設立了第一座百萬 瓦級的風機 (1.25MW) 讓風機邁入了一個重要里程碑。 Except some interruptions, this Wind turbine remained in operation until 1945 when one of the blades failed. The materials and the material quality required for turbines this size simply were not available at the time. 該風機持續運轉直到 1945 年葉片損壞為止,因二次大戰期間物資匱乏 ,該風機葉片無法完成修復。
  • 14. 14 Historical wind mills 歷史上的風車  Ulrich W. Hüttner In 1951, Ulrich W. Hütter, a German Austrian wind energy pioneer erected a 10 kW wind turbine with an rotor dia. of 11 m. 1951 年,這位德裔奧地利籍的風能先驅,架設了 一部 10kW 的風機,風輪直徑 11 公尺。 Some 200 turbines were exported mainly to south Africa, Argentina and India. 當時約有 200 部機組出口到南非、阿根廷及印度 In 1957 Hütter constructed the prototype of all modern wind turbines, the StGW – 34 with 100 kW. The rotor diameter was 34 m. 在 1957 年,他裝設了現代風機的原型 機, StGW-34 ,裝置容量 100kW ,風輪直徑 34 公尺。
  • 15. 15 Historical wind mills 歷史上的風車  Gedser wind turbine Gedser 風機 Johannes Juul, a former student of Poul la Cour constructed the world‘s first wind turbine for producing alternating current. Juul 是 Cour 的學生,建造世界第一部生產交流電的風機 This design set the trend for all of todays modern wind turbines and for a long time it was also the world largest Wind turbine (200 kW, 24 m dia, 1957) 此設計奠定當今所有現代風機的基礎,也在一 段很長的時間,是當時是上最大的風機 It distinguished itselfs by it‘s high reliability because it ran for eleven years without maintenance. . 其之所以特別,在於其高可靠度。這部風機在 沒有維護的情況下,運轉了 11 年。
  • 16. Historical wind mills 歷史上的風車  The Danish concept 丹麥概念  The Gedser wind turbine designed by Juul was based on the „Danish concept“ which became very popular later. Wind turbines used this principle until the early 1990s. Juul 設計的 Gedser 風機是基於丹麥 概念,此概念之後也非常流行,直到 1990 年代早期。 16  Features 特色 :  The rotor spins at a fixed rotational speed 轉子以固定速度運轉  Power limitation is ensured by stalling (or stall regulation) 透過 車系統確保限制輸出煞  The rotor drives an asynchronous generator via a gearbox. 轉子透過齒輪箱驅動一個異步發電機  Due to fixed rotational speed of the asynchronous generator connected directly to the grid there is only one wind speed at which the rotor achieves its maximum efficiency. 由於異步發電機的轉速固定,以至於只有在一種風速下,轉子會達到其最高效能
  • 17. Historical wind mills 歷史上的風車  Further development 更進一步發展  Favourable tax policies in California ushered in the breakthrough of wind power in 1985. 加州的優惠租稅政策,在 1985 年促使風力疾速發展  Since only the Danes were able to supply operational systems at that time, wind turbines all sudden became a staple item in Denmark, which was produced several thousand times a year. Standard size were units of 125 kW and an rotor dia. of 20 m. 由於當時只有丹麥能供應此類設備,風機頓時在丹麥成為日常生活用品般,一年生 產數千部機組。當時的標準機型是 125kW ,風輪直徑為 20 公尺。 17
  • 18. Historical wind mills 歷史上的風車  Development of WTG size demonstrated on wind turbines (Enercon) 風力發電的發展,以 Enercon 的機型開發為例 18
  • 19. Historical wind mills 歷史上的風車  Development of WTG size demonstrated on wind turbines (Enercon) 風力發電的發展,以 Enercon 的機型開發為例 19 變動的轉速 透過 車限制輸出煞 透過逆變器後將電送到電網
  • 20. Historical wind mills 歷史上的風車  Development of wind energy demonstrated by WTG from Enercon 風力發電的發展,以 Enercon 的機型開發為例 20 變動的轉速 透過 車限制輸出煞 透過逆變器後將電送到電網 ENERCON 齒輪箱 環 樹脂葉片氧
  • 21. Historical wind mills 歷史上的風車  Development of wind energy demonstrated by WTG from Enercon 風力發電的發展,以 Enercon 的機型開發為例 21 變動的轉速 變動的風輪葉片角度 透過逆變器後將電送到電網
  • 22. Historical wind mills 歷史上的風車  Development of wind energy demonstrated by WTG from Enercon 風力發電的發展,以 Enercon 的機型開發為例  E 40 – first gearless WTG with 500 kW (1992) 開發於 1992 年,裝置容量 500kW ,是第一部無齒輪箱風機  Later upgraded to 600 kW with 44 m dia. 之後升級為 600kW ,風輪直徑 44 公尺  Nacelle design changed 2001 到 2001 年,機艙設計變更 22
  • 23. actual wind mills 現行的風機機型  Development of wind energy demonstrated by WTG from Enercon 風力發電的發展,以 Enercon 的機型開發為例  E 66/1,5 MW First prototype 1995 later upgraded to 1,8 MW. Replaced in 2005 by E 70 原型機開發於 1995 年,後由 1.5MW 升級至 1.8MW 。 2005 年起,被 E70 淘汰。  E 70/2 MW, first prototype 2004 , hub height 57 to 113 m. Later upgraded to 2,3 MW 開發於 2004 年,機艙高度 57~113 公尺,其後由 2.0MW 升級至 2.3MW 。  E 82/2 MW: prototype 2005, hub height 78 to 138 m. Later upgraded to 2,3 MW in 2009. 開發於 2005 年,機艙高度 78~138 公尺,其後於 2009 年,由 2.0MW 升級至 2.3MW  E 82/3 MW: designed for higher wind class, prototype 2010 開發於 2010 年,設計用於高風速等級  E 92/2,3 MW: prototype 2012 開發於 2012 年  E 115/3 MW: prototype 2011, hub height 99 to 147 m. 開發於 2011 年,機艙高度 99~147 公尺  E 112/4,5 MW prototype 2005, after 9 units changed to E 126 開發於 2005 年,在設置 9 部機組後,被 E126 取代  E 115/3 MW: prototype 2013, hub height 92 to 149 m 開發於 2013 年,機艙高度 92~149 公尺  E 126/7,6 MW: prototype 2007 – serial production starting 2009 23
  • 24. Highlights of Wind turbines 風機之最  Some other wind turbine highlights  biggest commercial WTG: Enercon E 126 with 7,6 MW. Dia. 127 m, hub height 135 m, Foundation ar. 3,500 to. Tower 2,800 to, nacelle 128 to, Generator 220 to, rotor head 364 to. 最大的商業風機: Enercon E126 ,裝置容量 7.6MW ,風輪直 徑 127 公尺,基座 3500 噸、塔架 2800 噸、機艙 128 噸、發電機 220 噸、轉子 364 噸 24
  • 25. Highlights of Wind turbines 風機之最  Biggest prototype (output): Vestas V 164 – 8,0: 8 MW, prototype installed beginning 2014 最大的原型機 ( 輸出功率 ) : Vestas V164 – 8.0 ,裝置容量 8MW ,設置於 2014 年 25
  • 26. Highlights of Wind turbines 風機之最  Biggest prototype (diameter): Samsung S7.0 - 171, prototype installed beginning 2014 最大的原型機: Samsung S7.0 – 171 ,設置於 2014 年
  • 27. Highlights of Wind turbines 風機之最  Biggest hub height 最高的機艙 : 160 m – lattice tower with FL 2500 (2,5 MW Fuhrländer, dia. 90 m). Installed in 2006 160 公尺高:桁架式塔架, Fuhrländer 的 FL2500 風機 ( 裝置容量 2.5MW ,風輪直徑 90 公尺 ) ,設置於 2006 年 27
  • 29. Design basics 設計基礎  PWind = ½ x ρ x F x vx v2 x C (acc. to Betz 依據貝氏定理 ) ρ = specific gravity F = rotor area 風輪面積 v = wind speed 風速  The max theoretical possible efficiency is 16/27 (59,3%) 理論上最大效能為 59.3% 29
  • 30. Design basics 設計基礎  Resulting power curve (Enercon E 70 2.3 MW) 功率曲線 30
  • 31. Design basics 設計基礎 31 風機依國際規範 IEC 61400-22 進 行機型認證,過程 如下。 文件申請 設計基礎評估 設計評估及測 試計畫核准 產品製造評估 機型測試 最終評估 機型認證
  • 32. Design basics 設計基礎  Wind speed acc. IEC 61400 - 1 32 Wind Class/Turbulence 風速等級 / 紊流 Annual average wind speed at hub- height (m/s) 機艙高 度平均風速 ( 公尺 / 秒 ) Extreme 50-year gust in m/s 50 年週期極端風 速 ( 公尺 / 秒 ) IV 第四級 6.0 42.0 IIIb Low wind - Lower Turbulence 16% 三 B 低風速 – 低紊流 16% 7.5 52.5 IIIa Low wind - Higher Turbulence 18% 三 A 低風速– 高紊流 18% 7.5 52.5 IIb Medium wind - Lower Turbulence 16% 二 B 中風速– 低紊流 16% 8.5 59.5 IIa Medium wind - Higher Turbulence 18% 二 A 中風速– 高紊流 18% 8.5 59.5 Ib High wind - Lower Turbulence 16% 一 B 高風速– 低紊流 16% 10.0 70 Ia High wind - Higher Turbulence 18% 一 A 高風速– 高紊流 18% 10.0 70
  • 33. Design basics 設計基礎  Resulting foundation loads 33
  • 34. From foundation to rotor blades 從基座到葉片  Foundation 基座  The foundation is necessary to transfer the dead load and the load from wind force to WTG to the surrounding ground. 風力發電機本身自重及受風力 、地震力等作用力,需要基礎 將力量傳遞至堅硬地層使結構 穩定安全  Depending on the underground flat (shallow) foundation or Pile foundation will be used. 基礎可區分為淺基礎及深 / 樁 基礎 34
  • 35. From foundation to rotor blades 從基座到葉片  Foundation 基座  Bolt cage 高拉力鋼棒環圈  To connect the tower to the foundation concrete there are two standard methodes. 連結風機上部鋼結構及下部混 凝土基礎共有兩種型式,分別為高拉力鋼 棒環圈及鋼塔筒。  Bolt cage are high strength steel with upper and lower flange, enbedded inside the concrete. 高拉力鋼棒環圈係由多支高 拉力鋼棒及上、下環型鋼片組成。 35
  • 36. From foundation to rotor blades 從基座到葉片  Foundation 基座  Foundation section 鋼塔筒  The other standard is foundation section, an tower piece with bottom flange enbedded inside foundation concrete 鋼塔筒係由風機塔架往下之延伸段,周圍 設有預留孔,基礎鋼筋將穿過該預留孔佈 與鋼塔筒緊密結合 36
  • 37. From foundation to rotor blades 從基座到葉片  Foundation 基座  Foundation Rebar: SD 420 or SD 490 基礎鋼筋型式為 SD420 或 SD490( 降伏強度 4200 或 4900kg/cm^2)  Concrete 240 kg/cm² or 280 kg/cm² 混凝土抗壓強度為 240 kg/cm² 或 280 kg/cm²  In case of pile foundation all standard piling system can be used – the connecton to the foundation will be adjusted. 如果基礎為樁基礎型式,基礎跟樁 的連結型式需特別注意。 37
  • 38. From foundation to rotor blades 從基座到葉片  Foundation 基座  Excavation flat foundation (bottom) 下圖為淺基礎開 施工照片挖  Driven pile installation (right) 右圖為樁基礎施工照片 38
  • 39. From foundation to rotor blades 從基座到葉片  Foundation 基座  Installation Foundation section (bottom) 下圖為鋼塔筒組立施工  Planted pile installation (right) 右圖為植入樁施工 39
  • 40. From foundation to rotor blades 從基座到葉片  Foundation 基座  Foundation section with first rebar (bottom) 下圖為鋼塔筒與基礎鋼筋 連接情形以及樁與基礎連接情形  Plate loading test (right) 右圖為平板載重試驗確認土壤承載 力 40
  • 41. From foundation to rotor blades 從基座到葉片  Foundation 基座  Foundation before concreting (right) 右圖為基礎灌漿前準備工作  Foundation concreting finished (bottom) 下圖為基礎灌漿完成 41
  • 42. From foundation to rotor blades 從基座到葉片  Tower 風機塔筒結構  For the tower following methods can be used: tubular steel, concrete, lattic tower or even wooden tower. Combinations of these are possilbe as well – called Hybrid tower. 風機塔架依材料及型式不同可 分成鋼環塔架、混凝土塔架、桁架式塔架 ( 類似台電 鐵塔 ) 以及木製塔架。以上材料也可複合使用稱為混 合型塔架。  In Taiwan, due to the lower hub height till now only tubular steel tower are in use. 因台灣風資源良好, 風機高度不用太高即可獲得優異之輸出效能,所以 目前皆為鋼環塔架  Tower are made of up to 36 mm thick high strength steel. Section length are up to 30 m, connection is done by flanges. 鋼環塔架係由 36mm 厚之高強度 鋼材製成,每節塔架可達 30m 長,塔節間之連接由 法蘭及螺栓接合。  Enercon is using L – flanges to optimize the stress flow through the flange. ENERCON 公司之鋼法蘭 設計為 L 型接合,避免應力傳遞集中在接合處產生 破壞 42
  • 43. From foundation to rotor blades 從基座到葉片  Tower 風機塔筒結構  The tower were produced locally, in our cases from CSMC 本公司之風機塔架鋼環 皆由中鋼機械 ( 中鋼集團 ) 生產製造  The flanges are bolted by M 48 HV (high strength bolts) 所有接合螺栓型式為 M48 HV ( 高強度螺栓 )  Painting in Taiwan is a special painting normally used in off shore conditions. 公 司於台灣之風機塔架塗漆皆比照離岸侵蝕 環境惡劣之情形辦理  Total weigh of an 63 m tower is 140 to. 以 63m 高之風機為例,塔架總重約 140 噸。 43
  • 44. From foundation to rotor blades 從基座到葉片  Transportation tower section 1 第一節鋼製塔架運輸情形 44
  • 45. From foundation to rotor blades 從基座到葉片  Transport section 3 第三節鋼製塔架運輸情形
  • 46. From foundation to rotor blades 從基座到葉片  Lifting first tower section 第一節鋼製塔架吊裝情形 46
  • 47. From foundation to rotor blades 從基座到葉片  Installation of 1st tower section 第一節鋼製塔架吊裝情形  Waiting for second tower sectio 第一節鋼製塔架吊裝完成等待 第二節塔架 47
  • 48. From foundation to rotor blades 從基座到葉片  Erection of 2nd tower section 第二節鋼製塔架吊裝情形  Inside tower – passing platform 塔架內部爬梯及平台照片 48
  • 49. 49 From foundation to rotor blades 從基座到葉片  Look from top to loop 塔架內部照片 ( 由上往下拍攝 )  Climbing up the tower 維護保養人員使用爬梯逐層檢 風機查
  • 50. 50 From foundation to rotor blades 從基座到葉片  Machine house 風機機艙  The connection part between tower and machine house is the bearing. 連結風機機艙與塔架之構件稱為支承  The iron cast machine barrier 該支承為鑄造而成
  • 51.  Machine house 風機機艙  Fully equipped main carrier with yaw drives  Different power and control cabinets. 機艙內主要有風機轉向控制 系統及各種電力轉換及控制 箱。 51 From foundation to rotor blades 從基座到葉片
  • 52.  Machine house 風機機艙  Fully preassembeld machine house with outer cover, wind measurement units and optional obstruction lights. 機艙外部除保護機殼外,尚有風向風速計及航 空障礙指示燈 ( 依需求設置 ) 。 52 From foundation to rotor blades 從基座到葉片
  • 53. 53 From foundation to rotor blades 從基座到葉片  Preassembeled nacelle 機艙於地面預先組裝情形
  • 54. 54 From foundation to rotor blades 從基座到葉片  Yaw motors left 風機轉向控制系統 ( 左側 )  Yaw motor right 風機轉向控制系統 ( 右側 )
  • 55.  Rotor head (Hub) 葉片輪毂  The hub is the connection from machine house to the blades. 葉片與機艙之連接係由輪轂接合  Including axle pin, Generator, 尚有旋轉軸心及發電機  The picture right showing the axel pin (blue) with bearings (red) and the support of the stator (part of the generator). 右圖藍色部分為軸 心、紅色為軸承以及發電機定子支 構件撐 55 From foundation to rotor blades 從基座到葉片
  • 56.  Rotor head (Hub) 葉片輪毂  Enercon is using an direct driven Generator – weight 55 to for E 70 Enercon 風機採用直驅式發電機, 以 E70 風機為例,發電機重約 55 噸。  Picture showing the assembled generator with cooling ducts. 右圖為直驅式發電機及冷卻散熱系 統。 56 From foundation to rotor blades 從基座到葉片
  • 57.  Rotor head (Hub) 葉片輪毂  Rotorhub is put on the front of axle pin, to fix the blades to the WTG. 風機葉片輪 置於軸心前端與葉片毂 緊密接合  It contains also entire equipment for pitch etc. 輪 包含葉片旋角控毂 制系統  Picture showing pitch engine fixed on rotorhub. 下圖為葉片旋角控制 馬達照片 57 From foundation to rotor blades 從基座到葉片
  • 58.  Rotor head (Hub) 葉片輪毂  Picture is showing the complete assembled rotor hub – including cover. 下圖為完整之機艙、機殼及輪 組裝完成圖毂 58 From foundation to rotor blades 從基座到葉片
  • 59. From foundation to rotor blades 從基座到葉片  Unloading hub 左圖為葉片輪 海運到港卸載毂 情形  Transportation generator 右圖為風機發電機運輸情形 59
  • 60. 60 From foundation to rotor blades 從基座到葉片  Generator (hub) 發電機前端  Generator (nacelle) 發電機尾端
  • 61. 61 From foundation to rotor blades 從基座到葉片  Hub (pitch on top) 葉片輪 及旋角控制馬達毂  Preassembled hub 葉片輪 於地面預先組裝情形毂
  • 62. 62 From foundation to rotor blades 從基座到葉片  Generator (view from nacelle) 發電機尾端  Generator (view from hub) 發電機與輪 間毂
  • 63. 63 From foundation to rotor blades 從基座到葉片  Checking pitch 葉片旋角控制系統檢修照片  Noise sensor 機艙前緣異音感測器檢修照片
  • 64. From foundation to rotor blades 從基座到葉片  Blades 風機葉片 Enerocn blades made of GFK. Enercon 風機葉片主要強化玻璃纖維製成 64
  • 65. From foundation to rotor blades 從基座到葉片  Blades 風機葉片 Blades are important for lightening protection – so the contain a tip to collect the litheining. Conductor to transport the flash to the hub and further to the tower to ground. 風機之避雷系統相當重要,從葉片內嵌 帶、引雷針至輪 再由塔架將雷擊鋁 毂 導入基礎接地系統。 65
  • 66.  Blades 風機葉片  Enercon special is the spoiler to get the wind close to the center of the nacelle. Enercon 風機之設計可將風能擷取於機艙中心  Due to the new designed blades the Enercon WTG has an better air flow (reduced noise) Enercon 風機葉片之設計可減少紊流及噪音 66 From foundation to rotor blades 從基座到葉片
  • 67. 67  Blade transport in the harbour 風機葉片海運到港運輸情形  Blade transport to site 風機葉片運輸情形 From foundation to rotor blades 從基座到葉片
  • 68. 68 From foundation to rotor blades 從基座到葉片  Unloading blades on site 風機葉片運抵現場  Blades fixed to hub 葉片連接組裝情形
  • 69. 69 From foundation to rotor blades 從基座到葉片  Preassembled blades 風機葉片組裝  Maintenance work inside blades 葉片內部維護保養情形
  • 70. 70 From foundation to rotor blades 從基座到葉片
  • 71. 71 From foundation to rotor blades 從基座到葉片
  • 72. 72 From foundation to rotor blades 從基座到葉片
  • 73. 73 From foundation to rotor blades 從基座到葉片
  • 74. 74 From foundation to rotor blades 從基座到葉片
  • 76. 關於英華威  2002 年在台灣落地生根以來  與環保團體及其他再生能源業者共同 推動「再生能源發展條例」立法  開發營運超過 332MW 的風電與光電 ( 右圖 )  每年可供應約 40 萬家戶用電、抵減約 400 萬公噸 CO2  協助各級學校與社區推動再生能源教 育、辦理風場導覽
  • 77. 關於【好風光】 2011 年 311 福島核災後,全 球越發關注再生能源發展。 有感台灣社會亟欲了解相關 議題,卻常不得其門而入, 作為在台開發再生能源電廠 的先驅之一,英華威公司深 感責任重大。 每月 11 日晚上【好風光】講 座 ( 遇假日順延 ) ,英華威 open house! 讓大 與第一眾 線綠能工作者面對面,深入 了解台灣再生能源潛力,以 及台灣能源轉型的迫切性 !! 順風車–非核 . 綠電 . 好風光