Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.
elasticsearch
at
Yann Cluchey
CTO
•Real-time retail intelligence
•Tracking 100s of eCommerce sites
•Organise into high quality market view
•Competitive inte...
How it Works
•Tracking millions of products,
around the world, daily
•Distributed Processing Pipeline
•3K/s peak
Master
Pr...
Challenges
•Batch indexing
•SQL boxes can’t get bigger
•Don’t ask for that Copy
Web Server Pool
DMZ
WebUK1
Load Balancers
...
Elasticsearch in the Stack
• Batch indexing
Master DB Snapshot
DB
Batch Sync Indexing Index
Copy
Web Server Pool
DMZ
WebUK...
Elasticsearch in the Stack
• Real-time indexing
• Simultaneous writes to
SQL + ES
Master DB
Real-Time
Indexing
Index
API C...
Benefits
•Scalability, in both directions
•Flexibility
•High availability
•Cheaper to run
•Powerful features
Use Cases
•Logging (Graylog2)
•Internal Analytics
•Text Processing & IR
•Driving Web Apps
Filtering, aggregations, scripti...
THANKS
Read more elasticsearch.org/case-study/cogenta/
Get in touch @YannCluchey
Prochain SlideShare
Chargement dans…5
×

Elastic Search Meetup Special - Yann Cluchey, Cogenta

1 025 vues

Publié le

The Marketplace - June 18th, 17:00-18:00

Learn from Cogenta about how they are using Elasticsearch to deliver real-time data insights to their business.

Publié dans : Technologie, Business
  • Soyez le premier à commenter

Elastic Search Meetup Special - Yann Cluchey, Cogenta

  1. 1. elasticsearch at Yann Cluchey CTO
  2. 2. •Real-time retail intelligence •Tracking 100s of eCommerce sites •Organise into high quality market view •Competitive intelligence to retailers and manufacturers (SaaS)
  3. 3. How it Works •Tracking millions of products, around the world, daily •Distributed Processing Pipeline •3K/s peak Master Product DB Cleaned & Validated ProcessorRaw Data Processor Processors HTML, etc. Agents
  4. 4. Challenges •Batch indexing •SQL boxes can’t get bigger •Don’t ask for that Copy Web Server Pool DMZ WebUK1 Load Balancers WebUK2 WebUK3 Master DB Snapshot DB Batch Sync Indexing Index
  5. 5. Elasticsearch in the Stack • Batch indexing Master DB Snapshot DB Batch Sync Indexing Index Copy Web Server Pool DMZ WebUK1 Load Balancers WebUK2 WebUK3
  6. 6. Elasticsearch in the Stack • Real-time indexing • Simultaneous writes to SQL + ES Master DB Real-Time Indexing Index API Calls Web Server Pool DMZ Elasticsearch Cluster WebUK1 Load Balancers WebUK2 WebUK3 Elastic1 Elastic2 Elastic3 Elasticn WebUKn… …
  7. 7. Benefits •Scalability, in both directions •Flexibility •High availability •Cheaper to run •Powerful features
  8. 8. Use Cases •Logging (Graylog2) •Internal Analytics •Text Processing & IR •Driving Web Apps Filtering, aggregations, scripting •Reporting
  9. 9. THANKS Read more elasticsearch.org/case-study/cogenta/ Get in touch @YannCluchey

×