SlideShare une entreprise Scribd logo
1  sur  7
Télécharger pour lire hors ligne
arXiv:1802.08071v1[physics.gen-ph]21Feb2018
What happens if measure the electron spin twice?
Y. C. Zou∗
School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
(Dated: February 23, 2018)
Abstract
The mainstream textbooks of quantum mechanics explains the quantum state collapses into
an eigenstate in the measurement, while other explanations such as hidden variables and multi-
universe deny the collapsing. Here we propose an ideal thinking experiment on measuring the
spin of an electron with 3 steps. It is simple and straightforward, in short, to measure a spin-up
electron in x-axis, and then in z-axis. Whether there is a collapsing predicts different results of the
experiment. The future realistic experiment will show the quantum state collapses or not in the
measurement.
1
I. INTRODUCTION
In most of the textbooks of quantum mechanics1–6
, authors choose the explanation of
the measurement that the quantum state collapses into an eigenstate, which is taken as
one of the hypothesises of the quantum mechanics. The probability for collapsing into each
eigenstate is given by the absolute square of the inner product between the eigenstate vector
and the state vector, which is consistent with all the experiments. However, the collapsing is
still criticized by its ‘unnatural’ property. The alternative explanations were proposed, such
as the hidden variables7,8
, the decoherence theory9
and many worlds10
etc. The ‘unnatural’
fact also leads to further thinking and paradoxes, like the Schr¨odinger’s cat11
, the EPR
paradox12
, Bell inequality13
and the Wheelers delayed-choice experiment14
etc. There are
many recent experiments or thinking proposals which are trying to figure out the quantum
reality, or the naturality of the quantum theory15–23
.
Even all the predictions of the collapsing explanation are consistent with the experiments,
it does not necessarily indicate that there is no experiment can violate the explanation. Here
we suggest a possible experiment by measuring the spin of an electron, and the predicted
result is testable. This experiment may be used to determine whether there is a collapsing.
II. PROCESSES OF THE EXPERIMENT
In the ideal thinking experiment, we suppose the spin of the electron can be prepared
and be measured ideally. The experiment is designed as the following.
Step 1, prepare an electron at state with spin in positive z-axis |z+ (i.e., spin-up state).
Step 2, measure the spin in x-axis, and record the result as |x+ or |x− .
Step 3, measure the spin in z-axis, and take the result (|z+ or |z− ) for comparison.
Then, repeat the 3 steps for many times, to see the chance of appearing |z+ and |z− .
The key point is that in the step 2, whether the observer is in a superposition state of
“recorded |x+ ” and “recorded |x− ”, or is in a collapsed state of either “recorded |x+ ” or
“recorded |x− ”. If the observer is ”us”, we may think we are in a collapsed state. But
in the viewpoint of an outlier, he/she may think the observer (either a cat, a machine or
a human being) is in a superposition state, i.e., the Schr¨odinger’s cat state. Which one is
true? A physical experiment should not depend on who is the operator of the experiment.
2
Fortunately, the two points of view lead to different results.
To clarify, we design two versions of the experiment (actually two different points of
view). The results can be used for identification by the performed experiment.
In version A, we engage Alice to do the experiment from step 1 to step 3, and we stand
on the point of view of Alice. As one can imagine, for each measurement, the result should
be 1/2 chance of |x+ (or |z+ ), and 1/2 chance of |x− (or |z− ) in step 2. After step 2, the
electron is either in |x+ or in |x− with 100% chance. Whatever it starts from |x+ or |x− ,
in step 3, we get the electron 1/2 chance in |z+ , and 1/2 chance in |z− , which is the result.
Let’s express the states and measurements in Pauli spin matrix in the z-axis base4
. I.e.,
|z+ =


1
0

 , |z− =


0
1

 , (1)
are the two spin vectors in z-axis,
|x+ =
1
√
2


1
1

 , |x− =
1
√
2


1
−1

 , (2)
are the two spin vectors in x-axis, and
|y+ =
1
√
2


1
i

 , |y− =
1
√
2


1
−i

 , (3)
are the two spin vectors in y-axis. ‘+’ donates the direction of the axis, and ‘-’ donates the
anti-direction.
The Pauli matrices
σz =


1 0
0 −1

 , σx =


0 1
1 0

 , σy =


0 −i
i 0

 , (4)
act as the measurement operators in z-axis, x-axis and y-axis respectively.
For step 2, it is equivalent to the operation: σx|z+ , which equals to ( 1√
2
|x+ − 1√
2
|x− ).
Alice’s measurement forces the state collapsing into either |x+ or |x− with equal chances24
.
Step 3 starts from a state either |x+ or |x− , and both will get |z+ or |z− in equal chances
as her final report (probability equals to 1/2). This result is explicitly adopted in several
textbooks, such as, example 11 on page 54 of reference5
, and §4.4.1 of reference6
.
In experiment version B, it is the same 3 steps as done in version A. The only difference
is the point of view. Now we engage Bob as an outer observer, and take Alice together with
3
the whole experiment A as a black box (we stand on Bob’s point of view). Step 1, it is the
same in Bob’s view. Step 2, it is different. In Bob’s view, Alice is now in the superposition
state, namely, her result is σx|z+ = ( 1√
2
|x+ − 1√
2
|x− ) instead. Step 3, measuring the spin
of z-axis is equivalently to do the following operation: σz(σx|z+ ), which is equal to −|z− .
Therefore, Bob gets the result always being |z− . It is clearly different from experiment
version A, which is waiting for distinguishing by the real experiment.
III. DISCUSSION
In these two versions of the experiment, the experiment itself is actually the same, while
the only difference is the viewpoint. The future performed experiment will show which
viewpoint is correct. According to historical quantum predictions and realizations, such as
EPR paradox12
and its experiment16
, Bell’s inequality13
and its experimental violation25
,
GHZ paradox26
and its experiment17
, Wheeler’s delayed choice experiment14,18
, one may bet
more on the Bob’s view correct. If it is true, what is wrong with Alice’s view?
Notice the only difference between viewpoints of Alice and Bob is that: Alice thinks the
state collapses into an eigenstate on the x-axis (z-axis), while Bob thinks Alice is still in a
superposition state. Therefore, Alice may think wrong, even if she does observe the spin
pointing to |x+ , and write “|x+ ” in her record (e.g. in step 2), she is still in a superposition
state. That is to say, in the measurement, the quantum state is still a quantum state, but
the observer can only be aware of the eigenstate, and consequently the observer goes into a
superposition of aware of different eigenstates.
With each measurement, the world maybe splits into many worlds, which is consistent
with the many worlds explanation. Back to the thinking experiment of measuring the
electron’s spin, in step 2, the word splits to two worlds. One is with |x+ , and the other is
with |x− . However, these two worlds are connected. The connection appears in the step
3. If there is no connection, the two worlds will continue splitting into 4 worlds in the step
3, with two of them |z+ and two of them |z− . However, if the viewpoint of experiment
version B is correct, the worlds should combine into one world only with |z− .
Schr¨odinger’s cat11
is an amazing paradox in quantum mechanics. In the common view
(or the Copenhagen interpretation)24
, the cat’s state cannot be identified, because once it
is observed, the cat’s superposition state collapses into a normal state. And the cat cannot
4
be replaced by a human as the human is aware of the state collapsing27
. This thinking
experiment may identify the existence of the Schr¨odinger’s cat state.
In step 2, one can measure in y-axis instead of in x-axis, and all the results are kept the
same. This is reasonable, as the x-axis and y-axis is equivalent in the eye of z-axis. One more
interesting thing is that the measurement does effect the state. Otherwise, the measured
results should be spin-up again in step 3, while the predicted results are spin-downs, i.e.,
|z− .
On the other hand, if the experiment result is half being |z+ and half being |z− as
predicted by the version A, this may indicate that the macroscopic Schr¨odinger’s cat state
does not exist. Notice in the step 2, Alice can be replaced by a machine to automatically
perform and record. That is to say, whatever the electron spin is measured by a human
being, or a cat, or an instrument, the system of the spin and the measurer maybe collapses
into an eigenstate as suggested by the Copenhagen interpretation, or becomes decoherent
as suggested by the decoherence theory.
IV. CONCLUSION
In this work, a possible experiment to identify whether the quantum state collapses in
the measurement is proposed. With an electron is prepared in spin-up state initially, we
can measure the spin of the electron in x-axis and then in z-axis again. Then repeat the
steps many times to see the final results being spin-up or spin-down. If each measurement
forces the electron collapsing into an eigenstate, we will get the final results half being spin-
up and half being spin-down. While if measurement does not force the collapsing and the
superposition Schr¨odinger’s cat state is real, we will get the final spin in z-axis always being
spin-down. It is easy to be distinguished in the future performed experiment. Though this
kind of experiment is straightforward and seems easy to perform, no one has ever really done
it. Therefore, a real experiment is highly expected.
∗ zouyc@hust.edu.cn
1 E. H. Wichmann, Quantum physics. Berkeley physics course. Vol. 4 (1974).
2 C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics, Volume 1 (Wiley-VCH, 1986).
5
3 J. J. Sakurai and E. D. Commins, “Modern quantum mechanics, revised edition,” (1995).
4 R. Liboff, Introductory Quantum Mechanics (Addison-Wesley, 2003).
5 K. H. Zhao and W. Y. Luo, New Concept Courses: Quantum Physics (Higher Education Press,
2008).
6 D. J. Griffiths, Introduction to quantum mechanics, 2nd ed. (Cambridge University Press, 2016).
7 D. Bohm, Physical Review 85, 166 (1952).
8 D. Bohm, Physical Review 85, 180 (1952).
9 H. D. Zeh, Foundations of Physics 1, 69 (1970).
10 H. Everett III, Reviews of modern physics 29, 454 (1957).
11 E. Schr¨odinger, Die Naturwissenschaften 23, 1 (1935).
12 A. Einstein, B. Podolsky, and N. Rosen, Physical review 47, 777 (1935).
13 J. S. Bell, Physics 1, 195 (1964).
14 J. A. Wheeler, in Quantum Theory and Measurement, edited by J. A. Wheeler and W. H. Zurek
(Princeton University Press, 1983) pp. 182–213.
15 A. R. Mackintosh, European Journal of Physics 4, 97 (1983).
16 Z. Ou, S. F. Pereira, H. Kimble, and K. Peng, Physical Review Letters 68, 3663 (1992).
17 J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, Nature 403, 515
(2000).
18 V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J.-F. Roch, Science
315, 966 (2007).
19 M. F. Pusey, J. Barrett, and T. Rudolph, Nature Physics 8, 475 (2012).
20 C. A. Fuchs, N. D. Mermin, and R. Schack, American Journal of Physics 82, 749 (2014).
21 D. Frauchiger and R. Renner, arXiv preprint arXiv:1604.07422 (2016).
22 S. Weinberg, Physical Review A 85, 062116 (2012).
23 A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, Reviews of Modern Physics 85,
471 (2013).
24 W. Heisenberg, Physics and philosophy: The revolution in modern science (Harper & Row,
1958).
25 J. F. Clauser and A. Shimony, Reports on Progress in Physics 41, 1881 (1978).
26 D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Bells theorem, quantum theory and
conceptions of the universe (Springer, 1989) pp. 69–72.
6
27 E. P. Wigner, in The Scientist Speculates, edited by I. J. Good (Heineman, 1961).
7

Contenu connexe

Tendances

Section 11: Normal Subgroups
Section 11: Normal SubgroupsSection 11: Normal Subgroups
Section 11: Normal SubgroupsKevin Johnson
 
Unit 4 hw 7 - direct variation & linear equation give 2 points
Unit 4   hw 7 - direct variation & linear equation give 2 pointsUnit 4   hw 7 - direct variation & linear equation give 2 points
Unit 4 hw 7 - direct variation & linear equation give 2 pointsLori Rapp
 
Section 10: Lagrange's Theorem
Section 10: Lagrange's TheoremSection 10: Lagrange's Theorem
Section 10: Lagrange's TheoremKevin Johnson
 
Electrical circuit analysis
Electrical circuit analysisElectrical circuit analysis
Electrical circuit analysisIsuru Premaratne
 
FIRST ORDER DIFFERENTIAL EQUATION
 FIRST ORDER DIFFERENTIAL EQUATION FIRST ORDER DIFFERENTIAL EQUATION
FIRST ORDER DIFFERENTIAL EQUATIONAYESHA JAVED
 
25 the ratio, root, and ratio comparison test x
25 the ratio, root, and ratio  comparison test x25 the ratio, root, and ratio  comparison test x
25 the ratio, root, and ratio comparison test xmath266
 
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TEST
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TESTINTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TEST
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TESTJAYDEV PATEL
 
Oscillation Criteria for First Order Nonlinear Neutral Delay Difference Equat...
Oscillation Criteria for First Order Nonlinear Neutral Delay Difference Equat...Oscillation Criteria for First Order Nonlinear Neutral Delay Difference Equat...
Oscillation Criteria for First Order Nonlinear Neutral Delay Difference Equat...inventionjournals
 

Tendances (8)

Section 11: Normal Subgroups
Section 11: Normal SubgroupsSection 11: Normal Subgroups
Section 11: Normal Subgroups
 
Unit 4 hw 7 - direct variation & linear equation give 2 points
Unit 4   hw 7 - direct variation & linear equation give 2 pointsUnit 4   hw 7 - direct variation & linear equation give 2 points
Unit 4 hw 7 - direct variation & linear equation give 2 points
 
Section 10: Lagrange's Theorem
Section 10: Lagrange's TheoremSection 10: Lagrange's Theorem
Section 10: Lagrange's Theorem
 
Electrical circuit analysis
Electrical circuit analysisElectrical circuit analysis
Electrical circuit analysis
 
FIRST ORDER DIFFERENTIAL EQUATION
 FIRST ORDER DIFFERENTIAL EQUATION FIRST ORDER DIFFERENTIAL EQUATION
FIRST ORDER DIFFERENTIAL EQUATION
 
25 the ratio, root, and ratio comparison test x
25 the ratio, root, and ratio  comparison test x25 the ratio, root, and ratio  comparison test x
25 the ratio, root, and ratio comparison test x
 
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TEST
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TESTINTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TEST
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TEST
 
Oscillation Criteria for First Order Nonlinear Neutral Delay Difference Equat...
Oscillation Criteria for First Order Nonlinear Neutral Delay Difference Equat...Oscillation Criteria for First Order Nonlinear Neutral Delay Difference Equat...
Oscillation Criteria for First Order Nonlinear Neutral Delay Difference Equat...
 

Similaire à What happens if measure the electron spin twice?

ALL THE LAGRANGIAN RELATIVE EQUILIBRIA OF THE CURVED 3-BODY PROBLEM HAVE EQUA...
ALL THE LAGRANGIAN RELATIVE EQUILIBRIA OF THE CURVED 3-BODY PROBLEM HAVE EQUA...ALL THE LAGRANGIAN RELATIVE EQUILIBRIA OF THE CURVED 3-BODY PROBLEM HAVE EQUA...
ALL THE LAGRANGIAN RELATIVE EQUILIBRIA OF THE CURVED 3-BODY PROBLEM HAVE EQUA...sergiupopa17
 
Schrodinger's cat paradox resolution using GRW collapse model
Schrodinger's cat paradox resolution using GRW collapse modelSchrodinger's cat paradox resolution using GRW collapse model
Schrodinger's cat paradox resolution using GRW collapse modelijrap
 
Schrodinger's cat paradox resolution using GRW collapse model
Schrodinger's cat paradox resolution using GRW collapse modelSchrodinger's cat paradox resolution using GRW collapse model
Schrodinger's cat paradox resolution using GRW collapse modelijrap
 
Pairs of quantum drunkards walk
Pairs of quantum drunkards walkPairs of quantum drunkards walk
Pairs of quantum drunkards walkssusereee352
 
SCHRODINGER'S CAT PARADOX RESOLUTION USING GRW COLLAPSE MODEL
SCHRODINGER'S CAT PARADOX RESOLUTION USING GRW COLLAPSE MODELSCHRODINGER'S CAT PARADOX RESOLUTION USING GRW COLLAPSE MODEL
SCHRODINGER'S CAT PARADOX RESOLUTION USING GRW COLLAPSE MODELijrap
 
PRML Chapter 11
PRML Chapter 11PRML Chapter 11
PRML Chapter 11Sunwoo Kim
 
Quantum Computing
Quantum ComputingQuantum Computing
Quantum ComputingAmr Mohamed
 
Introduction to Quantum Computing & Quantum Information Theory
Introduction to Quantum Computing & Quantum Information TheoryIntroduction to Quantum Computing & Quantum Information Theory
Introduction to Quantum Computing & Quantum Information TheoryRahul Mee
 
Boris Stoyanov - Anomaly-Free Models in Supergravity
Boris Stoyanov - Anomaly-Free Models in SupergravityBoris Stoyanov - Anomaly-Free Models in Supergravity
Boris Stoyanov - Anomaly-Free Models in SupergravityBoris Stoyanov
 
Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)
Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)
Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)Gabriel O'Brien
 
Hill_5p4_MaxwellBoltzmannDistribution.pdf
Hill_5p4_MaxwellBoltzmannDistribution.pdfHill_5p4_MaxwellBoltzmannDistribution.pdf
Hill_5p4_MaxwellBoltzmannDistribution.pdfcaitlin54
 
B.tech sem i engineering physics u iii chapter 1-the special theory of relati...
B.tech sem i engineering physics u iii chapter 1-the special theory of relati...B.tech sem i engineering physics u iii chapter 1-the special theory of relati...
B.tech sem i engineering physics u iii chapter 1-the special theory of relati...Rai University
 
Experimental one-way
Experimental one-wayExperimental one-way
Experimental one-wayCAA Sudan
 
Measurement  of  the  angle  θ          .docx
Measurement  of  the  angle  θ          .docxMeasurement  of  the  angle  θ          .docx
Measurement  of  the  angle  θ          .docxwkyra78
 

Similaire à What happens if measure the electron spin twice? (20)

ALL THE LAGRANGIAN RELATIVE EQUILIBRIA OF THE CURVED 3-BODY PROBLEM HAVE EQUA...
ALL THE LAGRANGIAN RELATIVE EQUILIBRIA OF THE CURVED 3-BODY PROBLEM HAVE EQUA...ALL THE LAGRANGIAN RELATIVE EQUILIBRIA OF THE CURVED 3-BODY PROBLEM HAVE EQUA...
ALL THE LAGRANGIAN RELATIVE EQUILIBRIA OF THE CURVED 3-BODY PROBLEM HAVE EQUA...
 
Schrodinger's cat paradox resolution using GRW collapse model
Schrodinger's cat paradox resolution using GRW collapse modelSchrodinger's cat paradox resolution using GRW collapse model
Schrodinger's cat paradox resolution using GRW collapse model
 
Schrodinger's cat paradox resolution using GRW collapse model
Schrodinger's cat paradox resolution using GRW collapse modelSchrodinger's cat paradox resolution using GRW collapse model
Schrodinger's cat paradox resolution using GRW collapse model
 
Pairs of quantum drunkards walk
Pairs of quantum drunkards walkPairs of quantum drunkards walk
Pairs of quantum drunkards walk
 
SCHRODINGER'S CAT PARADOX RESOLUTION USING GRW COLLAPSE MODEL
SCHRODINGER'S CAT PARADOX RESOLUTION USING GRW COLLAPSE MODELSCHRODINGER'S CAT PARADOX RESOLUTION USING GRW COLLAPSE MODEL
SCHRODINGER'S CAT PARADOX RESOLUTION USING GRW COLLAPSE MODEL
 
Spin
SpinSpin
Spin
 
Quantum Computing Report
Quantum Computing ReportQuantum Computing Report
Quantum Computing Report
 
MZ2
MZ2MZ2
MZ2
 
PRML Chapter 11
PRML Chapter 11PRML Chapter 11
PRML Chapter 11
 
Quantum Computing
Quantum ComputingQuantum Computing
Quantum Computing
 
The Bifurcation of Stage Structured Prey-Predator Food Chain Model with Refuge
The Bifurcation of Stage Structured Prey-Predator Food Chain Model with RefugeThe Bifurcation of Stage Structured Prey-Predator Food Chain Model with Refuge
The Bifurcation of Stage Structured Prey-Predator Food Chain Model with Refuge
 
Introduction to Quantum Computing & Quantum Information Theory
Introduction to Quantum Computing & Quantum Information TheoryIntroduction to Quantum Computing & Quantum Information Theory
Introduction to Quantum Computing & Quantum Information Theory
 
Dimensions and Dimensional Analysis
Dimensions and Dimensional AnalysisDimensions and Dimensional Analysis
Dimensions and Dimensional Analysis
 
Boris Stoyanov - Anomaly-Free Models in Supergravity
Boris Stoyanov - Anomaly-Free Models in SupergravityBoris Stoyanov - Anomaly-Free Models in Supergravity
Boris Stoyanov - Anomaly-Free Models in Supergravity
 
Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)
Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)
Schrodinger cat (Copenhagen & Many-worlds interpretation + phase-damping)
 
Hill_5p4_MaxwellBoltzmannDistribution.pdf
Hill_5p4_MaxwellBoltzmannDistribution.pdfHill_5p4_MaxwellBoltzmannDistribution.pdf
Hill_5p4_MaxwellBoltzmannDistribution.pdf
 
B.tech sem i engineering physics u iii chapter 1-the special theory of relati...
B.tech sem i engineering physics u iii chapter 1-the special theory of relati...B.tech sem i engineering physics u iii chapter 1-the special theory of relati...
B.tech sem i engineering physics u iii chapter 1-the special theory of relati...
 
Experimental one-way
Experimental one-wayExperimental one-way
Experimental one-way
 
Fss
FssFss
Fss
 
Measurement  of  the  angle  θ          .docx
Measurement  of  the  angle  θ          .docxMeasurement  of  the  angle  θ          .docx
Measurement  of  the  angle  θ          .docx
 

Plus de Fausto Intilla

Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.
Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.
Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.Fausto Intilla
 
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...Fausto Intilla
 
QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...
QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...
QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...Fausto Intilla
 
La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...
La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...
La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...Fausto Intilla
 
Teorema di Noether: limiti e applicabilità – Intervista a Fausto Intilla
Teorema di Noether: limiti e applicabilità – Intervista a Fausto IntillaTeorema di Noether: limiti e applicabilità – Intervista a Fausto Intilla
Teorema di Noether: limiti e applicabilità – Intervista a Fausto IntillaFausto Intilla
 
IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...
IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...
IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...Fausto Intilla
 
Attrattori, campi morfogenetici e meccanica quantistica: il nesso.
Attrattori, campi morfogenetici e meccanica quantistica: il nesso.Attrattori, campi morfogenetici e meccanica quantistica: il nesso.
Attrattori, campi morfogenetici e meccanica quantistica: il nesso.Fausto Intilla
 
Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.
Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.
Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.Fausto Intilla
 
Umano, poco umano ...fatto di virus e batteri!
Umano, poco umano ...fatto di virus e batteri!Umano, poco umano ...fatto di virus e batteri!
Umano, poco umano ...fatto di virus e batteri!Fausto Intilla
 
Altre realtà. Quando la visione del mondo, non è in funzione della mente umana
Altre realtà. Quando la visione del mondo, non è in funzione della mente umanaAltre realtà. Quando la visione del mondo, non è in funzione della mente umana
Altre realtà. Quando la visione del mondo, non è in funzione della mente umanaFausto Intilla
 
Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.
Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.
Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.Fausto Intilla
 
Alla ricerca del reale ...dove nulla, è come appare.
Alla ricerca del reale ...dove nulla, è come appare.Alla ricerca del reale ...dove nulla, è come appare.
Alla ricerca del reale ...dove nulla, è come appare.Fausto Intilla
 
Supremazia quantistica di Google: Mito o realtà?
Supremazia quantistica di Google: Mito o realtà?Supremazia quantistica di Google: Mito o realtà?
Supremazia quantistica di Google: Mito o realtà?Fausto Intilla
 
Gravità quantistica: A che punto siamo?
Gravità quantistica: A che punto siamo?Gravità quantistica: A che punto siamo?
Gravità quantistica: A che punto siamo?Fausto Intilla
 
Una quinta forza fondamentale della natura ...per ora solo ipotetica.
Una quinta forza fondamentale della natura ...per ora solo ipotetica.Una quinta forza fondamentale della natura ...per ora solo ipotetica.
Una quinta forza fondamentale della natura ...per ora solo ipotetica.Fausto Intilla
 
Riscaldamento globale: un'analisi obiettiva.
Riscaldamento globale: un'analisi obiettiva.Riscaldamento globale: un'analisi obiettiva.
Riscaldamento globale: un'analisi obiettiva.Fausto Intilla
 
Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...
Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...
Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...Fausto Intilla
 
Aforismario 3 - Aforismi sulla saggezza del vivere
Aforismario 3 - Aforismi sulla saggezza del vivereAforismario 3 - Aforismi sulla saggezza del vivere
Aforismario 3 - Aforismi sulla saggezza del vivereFausto Intilla
 
Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...
Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...
Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...Fausto Intilla
 
Dal fermione di majorana al computer quantistico.
Dal fermione di majorana al computer quantistico.Dal fermione di majorana al computer quantistico.
Dal fermione di majorana al computer quantistico.Fausto Intilla
 

Plus de Fausto Intilla (20)

Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.
Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.
Fausto Intilla - Pensieri sparsi. Raccolta di riflessioni e aforismi scelti.
 
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...
 
QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...
QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...
QFT, gravità, entropia di entanglement e spaziotempo emergente: il nesso - In...
 
La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...
La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...
La mente a più dimensioni: Dagli spazi topologici alla Dissipative Quantum Br...
 
Teorema di Noether: limiti e applicabilità – Intervista a Fausto Intilla
Teorema di Noether: limiti e applicabilità – Intervista a Fausto IntillaTeorema di Noether: limiti e applicabilità – Intervista a Fausto Intilla
Teorema di Noether: limiti e applicabilità – Intervista a Fausto Intilla
 
IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...
IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...
IA: Princìpi e parametri alternativi, per una fisica alternativa – Intervista...
 
Attrattori, campi morfogenetici e meccanica quantistica: il nesso.
Attrattori, campi morfogenetici e meccanica quantistica: il nesso.Attrattori, campi morfogenetici e meccanica quantistica: il nesso.
Attrattori, campi morfogenetici e meccanica quantistica: il nesso.
 
Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.
Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.
Fausto Intilla: Dalla teoria dell'informazione al concetto di anima.
 
Umano, poco umano ...fatto di virus e batteri!
Umano, poco umano ...fatto di virus e batteri!Umano, poco umano ...fatto di virus e batteri!
Umano, poco umano ...fatto di virus e batteri!
 
Altre realtà. Quando la visione del mondo, non è in funzione della mente umana
Altre realtà. Quando la visione del mondo, non è in funzione della mente umanaAltre realtà. Quando la visione del mondo, non è in funzione della mente umana
Altre realtà. Quando la visione del mondo, non è in funzione della mente umana
 
Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.
Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.
Quando l'Universo ...calcola sé stesso! L'altra faccia dei buchi neri.
 
Alla ricerca del reale ...dove nulla, è come appare.
Alla ricerca del reale ...dove nulla, è come appare.Alla ricerca del reale ...dove nulla, è come appare.
Alla ricerca del reale ...dove nulla, è come appare.
 
Supremazia quantistica di Google: Mito o realtà?
Supremazia quantistica di Google: Mito o realtà?Supremazia quantistica di Google: Mito o realtà?
Supremazia quantistica di Google: Mito o realtà?
 
Gravità quantistica: A che punto siamo?
Gravità quantistica: A che punto siamo?Gravità quantistica: A che punto siamo?
Gravità quantistica: A che punto siamo?
 
Una quinta forza fondamentale della natura ...per ora solo ipotetica.
Una quinta forza fondamentale della natura ...per ora solo ipotetica.Una quinta forza fondamentale della natura ...per ora solo ipotetica.
Una quinta forza fondamentale della natura ...per ora solo ipotetica.
 
Riscaldamento globale: un'analisi obiettiva.
Riscaldamento globale: un'analisi obiettiva.Riscaldamento globale: un'analisi obiettiva.
Riscaldamento globale: un'analisi obiettiva.
 
Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...
Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...
Quantum computing: stato dell'arte e potenziali sviluppi - Intervista a Faust...
 
Aforismario 3 - Aforismi sulla saggezza del vivere
Aforismario 3 - Aforismi sulla saggezza del vivereAforismario 3 - Aforismi sulla saggezza del vivere
Aforismario 3 - Aforismi sulla saggezza del vivere
 
Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...
Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...
Esperimenti sulle disuguaglianze di Bell - Dalle origini al crollo del realis...
 
Dal fermione di majorana al computer quantistico.
Dal fermione di majorana al computer quantistico.Dal fermione di majorana al computer quantistico.
Dal fermione di majorana al computer quantistico.
 

Dernier

cybrids.pptx production_advanges_limitation
cybrids.pptx production_advanges_limitationcybrids.pptx production_advanges_limitation
cybrids.pptx production_advanges_limitationSanghamitraMohapatra5
 
Science (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and PitfallsScience (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and PitfallsDobusch Leonhard
 
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep LearningCombining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learningvschiavoni
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests GlycosidesNandakishor Bhaurao Deshmukh
 
Abnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptxAbnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptxzeus70441
 
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika DasBACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika DasChayanika Das
 
FBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptxFBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptxPayal Shrivastava
 
Q4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptxQ4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptxtuking87
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Sérgio Sacani
 
whole genome sequencing new and its types including shortgun and clone by clone
whole genome sequencing new  and its types including shortgun and clone by clonewhole genome sequencing new  and its types including shortgun and clone by clone
whole genome sequencing new and its types including shortgun and clone by clonechaudhary charan shingh university
 
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPRPirithiRaju
 
Oxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxOxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxfarhanvvdk
 
Loudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxLoudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxpriyankatabhane
 
BACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika DasBACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika DasChayanika Das
 
Pests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPirithiRaju
 
Introduction of Human Body & Structure of cell.pptx
Introduction of Human Body & Structure of cell.pptxIntroduction of Human Body & Structure of cell.pptx
Introduction of Human Body & Structure of cell.pptxMedical College
 
Environmental Acoustics- Speech interference level, acoustics calibrator.pptx
Environmental Acoustics- Speech interference level, acoustics calibrator.pptxEnvironmental Acoustics- Speech interference level, acoustics calibrator.pptx
Environmental Acoustics- Speech interference level, acoustics calibrator.pptxpriyankatabhane
 
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2AuEnriquezLontok
 

Dernier (20)

cybrids.pptx production_advanges_limitation
cybrids.pptx production_advanges_limitationcybrids.pptx production_advanges_limitation
cybrids.pptx production_advanges_limitation
 
Science (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and PitfallsScience (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and Pitfalls
 
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep LearningCombining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
 
PLASMODIUM. PPTX
PLASMODIUM. PPTXPLASMODIUM. PPTX
PLASMODIUM. PPTX
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
 
Abnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptxAbnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptx
 
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika DasBACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
 
FBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptxFBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptx
 
Q4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptxQ4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptx
 
Introduction Classification Of Alkaloids
Introduction Classification Of AlkaloidsIntroduction Classification Of Alkaloids
Introduction Classification Of Alkaloids
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
 
whole genome sequencing new and its types including shortgun and clone by clone
whole genome sequencing new  and its types including shortgun and clone by clonewhole genome sequencing new  and its types including shortgun and clone by clone
whole genome sequencing new and its types including shortgun and clone by clone
 
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
 
Oxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxOxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptx
 
Loudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxLoudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptx
 
BACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika DasBACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
 
Pests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPR
 
Introduction of Human Body & Structure of cell.pptx
Introduction of Human Body & Structure of cell.pptxIntroduction of Human Body & Structure of cell.pptx
Introduction of Human Body & Structure of cell.pptx
 
Environmental Acoustics- Speech interference level, acoustics calibrator.pptx
Environmental Acoustics- Speech interference level, acoustics calibrator.pptxEnvironmental Acoustics- Speech interference level, acoustics calibrator.pptx
Environmental Acoustics- Speech interference level, acoustics calibrator.pptx
 
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
 

What happens if measure the electron spin twice?

  • 1. arXiv:1802.08071v1[physics.gen-ph]21Feb2018 What happens if measure the electron spin twice? Y. C. Zou∗ School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China (Dated: February 23, 2018) Abstract The mainstream textbooks of quantum mechanics explains the quantum state collapses into an eigenstate in the measurement, while other explanations such as hidden variables and multi- universe deny the collapsing. Here we propose an ideal thinking experiment on measuring the spin of an electron with 3 steps. It is simple and straightforward, in short, to measure a spin-up electron in x-axis, and then in z-axis. Whether there is a collapsing predicts different results of the experiment. The future realistic experiment will show the quantum state collapses or not in the measurement. 1
  • 2. I. INTRODUCTION In most of the textbooks of quantum mechanics1–6 , authors choose the explanation of the measurement that the quantum state collapses into an eigenstate, which is taken as one of the hypothesises of the quantum mechanics. The probability for collapsing into each eigenstate is given by the absolute square of the inner product between the eigenstate vector and the state vector, which is consistent with all the experiments. However, the collapsing is still criticized by its ‘unnatural’ property. The alternative explanations were proposed, such as the hidden variables7,8 , the decoherence theory9 and many worlds10 etc. The ‘unnatural’ fact also leads to further thinking and paradoxes, like the Schr¨odinger’s cat11 , the EPR paradox12 , Bell inequality13 and the Wheelers delayed-choice experiment14 etc. There are many recent experiments or thinking proposals which are trying to figure out the quantum reality, or the naturality of the quantum theory15–23 . Even all the predictions of the collapsing explanation are consistent with the experiments, it does not necessarily indicate that there is no experiment can violate the explanation. Here we suggest a possible experiment by measuring the spin of an electron, and the predicted result is testable. This experiment may be used to determine whether there is a collapsing. II. PROCESSES OF THE EXPERIMENT In the ideal thinking experiment, we suppose the spin of the electron can be prepared and be measured ideally. The experiment is designed as the following. Step 1, prepare an electron at state with spin in positive z-axis |z+ (i.e., spin-up state). Step 2, measure the spin in x-axis, and record the result as |x+ or |x− . Step 3, measure the spin in z-axis, and take the result (|z+ or |z− ) for comparison. Then, repeat the 3 steps for many times, to see the chance of appearing |z+ and |z− . The key point is that in the step 2, whether the observer is in a superposition state of “recorded |x+ ” and “recorded |x− ”, or is in a collapsed state of either “recorded |x+ ” or “recorded |x− ”. If the observer is ”us”, we may think we are in a collapsed state. But in the viewpoint of an outlier, he/she may think the observer (either a cat, a machine or a human being) is in a superposition state, i.e., the Schr¨odinger’s cat state. Which one is true? A physical experiment should not depend on who is the operator of the experiment. 2
  • 3. Fortunately, the two points of view lead to different results. To clarify, we design two versions of the experiment (actually two different points of view). The results can be used for identification by the performed experiment. In version A, we engage Alice to do the experiment from step 1 to step 3, and we stand on the point of view of Alice. As one can imagine, for each measurement, the result should be 1/2 chance of |x+ (or |z+ ), and 1/2 chance of |x− (or |z− ) in step 2. After step 2, the electron is either in |x+ or in |x− with 100% chance. Whatever it starts from |x+ or |x− , in step 3, we get the electron 1/2 chance in |z+ , and 1/2 chance in |z− , which is the result. Let’s express the states and measurements in Pauli spin matrix in the z-axis base4 . I.e., |z+ =   1 0   , |z− =   0 1   , (1) are the two spin vectors in z-axis, |x+ = 1 √ 2   1 1   , |x− = 1 √ 2   1 −1   , (2) are the two spin vectors in x-axis, and |y+ = 1 √ 2   1 i   , |y− = 1 √ 2   1 −i   , (3) are the two spin vectors in y-axis. ‘+’ donates the direction of the axis, and ‘-’ donates the anti-direction. The Pauli matrices σz =   1 0 0 −1   , σx =   0 1 1 0   , σy =   0 −i i 0   , (4) act as the measurement operators in z-axis, x-axis and y-axis respectively. For step 2, it is equivalent to the operation: σx|z+ , which equals to ( 1√ 2 |x+ − 1√ 2 |x− ). Alice’s measurement forces the state collapsing into either |x+ or |x− with equal chances24 . Step 3 starts from a state either |x+ or |x− , and both will get |z+ or |z− in equal chances as her final report (probability equals to 1/2). This result is explicitly adopted in several textbooks, such as, example 11 on page 54 of reference5 , and §4.4.1 of reference6 . In experiment version B, it is the same 3 steps as done in version A. The only difference is the point of view. Now we engage Bob as an outer observer, and take Alice together with 3
  • 4. the whole experiment A as a black box (we stand on Bob’s point of view). Step 1, it is the same in Bob’s view. Step 2, it is different. In Bob’s view, Alice is now in the superposition state, namely, her result is σx|z+ = ( 1√ 2 |x+ − 1√ 2 |x− ) instead. Step 3, measuring the spin of z-axis is equivalently to do the following operation: σz(σx|z+ ), which is equal to −|z− . Therefore, Bob gets the result always being |z− . It is clearly different from experiment version A, which is waiting for distinguishing by the real experiment. III. DISCUSSION In these two versions of the experiment, the experiment itself is actually the same, while the only difference is the viewpoint. The future performed experiment will show which viewpoint is correct. According to historical quantum predictions and realizations, such as EPR paradox12 and its experiment16 , Bell’s inequality13 and its experimental violation25 , GHZ paradox26 and its experiment17 , Wheeler’s delayed choice experiment14,18 , one may bet more on the Bob’s view correct. If it is true, what is wrong with Alice’s view? Notice the only difference between viewpoints of Alice and Bob is that: Alice thinks the state collapses into an eigenstate on the x-axis (z-axis), while Bob thinks Alice is still in a superposition state. Therefore, Alice may think wrong, even if she does observe the spin pointing to |x+ , and write “|x+ ” in her record (e.g. in step 2), she is still in a superposition state. That is to say, in the measurement, the quantum state is still a quantum state, but the observer can only be aware of the eigenstate, and consequently the observer goes into a superposition of aware of different eigenstates. With each measurement, the world maybe splits into many worlds, which is consistent with the many worlds explanation. Back to the thinking experiment of measuring the electron’s spin, in step 2, the word splits to two worlds. One is with |x+ , and the other is with |x− . However, these two worlds are connected. The connection appears in the step 3. If there is no connection, the two worlds will continue splitting into 4 worlds in the step 3, with two of them |z+ and two of them |z− . However, if the viewpoint of experiment version B is correct, the worlds should combine into one world only with |z− . Schr¨odinger’s cat11 is an amazing paradox in quantum mechanics. In the common view (or the Copenhagen interpretation)24 , the cat’s state cannot be identified, because once it is observed, the cat’s superposition state collapses into a normal state. And the cat cannot 4
  • 5. be replaced by a human as the human is aware of the state collapsing27 . This thinking experiment may identify the existence of the Schr¨odinger’s cat state. In step 2, one can measure in y-axis instead of in x-axis, and all the results are kept the same. This is reasonable, as the x-axis and y-axis is equivalent in the eye of z-axis. One more interesting thing is that the measurement does effect the state. Otherwise, the measured results should be spin-up again in step 3, while the predicted results are spin-downs, i.e., |z− . On the other hand, if the experiment result is half being |z+ and half being |z− as predicted by the version A, this may indicate that the macroscopic Schr¨odinger’s cat state does not exist. Notice in the step 2, Alice can be replaced by a machine to automatically perform and record. That is to say, whatever the electron spin is measured by a human being, or a cat, or an instrument, the system of the spin and the measurer maybe collapses into an eigenstate as suggested by the Copenhagen interpretation, or becomes decoherent as suggested by the decoherence theory. IV. CONCLUSION In this work, a possible experiment to identify whether the quantum state collapses in the measurement is proposed. With an electron is prepared in spin-up state initially, we can measure the spin of the electron in x-axis and then in z-axis again. Then repeat the steps many times to see the final results being spin-up or spin-down. If each measurement forces the electron collapsing into an eigenstate, we will get the final results half being spin- up and half being spin-down. While if measurement does not force the collapsing and the superposition Schr¨odinger’s cat state is real, we will get the final spin in z-axis always being spin-down. It is easy to be distinguished in the future performed experiment. Though this kind of experiment is straightforward and seems easy to perform, no one has ever really done it. Therefore, a real experiment is highly expected. ∗ zouyc@hust.edu.cn 1 E. H. Wichmann, Quantum physics. Berkeley physics course. Vol. 4 (1974). 2 C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics, Volume 1 (Wiley-VCH, 1986). 5
  • 6. 3 J. J. Sakurai and E. D. Commins, “Modern quantum mechanics, revised edition,” (1995). 4 R. Liboff, Introductory Quantum Mechanics (Addison-Wesley, 2003). 5 K. H. Zhao and W. Y. Luo, New Concept Courses: Quantum Physics (Higher Education Press, 2008). 6 D. J. Griffiths, Introduction to quantum mechanics, 2nd ed. (Cambridge University Press, 2016). 7 D. Bohm, Physical Review 85, 166 (1952). 8 D. Bohm, Physical Review 85, 180 (1952). 9 H. D. Zeh, Foundations of Physics 1, 69 (1970). 10 H. Everett III, Reviews of modern physics 29, 454 (1957). 11 E. Schr¨odinger, Die Naturwissenschaften 23, 1 (1935). 12 A. Einstein, B. Podolsky, and N. Rosen, Physical review 47, 777 (1935). 13 J. S. Bell, Physics 1, 195 (1964). 14 J. A. Wheeler, in Quantum Theory and Measurement, edited by J. A. Wheeler and W. H. Zurek (Princeton University Press, 1983) pp. 182–213. 15 A. R. Mackintosh, European Journal of Physics 4, 97 (1983). 16 Z. Ou, S. F. Pereira, H. Kimble, and K. Peng, Physical Review Letters 68, 3663 (1992). 17 J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, Nature 403, 515 (2000). 18 V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J.-F. Roch, Science 315, 966 (2007). 19 M. F. Pusey, J. Barrett, and T. Rudolph, Nature Physics 8, 475 (2012). 20 C. A. Fuchs, N. D. Mermin, and R. Schack, American Journal of Physics 82, 749 (2014). 21 D. Frauchiger and R. Renner, arXiv preprint arXiv:1604.07422 (2016). 22 S. Weinberg, Physical Review A 85, 062116 (2012). 23 A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, Reviews of Modern Physics 85, 471 (2013). 24 W. Heisenberg, Physics and philosophy: The revolution in modern science (Harper & Row, 1958). 25 J. F. Clauser and A. Shimony, Reports on Progress in Physics 41, 1881 (1978). 26 D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Bells theorem, quantum theory and conceptions of the universe (Springer, 1989) pp. 69–72. 6
  • 7. 27 E. P. Wigner, in The Scientist Speculates, edited by I. J. Good (Heineman, 1961). 7