Columns lecture#4

Irfan Malik
Irfan MalikStudent at University of south asia lahore
Engr. Ayaz Waseem ( Lecturer/Lab Engr., CED) Columns
LECTURE # 4
1. COLUMNS UNDER ECCENTRIC LOADING:
Let’s suppose a load acts on a column at a distance ‘e’ from plastic centroid as
shown in figure 3. In the figure,
As′ = Area of compressive steel.
As = Area of tensile steel.
fs = Stress in tensile steel.
fs′ = Stress in compressive steel.
T = Tensile force in steel.
Cc = Compressive force in concrete.
Cs = Compressive force in steel.
Cc = 0.85 fc′ b a
Cs = As′ fs′
T = As fs
Now,
Pn = Cc + Cs − T
Pn ssssc fAfAabf −+= '''85.0 ………….. (1)
Equation (1) is called ‘Load Equation’.
To find out moment carrying capacity of the
column we take moment about plastic centroid.
φ
uP
x e = Mn = Cc. 





−
22
ah
+ Cs. 





− '
2
d
h
+ T. 





−
2
h
d
Let, d′′ =
2
'
'
2
dd
d
h −
=−
and e′ = d′′ + e
Considering moment about center line of tension steel,
φ
uP
x e′ = Mn = Cc. 





−
2
a
d + Cs.( )'dd −
Now, considering moment about plastic centroid in terms of d′′,
1
Engr. Ayaz Waseem ( Lecturer/Lab Engr., CED) Columns
Pn x e = Mn = Cc. + Cs.[d − d′′ − d′]+ T. ( )d ′′
Mn = 0.85 fc’ b a. + As’ fs’.[d − d′′ − d′]+ As fs. ( )d ′′ ……………….. (2)
Equation (2) is called ‘Moment Equation’.
Case 1: PURE AXIAL LOAD/CRUSHING FAILURE:
We know that,
Pn = Cc + Cs − T
But in this case there is pure compression,
so, no tension steel is present
Ast = As + As′ and Cs = C1 + C2
Pn ystcc fAAf. +′850=
Pn yststgc fAAAf. +)(′850=
Pn = 0.85 fc′ Ag + ( fy – 0.85 fc′ ) Ast
Mn = 0
Case 2: BALANCE FAILURE:
For balanced condition,
a = ab = β1 cb ……………………..…………. (1)
Fitst we need to find cb, in figure comparing ∆ c f g and
∆ a b c we get,
If we want to express cb in terms of fy then,
2
LOAD EQUATION
MOMENT EQUATION
Engr. Ayaz Waseem ( Lecturer/Lab Engr., CED) Columns
Using Es = 200, 000 MPa and rearranging,
y
b
f
d
c
+600
600
= ……………………………..... (3)
Using equation (2) in equation (1) we get,
=ba β1
Now, in figure comparing ∆ c f g and ∆ c d e, we get,
If εs′ < εy , then fs′ = Es. εs′
If εs′ ≥ εy , then fs′ = fy
and for balanced failure we already know that fs = fy
So,
Pn ysssbc fAfAabf −+= '''85.0
If As = As′ and fs′ = fy , then
Pn = 0.85 fc′ b ba
and
[ ] ( )dfAdddfA
a
ddabfM ysss
b
bcn ′′+′−′′−′′+





−′′−′= .
2
..85.0
3
LOAD EQUATIONS
MOMENT
EQUATION
Engr. Ayaz Waseem ( Lecturer/Lab Engr., CED) Columns
Case 3: PURE FLEXURAL FAILURE:
In this case no axial load is acting is
acting on the column and column just
behaves like a beam. Therefore,
Pn = 0
In figure comparing ∆ a b c and ∆ c f g, we
get,
cdc
s
−
=
ε003.0
ccd s ×=− ε003.0003.0
s
d
c
ε+
=
003.0
003.0
………………………. (1)
Note: In equation (1) value of ‘c’ can not be found out because even though we know
that εs >> ε y but we don’t know the exact value of εs . Whereas in case of balance failure
‘c’ could be found out as the equation involved ε y rather than εs .
Now, in figure comparing ∆ a b c and ∆ c d e, we get,
dcc
s
′−
′
=
ε003.0
1
1
003.0
β
β
ε ×




 ′−
=′
c
dc
s





 ′−
=′
c
dc
s
1
11
003.0
β
ββ
ε





 ′−
=′
a
da
s
1
003.0
β
ε ……………… (2)
Now,
sssscn fAfAabfP −′′+′= ..85.0
For pure flexural failure we know that, fs = fy and Pn = 0, so
4
LOAD EQUATION
Engr. Ayaz Waseem ( Lecturer/Lab Engr., CED) Columns
ysssc fAfAabf −′′+′= ..85.00 …………. (3)
Assuming, fs′ = fy and As′ = As , we get
0..85.00 =⇒′= aabfc
This means that concrete is not taking any load which is not possible. So, our assumption
is wrong. Therefore, compression steel can not yield at pure flexural failure point.
Now, as εs′ < εy , so
fs′ = Es. εs′
Using equation (2) in above equation, we get,





 ′−
×=′
a
da
fs
1
003.0000,200
β





 ′−
=′
a
da
fs
1
600
β
………………….. (4)
Now, using equation (4) in (3), we get,
yssc fA
a
da
Aabf −




 ′−
×′+′= 1
600..85.00
β
………………….. (5)
Equation (5) results in a quadratic equation. We solve above equation for the value of ‘a’
and then using equation (4) we find fs′.
[ ] ( )dfAdddfA
a
ddabfM yssscn ′′+′−′′−′′+





−′′−′= .
2
..85.0
Now, using the values of a and fs′ in moment equation we can easily find value of Mn ,
whereas, value of Pn is already known i.e., Pn = 0.
5
Es = 200,000 MPa
MOMENT
EQUATION
Engr. Ayaz Waseem ( Lecturer/Lab Engr., CED) Columns
ysssc fAfAabf −′′+′= ..85.00 …………. (3)
Assuming, fs′ = fy and As′ = As , we get
0..85.00 =⇒′= aabfc
This means that concrete is not taking any load which is not possible. So, our assumption
is wrong. Therefore, compression steel can not yield at pure flexural failure point.
Now, as εs′ < εy , so
fs′ = Es. εs′
Using equation (2) in above equation, we get,





 ′−
×=′
a
da
fs
1
003.0000,200
β





 ′−
=′
a
da
fs
1
600
β
………………….. (4)
Now, using equation (4) in (3), we get,
yssc fA
a
da
Aabf −




 ′−
×′+′= 1
600..85.00
β
………………….. (5)
Equation (5) results in a quadratic equation. We solve above equation for the value of ‘a’
and then using equation (4) we find fs′.
[ ] ( )dfAdddfA
a
ddabfM yssscn ′′+′−′′−′′+





−′′−′= .
2
..85.0
Now, using the values of a and fs′ in moment equation we can easily find value of Mn ,
whereas, value of Pn is already known i.e., Pn = 0.
5
Es = 200,000 MPa
MOMENT
EQUATION

Recommandé

Columns lecture#5 par
Columns lecture#5Columns lecture#5
Columns lecture#5Irfan Malik
1.2K vues1 diapositive
Columns lecture#6 par
Columns lecture#6Columns lecture#6
Columns lecture#6Irfan Malik
2.8K vues11 diapositives
Columns under eccentric loading par
Columns under eccentric loadingColumns under eccentric loading
Columns under eccentric loadingcivilengineeringfreedownload
1.4K vues6 diapositives
Columns lecture#3 par
Columns lecture#3Columns lecture#3
Columns lecture#3Irfan Malik
5.1K vues8 diapositives
Problemas de cables par
Problemas de cablesProblemas de cables
Problemas de cablesJosé Grimán Morales
1.5K vues12 diapositives
Problemas deflexiones en vigas par
Problemas deflexiones en vigasProblemas deflexiones en vigas
Problemas deflexiones en vigasJosé Grimán Morales
2.9K vues45 diapositives

Contenu connexe

Tendances

Problemas esfuerzos en vigas par
Problemas esfuerzos en vigasProblemas esfuerzos en vigas
Problemas esfuerzos en vigasJosé Grimán Morales
1.3K vues36 diapositives
311 Ch11 par
311 Ch11311 Ch11
311 Ch11gaconnhome1987
373 vues51 diapositives
Mechanics of materials lecture (nadim sir) par
Mechanics of materials lecture (nadim sir)Mechanics of materials lecture (nadim sir)
Mechanics of materials lecture (nadim sir)mirmohiuddin1
69 vues39 diapositives
Mechanics of materials lecture 02 (nadim sir) par
Mechanics of materials lecture 02 (nadim sir)Mechanics of materials lecture 02 (nadim sir)
Mechanics of materials lecture 02 (nadim sir)mirmohiuddin1
96 vues40 diapositives
Stress Mohr's circle par
Stress Mohr's circleStress Mohr's circle
Stress Mohr's circleKingJyeWong
288 vues38 diapositives
96729556 hoja-de-calculo-para-zapatas par
96729556 hoja-de-calculo-para-zapatas96729556 hoja-de-calculo-para-zapatas
96729556 hoja-de-calculo-para-zapatasWalther Castro
15.2K vues3 diapositives

Tendances(19)

Mechanics of materials lecture (nadim sir) par mirmohiuddin1
Mechanics of materials lecture (nadim sir)Mechanics of materials lecture (nadim sir)
Mechanics of materials lecture (nadim sir)
mirmohiuddin169 vues
Mechanics of materials lecture 02 (nadim sir) par mirmohiuddin1
Mechanics of materials lecture 02 (nadim sir)Mechanics of materials lecture 02 (nadim sir)
Mechanics of materials lecture 02 (nadim sir)
mirmohiuddin196 vues
96729556 hoja-de-calculo-para-zapatas par Walther Castro
96729556 hoja-de-calculo-para-zapatas96729556 hoja-de-calculo-para-zapatas
96729556 hoja-de-calculo-para-zapatas
Walther Castro15.2K vues
17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad) par Hossam Shafiq II
17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)
17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)
Hossam Shafiq II721 vues
1 reinforced concrete lectures-t-beam2 par Malika khalil
1 reinforced concrete lectures-t-beam21 reinforced concrete lectures-t-beam2
1 reinforced concrete lectures-t-beam2
Malika khalil203 vues
Shear Force and Bending Moment Diagram par sumitt6_25730773
Shear Force and Bending Moment DiagramShear Force and Bending Moment Diagram
Shear Force and Bending Moment Diagram
sumitt6_257307731.4K vues
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad) par Hossam Shafiq II
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
Hossam Shafiq II5.6K vues
Shear force and bending moment diagram for simply supported beam _1P par sushma chinta
Shear force and bending moment diagram for simply supported beam _1PShear force and bending moment diagram for simply supported beam _1P
Shear force and bending moment diagram for simply supported beam _1P
sushma chinta610 vues
temperature stresses in Strength of materials par Shivendra Nandan
temperature stresses in Strength of materialstemperature stresses in Strength of materials
temperature stresses in Strength of materials
Shivendra Nandan17.7K vues
Statics and Strength of Materials Formula Sheet par yasinabolfate
Statics and Strength of Materials Formula SheetStatics and Strength of Materials Formula Sheet
Statics and Strength of Materials Formula Sheet
yasinabolfate7.1K vues
49214733 ejemplo-muros-de-gravedad par Alex Valverde
49214733 ejemplo-muros-de-gravedad49214733 ejemplo-muros-de-gravedad
49214733 ejemplo-muros-de-gravedad
Alex Valverde285 vues
Problems on simply supported beams (udl , uvl and couple) par sushma chinta
Problems on simply supported beams (udl , uvl and couple)Problems on simply supported beams (udl , uvl and couple)
Problems on simply supported beams (udl , uvl and couple)
sushma chinta3.8K vues

En vedette

Moment Co-efficient Method par
Moment Co-efficient MethodMoment Co-efficient Method
Moment Co-efficient MethodYousuf Bin Aziz
41.2K vues18 diapositives
Placing column layout par
Placing  column layoutPlacing  column layout
Placing column layoutPranay Kumar Tode
115K vues7 diapositives
Beam and slab design par
Beam and slab designBeam and slab design
Beam and slab designIvan Ferrer
69.1K vues19 diapositives
Bar bending schedule(by akhil) par
Bar bending schedule(by akhil)Bar bending schedule(by akhil)
Bar bending schedule(by akhil)Lamdade Akhil
110.7K vues16 diapositives
Columns lecture#1 par
Columns lecture#1Columns lecture#1
Columns lecture#1Irfan Malik
24.8K vues8 diapositives
Presentation on Slab, Beam & Column par
Presentation on Slab, Beam & ColumnPresentation on Slab, Beam & Column
Presentation on Slab, Beam & Columnমু সা
91.5K vues42 diapositives

Similaire à Columns lecture#4

Ch.4-Examples 2.pdf par
Ch.4-Examples 2.pdfCh.4-Examples 2.pdf
Ch.4-Examples 2.pdfMohammedAlmansor
9 vues18 diapositives
Doubly reinforced beam] par
Doubly reinforced beam]Doubly reinforced beam]
Doubly reinforced beam]raymondsabado2005
531 vues45 diapositives
Capitulo 2, 7ma edición par
Capitulo 2, 7ma ediciónCapitulo 2, 7ma edición
Capitulo 2, 7ma ediciónSohar Carr
2.6K vues12 diapositives
Fundamental of Statics (Part 2) par
Fundamental of Statics (Part 2)Fundamental of Statics (Part 2)
Fundamental of Statics (Part 2)Malay Badodariya
60 vues28 diapositives
Aircraft Structures for Engineering Students 5th Edition Megson Solutions Manual par
Aircraft Structures for Engineering Students 5th Edition Megson Solutions ManualAircraft Structures for Engineering Students 5th Edition Megson Solutions Manual
Aircraft Structures for Engineering Students 5th Edition Megson Solutions ManualRigeler
3K vues28 diapositives
Capitulo 9, 7ma edición par
Capitulo 9, 7ma ediciónCapitulo 9, 7ma edición
Capitulo 9, 7ma ediciónSohar Carr
5.7K vues25 diapositives

Similaire à Columns lecture#4(20)

Capitulo 2, 7ma edición par Sohar Carr
Capitulo 2, 7ma ediciónCapitulo 2, 7ma edición
Capitulo 2, 7ma edición
Sohar Carr2.6K vues
Aircraft Structures for Engineering Students 5th Edition Megson Solutions Manual par Rigeler
Aircraft Structures for Engineering Students 5th Edition Megson Solutions ManualAircraft Structures for Engineering Students 5th Edition Megson Solutions Manual
Aircraft Structures for Engineering Students 5th Edition Megson Solutions Manual
Rigeler3K vues
Capitulo 9, 7ma edición par Sohar Carr
Capitulo 9, 7ma ediciónCapitulo 9, 7ma edición
Capitulo 9, 7ma edición
Sohar Carr5.7K vues
Engineering Electromagnetics 8th Edition Hayt Solutions Manual par xoreq
Engineering Electromagnetics 8th Edition Hayt Solutions ManualEngineering Electromagnetics 8th Edition Hayt Solutions Manual
Engineering Electromagnetics 8th Edition Hayt Solutions Manual
xoreq9.6K vues
Resolução.física sears zemansky 12ª edição young e freedman (todos os... par ASTRIDEDECARVALHOMAG
Resolução.física   sears   zemansky   12ª edição   young e freedman (todos os...Resolução.física   sears   zemansky   12ª edição   young e freedman (todos os...
Resolução.física sears zemansky 12ª edição young e freedman (todos os...
Kittel c. introduction to solid state physics 8 th edition - solution manual par amnahnura
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
amnahnura103.4K vues
Scanned with CamScannerScanned with CamScanner.docx par gemaherd
Scanned with CamScannerScanned with CamScanner.docxScanned with CamScannerScanned with CamScanner.docx
Scanned with CamScannerScanned with CamScanner.docx
gemaherd4 vues
Mechanics Of Materials 9th Edition Hibbeler Solutions Manual par Victoriasses
Mechanics Of Materials 9th Edition Hibbeler Solutions ManualMechanics Of Materials 9th Edition Hibbeler Solutions Manual
Mechanics Of Materials 9th Edition Hibbeler Solutions Manual
Victoriasses1.7K vues
Capitulo 4, 7ma edición par Sohar Carr
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma edición
Sohar Carr6.2K vues
Solution Manual Electric Circuits Global Edition 11th Edition by Nilsson & R... par NetaLavi
Solution Manual Electric Circuits Global Edition 11th Edition by Nilsson &  R...Solution Manual Electric Circuits Global Edition 11th Edition by Nilsson &  R...
Solution Manual Electric Circuits Global Edition 11th Edition by Nilsson & R...
NetaLavi324 vues

Plus de Irfan Malik

Columns lecture#2 par
Columns lecture#2Columns lecture#2
Columns lecture#2Irfan Malik
3.1K vues7 diapositives
Types of laods par
Types of laodsTypes of laods
Types of laodsIrfan Malik
10.5K vues5 diapositives
Flexural design of Beam...PRC-I par
Flexural design of Beam...PRC-IFlexural design of Beam...PRC-I
Flexural design of Beam...PRC-IIrfan Malik
8.5K vues70 diapositives
Flexural design of beam...PRC-I par
Flexural design of beam...PRC-IFlexural design of beam...PRC-I
Flexural design of beam...PRC-IIrfan Malik
25.3K vues49 diapositives
Types of cement par
Types of cementTypes of cement
Types of cementIrfan Malik
2.9K vues2 diapositives
T-Beams...PRC_I par
T-Beams...PRC_IT-Beams...PRC_I
T-Beams...PRC_IIrfan Malik
5.9K vues17 diapositives

Plus de Irfan Malik(15)

Flexural design of Beam...PRC-I par Irfan Malik
Flexural design of Beam...PRC-IFlexural design of Beam...PRC-I
Flexural design of Beam...PRC-I
Irfan Malik8.5K vues
Flexural design of beam...PRC-I par Irfan Malik
Flexural design of beam...PRC-IFlexural design of beam...PRC-I
Flexural design of beam...PRC-I
Irfan Malik25.3K vues
Mechanism of load transfored...PRC-I par Irfan Malik
Mechanism of load transfored...PRC-IMechanism of load transfored...PRC-I
Mechanism of load transfored...PRC-I
Irfan Malik7K vues
Doubly reinforced beams...PRC-I par Irfan Malik
Doubly reinforced beams...PRC-IDoubly reinforced beams...PRC-I
Doubly reinforced beams...PRC-I
Irfan Malik8K vues
Hydration Of Cement...PRC-I par Irfan Malik
Hydration Of Cement...PRC-IHydration Of Cement...PRC-I
Hydration Of Cement...PRC-I
Irfan Malik6.6K vues
Geotech Engg. Ch#05 bearing capacity par Irfan Malik
Geotech Engg. Ch#05 bearing capacityGeotech Engg. Ch#05 bearing capacity
Geotech Engg. Ch#05 bearing capacity
Irfan Malik17.5K vues
Geotech. Engg. Ch#04 lateral earth pressure par Irfan Malik
Geotech. Engg. Ch#04 lateral earth pressureGeotech. Engg. Ch#04 lateral earth pressure
Geotech. Engg. Ch#04 lateral earth pressure
Irfan Malik8.1K vues
Goetech. engg. Ch# 03 settlement analysis signed par Irfan Malik
Goetech. engg. Ch# 03 settlement analysis signedGoetech. engg. Ch# 03 settlement analysis signed
Goetech. engg. Ch# 03 settlement analysis signed
Irfan Malik15.7K vues
Goe tech. engg. Ch# 02 strss distribution par Irfan Malik
Goe tech. engg. Ch# 02 strss distributionGoe tech. engg. Ch# 02 strss distribution
Goe tech. engg. Ch# 02 strss distribution
Irfan Malik2.2K vues
Bearing capacity ch#05(geotech) par Irfan Malik
Bearing capacity ch#05(geotech)Bearing capacity ch#05(geotech)
Bearing capacity ch#05(geotech)
Irfan Malik3.4K vues

Dernier

Nomor Meja RUANG-4.doc par
Nomor Meja RUANG-4.docNomor Meja RUANG-4.doc
Nomor Meja RUANG-4.docssuserc40b91
6 vues3 diapositives
Anti -Parkinsonian Drugs-Medicinal Chemistry par
Anti -Parkinsonian Drugs-Medicinal ChemistryAnti -Parkinsonian Drugs-Medicinal Chemistry
Anti -Parkinsonian Drugs-Medicinal ChemistryNarminHamaaminHussen
12 vues36 diapositives
IEC 600068-2-39 ENVIROMENT TESTING COMBINED TEMPERATURE LOW HUMIDTY.pdf par
IEC 600068-2-39 ENVIROMENT TESTING COMBINED TEMPERATURE LOW HUMIDTY.pdfIEC 600068-2-39 ENVIROMENT TESTING COMBINED TEMPERATURE LOW HUMIDTY.pdf
IEC 600068-2-39 ENVIROMENT TESTING COMBINED TEMPERATURE LOW HUMIDTY.pdfNirmalanGanapathy1
8 vues36 diapositives
Benzodiazepines--Medicinal Chemistry par
Benzodiazepines--Medicinal ChemistryBenzodiazepines--Medicinal Chemistry
Benzodiazepines--Medicinal ChemistryNarminHamaaminHussen
6 vues32 diapositives
Task 3 copy.pptx par
Task 3 copy.pptxTask 3 copy.pptx
Task 3 copy.pptxZaraCooper2
21 vues19 diapositives
Here_Process book par
Here_Process bookHere_Process book
Here_Process booknykimstudio
15 vues74 diapositives

Dernier(20)

IEC 600068-2-39 ENVIROMENT TESTING COMBINED TEMPERATURE LOW HUMIDTY.pdf par NirmalanGanapathy1
IEC 600068-2-39 ENVIROMENT TESTING COMBINED TEMPERATURE LOW HUMIDTY.pdfIEC 600068-2-39 ENVIROMENT TESTING COMBINED TEMPERATURE LOW HUMIDTY.pdf
IEC 600068-2-39 ENVIROMENT TESTING COMBINED TEMPERATURE LOW HUMIDTY.pdf
Designing Effective AR Experiences par Kumar Ahir
Designing Effective AR ExperiencesDesigning Effective AR Experiences
Designing Effective AR Experiences
Kumar Ahir5 vues
commercial interior designers -Dortodesigns studio.pdf par Prasadgyb
commercial interior designers -Dortodesigns  studio.pdfcommercial interior designers -Dortodesigns  studio.pdf
commercial interior designers -Dortodesigns studio.pdf
Prasadgyb5 vues
TISFLEET WEB DESIGN PROJECT par Rabius Sany
TISFLEET WEB DESIGN PROJECTTISFLEET WEB DESIGN PROJECT
TISFLEET WEB DESIGN PROJECT
Rabius Sany38 vues

Columns lecture#4

  • 1. Engr. Ayaz Waseem ( Lecturer/Lab Engr., CED) Columns LECTURE # 4 1. COLUMNS UNDER ECCENTRIC LOADING: Let’s suppose a load acts on a column at a distance ‘e’ from plastic centroid as shown in figure 3. In the figure, As′ = Area of compressive steel. As = Area of tensile steel. fs = Stress in tensile steel. fs′ = Stress in compressive steel. T = Tensile force in steel. Cc = Compressive force in concrete. Cs = Compressive force in steel. Cc = 0.85 fc′ b a Cs = As′ fs′ T = As fs Now, Pn = Cc + Cs − T Pn ssssc fAfAabf −+= '''85.0 ………….. (1) Equation (1) is called ‘Load Equation’. To find out moment carrying capacity of the column we take moment about plastic centroid. φ uP x e = Mn = Cc.       − 22 ah + Cs.       − ' 2 d h + T.       − 2 h d Let, d′′ = 2 ' ' 2 dd d h − =− and e′ = d′′ + e Considering moment about center line of tension steel, φ uP x e′ = Mn = Cc.       − 2 a d + Cs.( )'dd − Now, considering moment about plastic centroid in terms of d′′, 1
  • 2. Engr. Ayaz Waseem ( Lecturer/Lab Engr., CED) Columns Pn x e = Mn = Cc. + Cs.[d − d′′ − d′]+ T. ( )d ′′ Mn = 0.85 fc’ b a. + As’ fs’.[d − d′′ − d′]+ As fs. ( )d ′′ ……………….. (2) Equation (2) is called ‘Moment Equation’. Case 1: PURE AXIAL LOAD/CRUSHING FAILURE: We know that, Pn = Cc + Cs − T But in this case there is pure compression, so, no tension steel is present Ast = As + As′ and Cs = C1 + C2 Pn ystcc fAAf. +′850= Pn yststgc fAAAf. +)(′850= Pn = 0.85 fc′ Ag + ( fy – 0.85 fc′ ) Ast Mn = 0 Case 2: BALANCE FAILURE: For balanced condition, a = ab = β1 cb ……………………..…………. (1) Fitst we need to find cb, in figure comparing ∆ c f g and ∆ a b c we get, If we want to express cb in terms of fy then, 2 LOAD EQUATION MOMENT EQUATION
  • 3. Engr. Ayaz Waseem ( Lecturer/Lab Engr., CED) Columns Using Es = 200, 000 MPa and rearranging, y b f d c +600 600 = ……………………………..... (3) Using equation (2) in equation (1) we get, =ba β1 Now, in figure comparing ∆ c f g and ∆ c d e, we get, If εs′ < εy , then fs′ = Es. εs′ If εs′ ≥ εy , then fs′ = fy and for balanced failure we already know that fs = fy So, Pn ysssbc fAfAabf −+= '''85.0 If As = As′ and fs′ = fy , then Pn = 0.85 fc′ b ba and [ ] ( )dfAdddfA a ddabfM ysss b bcn ′′+′−′′−′′+      −′′−′= . 2 ..85.0 3 LOAD EQUATIONS MOMENT EQUATION
  • 4. Engr. Ayaz Waseem ( Lecturer/Lab Engr., CED) Columns Case 3: PURE FLEXURAL FAILURE: In this case no axial load is acting is acting on the column and column just behaves like a beam. Therefore, Pn = 0 In figure comparing ∆ a b c and ∆ c f g, we get, cdc s − = ε003.0 ccd s ×=− ε003.0003.0 s d c ε+ = 003.0 003.0 ………………………. (1) Note: In equation (1) value of ‘c’ can not be found out because even though we know that εs >> ε y but we don’t know the exact value of εs . Whereas in case of balance failure ‘c’ could be found out as the equation involved ε y rather than εs . Now, in figure comparing ∆ a b c and ∆ c d e, we get, dcc s ′− ′ = ε003.0 1 1 003.0 β β ε ×      ′− =′ c dc s       ′− =′ c dc s 1 11 003.0 β ββ ε       ′− =′ a da s 1 003.0 β ε ……………… (2) Now, sssscn fAfAabfP −′′+′= ..85.0 For pure flexural failure we know that, fs = fy and Pn = 0, so 4 LOAD EQUATION
  • 5. Engr. Ayaz Waseem ( Lecturer/Lab Engr., CED) Columns ysssc fAfAabf −′′+′= ..85.00 …………. (3) Assuming, fs′ = fy and As′ = As , we get 0..85.00 =⇒′= aabfc This means that concrete is not taking any load which is not possible. So, our assumption is wrong. Therefore, compression steel can not yield at pure flexural failure point. Now, as εs′ < εy , so fs′ = Es. εs′ Using equation (2) in above equation, we get,       ′− ×=′ a da fs 1 003.0000,200 β       ′− =′ a da fs 1 600 β ………………….. (4) Now, using equation (4) in (3), we get, yssc fA a da Aabf −      ′− ×′+′= 1 600..85.00 β ………………….. (5) Equation (5) results in a quadratic equation. We solve above equation for the value of ‘a’ and then using equation (4) we find fs′. [ ] ( )dfAdddfA a ddabfM yssscn ′′+′−′′−′′+      −′′−′= . 2 ..85.0 Now, using the values of a and fs′ in moment equation we can easily find value of Mn , whereas, value of Pn is already known i.e., Pn = 0. 5 Es = 200,000 MPa MOMENT EQUATION
  • 6. Engr. Ayaz Waseem ( Lecturer/Lab Engr., CED) Columns ysssc fAfAabf −′′+′= ..85.00 …………. (3) Assuming, fs′ = fy and As′ = As , we get 0..85.00 =⇒′= aabfc This means that concrete is not taking any load which is not possible. So, our assumption is wrong. Therefore, compression steel can not yield at pure flexural failure point. Now, as εs′ < εy , so fs′ = Es. εs′ Using equation (2) in above equation, we get,       ′− ×=′ a da fs 1 003.0000,200 β       ′− =′ a da fs 1 600 β ………………….. (4) Now, using equation (4) in (3), we get, yssc fA a da Aabf −      ′− ×′+′= 1 600..85.00 β ………………….. (5) Equation (5) results in a quadratic equation. We solve above equation for the value of ‘a’ and then using equation (4) we find fs′. [ ] ( )dfAdddfA a ddabfM yssscn ′′+′−′′−′′+      −′′−′= . 2 ..85.0 Now, using the values of a and fs′ in moment equation we can easily find value of Mn , whereas, value of Pn is already known i.e., Pn = 0. 5 Es = 200,000 MPa MOMENT EQUATION