SlideShare une entreprise Scribd logo
1  sur  54
PHYSICS – Simple phenomena of
magnetism
LEARNING
OBJECTIVES
Core
•Describe the forces between magnets,
and between magnets and magnetic
materials
• Give an account of induced magnetism
• Distinguish between magnetic and non-
magnetic materials
• Describe methods of magnetisation, to
include stroking with a magnet, use of
d.c. in a coil and hammering in a
magnetic field
• Draw the pattern of magnetic field
lines around a bar magnet
• Describe an experiment to identify
the pattern of magnetic field lines,
including the direction
• Distinguish between the magnetic
properties of soft iron and steel
• Distinguish between the design and
use of permanent magnets and
electromagnets
Supplement
Explain that magnetic forces are due to
interactions between magnetic fields
• Describe methods of demagnetisation, to
include hammering, heating and use of a.c. in
a coil
Magnets
N S
Properties
Have magnetic
fields around
them.
Attracted?
.. or not?
Magnets
N S
Properties
Have magnetic
fields around
them.
Have two opposite poles (N & S)
– like poles repel, unlike poles
attract.
Attracted?
.. may be?
Magnets
N S
Properties
Have magnetic
fields around
them.
Have two opposite poles (N & S)
– like poles repel, unlike poles
attract.
Exert little or
no force on a
non-magnetic
material.
Attracted?
.. possibly?
Magnets
N S
Properties
Have magnetic
fields around
them.
Have two opposite poles (N & S)
– like poles repel, unlike poles
attract.
Exert little or
no force on a
non-magnetic
material.
Attract magnetic
materials by
inducing magnetism
in them.
N
Iron Steel
Attracted?
.. hopefully?
Magnets
N S
Properties
Have magnetic
fields around
them.
Have two opposite poles (N & S)
– like poles repel, unlike poles
attract.
Exert little or
no force on a
non-magnetic
material.
Attract magnetic
materials by
inducing magnetism
in them.
N
Poles induced in both iron and steel.
S
N
S
N
Attracted?
.. mmmm?
Magnets
N S
Properties
Have magnetic
fields around
them.
Have two opposite poles (N & S)
– like poles repel, unlike poles
attract.
Exert little or
no force on a
non-magnetic
material.
Attract magnetic
materials by
inducing magnetism
in them.
N
Iron loses
magnetism – it was
only a temporary
magnet
S
N
Steel retains magnetism
– it became a permanent
magnet
Attracted?
YES!!!
Magnets – make your own!
N S
S
N
How strong is it?
Not very.
Placing a piece of steel near a magnet
makes it permanently magnetised,
but its magnetism is usually weak.
Magnets – make your own!
N
How strong is it?
Getting stronger.
The magnet can be magnetized more
strongly by stroking it with one end
of a magnet
S
Wide sweep away
from the steel
Induced poles
Magnets – make your own!
How strong is it?
Strongest!
The best way of magnetizing is to
place the steel bar in a long coil of
wire and pass a large, direct (one
way) current through the coil. The
coil has a magnetic effect which
magnetizes the steel.
Coil
Steel
Magnets – how do they work?
N S
Just what is
happening inside
the magnet to
make it
magnetic?
Magnets – how do they work?
N S
Just what is
happening inside
the magnet to
make it
magnetic?
We need to look closely at what
is happening to the particles
(electrons) inside the magnet.
Magnets – how do they work?
N S
Just what is
happening inside
the magnet to
make it
magnetic?
We need to look closely at what
is happening to the particles
(electrons) inside the magnet.
In an unmagnetized material,
the tiny electrons, or atomic
magnets point in random
directions.
Magnets – how do they work?
N S
Just what is
happening inside
the magnet to
make it
magnetic?
We need to look closely at what
is happening to the particles
(electrons) inside the magnet.
When the material becomes
magnetized, more and more
of the tiny atomic magnets
line up with each other. They
act as one BIG magnet.
Magnets – how do they work?
N S
Just what is
happening inside
the magnet to
make it
magnetic?
We need to look closely at what
is happening to the particles
(electrons) inside the magnet.
If a magnet is hit with a hammer,
the tiny atomic magnets get
thrown out of line again, so the
material becomes demagnetised.
Magnets – how do they work?
N S
Just what is
happening inside
the magnet to
make it
magnetic?
We need to look closely at what
is happening to the particles
(electrons) inside the magnet.
If a magnet is hit with a hammer,
the tiny atomic magnets get
thrown out of line again, so the
material becomes demagnetised.
A magnet will also
become demagnetized
if heated to high
temperature.
Magnetic and non-magnetic
Magnetic and non-magnetic
Magnetic material – can be
magnetized, and is attracted to
magnets. Strongly magnetic
materials contain iron, nickel or
cobalt (eg. Steel is mainly iron).
Magnetic and non-magnetic
Magnetic material – can be
magnetized, and is attracted to
magnets. Strongly magnetic
materials contain iron, nickel or
cobalt (eg. Steel is mainly iron).
Ferromagnets
Hard magnetic materials,
eg. Steel, alloys (Alcomax,
Magnadur). Difficult to
magnetise, but do not
lose their magnetism.
Used for permanent
magnets.
Magnetic and non-magnetic
Magnetic material – can be
magnetized, and is attracted to
magnets. Strongly magnetic
materials contain iron, nickel or
cobalt (eg. Steel is mainly iron).
Ferromagnets
Hard magnetic materials,
eg. Steel, alloys (Alcomax,
Magnadur). Difficult to
magnetise, but do not
lose their magnetism.
Used for permanent
magnets.
Soft magnetic materials,
eg. Iron, Mumetal.
Relatively easy to
magnetise, but magnetism
is temporary. Used in
electromagnets and
transformers.
Magnetic and non-magnetic
Magnetic material – can be
magnetized, and is attracted to
magnets. Strongly magnetic
materials contain iron, nickel or
cobalt (eg. Steel is mainly iron).
Ferromagnets
Hard magnetic materials,
eg. Steel, alloys (Alcomax,
Magnadur). Difficult to
magnetise, but do not
lose their magnetism.
Used for permanent
magnets.
Soft magnetic materials,
eg. Iron, Mumetal.
Relatively easy to
magnetise, but magnetism
is temporary. Used in
electromagnets and
transformers.
Non-magnetic materials.
Metals (brass, copper,
zinc, tin and aluminium);
non-metals.
LEARNING
OBJECTIVES
Core
•Describe the forces between magnets,
and between magnets and magnetic
materials
• Give an account of induced magnetism
• Distinguish between magnetic and non-
magnetic materials
• Describe methods of magnetisation, to
include stroking with a magnet, use of
d.c. in a coil and hammering in a
magnetic field
• Draw the pattern of magnetic field
lines around a bar magnet
• Describe an experiment to identify
the pattern of magnetic field lines,
including the direction
• Distinguish between the magnetic
properties of soft iron and steel
• Distinguish between the design and
use of permanent magnets and
electromagnets
Supplement
Explain that magnetic forces are due to
interactions between magnetic fields
• Describe methods of demagnetisation, to
include hammering, heating and use of a.c. in
a coil
Magnetic fields
Magnetic fields
Iron filings sprinkled
around a magnet
Magnetic field lines
around the magnet
Magnetic fields
Iron filings sprinkled
around a magnet
Magnetic field lines
around the magnet
Field lines run from the
north pole (N) to the
south pole (S). The
magnetic field is
strongest where the field
lines are closer together.
Magnetic fields
Using a plotting compass to find
the field lines.
N S
Magnetic fields
Using a plotting compass to find
the field lines.
N S
Magnetic fields
Using a plotting compass to find
the field lines.
N S
Magnetic fields
Using a plotting compass to find
the field lines.
N S
Magnetic fields
Using a plotting compass to find
the field lines.
N S
Magnetic fields
Using a plotting compass to find
the field lines.
N S
Magnetic fields
Using a plotting compass to find
the field lines.
N S
.
.
.
.
Magnetic fields
Using a plotting compass to find
the field lines.
http://www.physbot.co.uk/magnetic-fields-and-induction.html
Magnetic fields
Interactions between magentic
fields
http://www.homofaciens.de/technics-magnetic-field-energy_en_navion.htm
When unlike poles are placed near
each other, their magnetic fields
combine to produce a single field of
almost uniform strength.
Magnetic fields
Interactions between magentic
fields
http://www.homofaciens.de/technics-magnetic-field-energy_en_navion.htm
When unlike poles are placed near
each other, their magnetic fields
combine to produce a single field of
almost uniform strength.
When like poles are placed near each
other, their magnetic fields cancel
each other, and there is a neutral
point where the combined field
strength is zero.
Neutral point
The Earth’s magnetic field
The Earth’s magnetic field is like
that around a very large, but very
weak, bar magnet.
The Earth’s magnetic field
The Earth’s magnetic field is like
that around a very large, but very
weak, bar magnet.
A compass ‘north’ end points
north. But a north pole is always
attracted to a south pole, so the
Earth’s magnetic south pole must
actually be in the north.
The Earth’s magnetic field
The Earth’s magnetic field is like
that around a very large, but very
weak, bar magnet.
A compass ‘north’ end points
north. But a north pole is always
attracted to a south pole, so the
Earth’s magnetic south pole must
actually be in the north.
The Earth’s magnetic north is
actually over 1200km away from
the true geographic north pole.
The Earth’s magnetic field
The Earth’s magnetic field is like
that around a very large, but very
weak, bar magnet.
A compass ‘north’ end points
north. But a north pole is always
attracted to a south pole, so the
Earth’s magnetic south pole must
actually be in the north.
The Earth’s magnetic north is
actually over 1200km away from
the true geographic north pole.
Over a period of
time the Earth’s
magnetic pole will
‘flip’.
The Earth’s magnetic field
The Earth’s magnetic field is like
that around a very large, but very
weak, bar magnet.
A compass ‘north’ end points
north. But a north pole is always
attracted to a south pole, so the
Earth’s magnetic south pole must
actually be in the north.
The Earth’s magnetic north is
actually over 1200km away from
the true geographic north pole.
Over a period of
time the Earth’s
magnetic pole will
‘flip’.
In the last 10 million
years, there have been,
on average, 4 or 5
‘flips’ per million years.
Electromagnets
Distinguish between
the design and use
of permanent
magnets and
electromagnets
Electromagnets
Distinguish between
the design and use
of permanent
magnets and
electromagnets
Unlike bar magnets, which are
permanent magnets, the
magnetism of electromagnets
can be turned on and off.
Electromagnets
Distinguish between
the design and use
of permanent
magnets and
electromagnets
Unlike bar magnets, which are
permanent magnets, the
magnetism of electromagnets
can be turned on and off.
Permanent magnet uses:
1. Needles of compasses.
2. Fridge door seals, holding
the doors closed.
3. Loudspeakers and
microphones.
Electromagnets
Distinguish between
the design and use
of permanent
magnets and
electromagnets
Unlike bar magnets, which are
permanent magnets, the
magnetism of electromagnets
can be turned on and off.
Permanent magnet uses:
1. Needles of compasses.
2. Fridge door seals, holding
the doors closed.
3. Loudspeakers and
microphones.
switch battery
coil
Soft iron
core
When a current flows
through the coil it
produces a magnetic
field. This field is
temporary and is lost
when the current is
switched off.
Electromagnets
Distinguish between
the design and use
of permanent
magnets and
electromagnets
Unlike bar magnets, which are
permanent magnets, the
magnetism of electromagnets
can be turned on and off.
Permanent magnet uses:
1. Needles of compasses.
2. Fridge door seals, holding
the doors closed.
3. Loudspeakers and
microphones.
switch battery
coil
Soft iron
core
When a current flows
through the coil it
produces a magnetic
field. This field is
temporary and is lost
when the current is
switched off.
Strength increased by:
- Increasing the current
- Increasing number of turns
Electromagnets
Distinguish between
the design and use
of permanent
magnets and
electromagnets
Unlike bar magnets, which are
permanent magnets, the
magnetism of electromagnets
can be turned on and off.
Permanent magnet uses:
1. Needles of compasses.
2. Fridge door seals, holding
the doors closed.
3. Loudspeakers and
microphones.
switch battery
coil
Soft iron
core
When a current flows
through the coil it
produces a magnetic
field. This field is
temporary and is lost
when the current is
switched off.
Strength increased by:
- Increasing the current
- Increasing number of turns
Uses: scrapyard
electromagnets, circuit
breakers, relays, electric bells.
Electromagnets
Electromagnets
LEARNING
OBJECTIVES
Core
•Describe the forces between magnets,
and between magnets and magnetic
materials
• Give an account of induced magnetism
• Distinguish between magnetic and non-
magnetic materials
• Describe methods of magnetisation, to
include stroking with a magnet, use of
d.c. in a coil and hammering in a
magnetic field
• Draw the pattern of magnetic field
lines around a bar magnet
• Describe an experiment to identify
the pattern of magnetic field lines,
including the direction
• Distinguish between the magnetic
properties of soft iron and steel
• Distinguish between the design and
use of permanent magnets and
electromagnets
Supplement
Explain that magnetic forces are due to
interactions between magnetic fields
• Describe methods of demagnetisation, to
include hammering, heating and use of a.c. in
a coil
PHYSICS – Simple phenomena of
magnetism
Physics 25 - Simple phenomena of magntism.pptx
Physics 25 - Simple phenomena of magntism.pptx

Contenu connexe

Similaire à Physics 25 - Simple phenomena of magntism.pptx

Interactive textbook ch. 18 sec 1 magnets & magnetism
Interactive textbook ch. 18 sec 1 magnets & magnetismInteractive textbook ch. 18 sec 1 magnets & magnetism
Interactive textbook ch. 18 sec 1 magnets & magnetismtiffanysci
 
Grade 11, U5 L1-Natural Magnetism
Grade 11, U5 L1-Natural MagnetismGrade 11, U5 L1-Natural Magnetism
Grade 11, U5 L1-Natural Magnetismgruszecki1
 
MAGNETISM and ELECTROMAGNETISM 2012.pptx
MAGNETISM and ELECTROMAGNETISM 2012.pptxMAGNETISM and ELECTROMAGNETISM 2012.pptx
MAGNETISM and ELECTROMAGNETISM 2012.pptxmarkgrant78
 
Applied Physics, diploma, magnetism, electromagnetism
Applied Physics, diploma, magnetism, electromagnetismApplied Physics, diploma, magnetism, electromagnetism
Applied Physics, diploma, magnetism, electromagnetismFrancisKazoba
 
Magnetism and Electromagnetism
Magnetism and ElectromagnetismMagnetism and Electromagnetism
Magnetism and ElectromagnetismShafie Sofian
 
SOME BASIC PRINCIPLES OF MAGNETISM (Autosaved).docx
SOME BASIC PRINCIPLES OF MAGNETISM (Autosaved).docxSOME BASIC PRINCIPLES OF MAGNETISM (Autosaved).docx
SOME BASIC PRINCIPLES OF MAGNETISM (Autosaved).docxZocelynManingo1
 
Electricity and magnetism
Electricity and magnetismElectricity and magnetism
Electricity and magnetismKathleen Marcy
 
Magnetism f.khadaad
Magnetism f.khadaadMagnetism f.khadaad
Magnetism f.khadaadFarah Yasin
 
Andy kemagnetan(presntasi)
Andy kemagnetan(presntasi)Andy kemagnetan(presntasi)
Andy kemagnetan(presntasi)Andhi Yourmaine
 
Magnets in orthodontics.1
Magnets in orthodontics.1Magnets in orthodontics.1
Magnets in orthodontics.1shafeeq rahman
 
Power point magnetic force firman gilbert metta
Power point magnetic force firman gilbert mettaPower point magnetic force firman gilbert metta
Power point magnetic force firman gilbert mettaFirman Otto
 

Similaire à Physics 25 - Simple phenomena of magntism.pptx (20)

Interactive textbook ch. 18 sec 1 magnets & magnetism
Interactive textbook ch. 18 sec 1 magnets & magnetismInteractive textbook ch. 18 sec 1 magnets & magnetism
Interactive textbook ch. 18 sec 1 magnets & magnetism
 
Magnetism
MagnetismMagnetism
Magnetism
 
Magnetism
MagnetismMagnetism
Magnetism
 
Fun with magnets
 Fun with magnets Fun with magnets
Fun with magnets
 
Grade 11, U5 L1-Natural Magnetism
Grade 11, U5 L1-Natural MagnetismGrade 11, U5 L1-Natural Magnetism
Grade 11, U5 L1-Natural Magnetism
 
MAGNETISM and ELECTROMAGNETISM 2012.pptx
MAGNETISM and ELECTROMAGNETISM 2012.pptxMAGNETISM and ELECTROMAGNETISM 2012.pptx
MAGNETISM and ELECTROMAGNETISM 2012.pptx
 
Module No. 26
Module No. 26Module No. 26
Module No. 26
 
Applied Physics, diploma, magnetism, electromagnetism
Applied Physics, diploma, magnetism, electromagnetismApplied Physics, diploma, magnetism, electromagnetism
Applied Physics, diploma, magnetism, electromagnetism
 
Magnetism and Electromagnetism
Magnetism and ElectromagnetismMagnetism and Electromagnetism
Magnetism and Electromagnetism
 
Magnetism
MagnetismMagnetism
Magnetism
 
SOME BASIC PRINCIPLES OF MAGNETISM (Autosaved).docx
SOME BASIC PRINCIPLES OF MAGNETISM (Autosaved).docxSOME BASIC PRINCIPLES OF MAGNETISM (Autosaved).docx
SOME BASIC PRINCIPLES OF MAGNETISM (Autosaved).docx
 
Electricity and magnetism
Electricity and magnetismElectricity and magnetism
Electricity and magnetism
 
Magnetism f.khadaad
Magnetism f.khadaadMagnetism f.khadaad
Magnetism f.khadaad
 
Andy kemagnetan(presntasi)
Andy kemagnetan(presntasi)Andy kemagnetan(presntasi)
Andy kemagnetan(presntasi)
 
pp05-1.ppt
pp05-1.pptpp05-1.ppt
pp05-1.ppt
 
Electromagnetism
ElectromagnetismElectromagnetism
Electromagnetism
 
Magnetism Review
Magnetism ReviewMagnetism Review
Magnetism Review
 
Magnetism
MagnetismMagnetism
Magnetism
 
Magnets in orthodontics.1
Magnets in orthodontics.1Magnets in orthodontics.1
Magnets in orthodontics.1
 
Power point magnetic force firman gilbert metta
Power point magnetic force firman gilbert mettaPower point magnetic force firman gilbert metta
Power point magnetic force firman gilbert metta
 

Dernier

ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxVanesaIglesias10
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptshraddhaparab530
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxMusic 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxleah joy valeriano
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 

Dernier (20)

YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptx
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.ppt
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxMusic 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 

Physics 25 - Simple phenomena of magntism.pptx

  • 1. PHYSICS – Simple phenomena of magnetism
  • 2. LEARNING OBJECTIVES Core •Describe the forces between magnets, and between magnets and magnetic materials • Give an account of induced magnetism • Distinguish between magnetic and non- magnetic materials • Describe methods of magnetisation, to include stroking with a magnet, use of d.c. in a coil and hammering in a magnetic field • Draw the pattern of magnetic field lines around a bar magnet • Describe an experiment to identify the pattern of magnetic field lines, including the direction • Distinguish between the magnetic properties of soft iron and steel • Distinguish between the design and use of permanent magnets and electromagnets Supplement Explain that magnetic forces are due to interactions between magnetic fields • Describe methods of demagnetisation, to include hammering, heating and use of a.c. in a coil
  • 3. Magnets N S Properties Have magnetic fields around them. Attracted? .. or not?
  • 4. Magnets N S Properties Have magnetic fields around them. Have two opposite poles (N & S) – like poles repel, unlike poles attract. Attracted? .. may be?
  • 5. Magnets N S Properties Have magnetic fields around them. Have two opposite poles (N & S) – like poles repel, unlike poles attract. Exert little or no force on a non-magnetic material. Attracted? .. possibly?
  • 6. Magnets N S Properties Have magnetic fields around them. Have two opposite poles (N & S) – like poles repel, unlike poles attract. Exert little or no force on a non-magnetic material. Attract magnetic materials by inducing magnetism in them. N Iron Steel Attracted? .. hopefully?
  • 7. Magnets N S Properties Have magnetic fields around them. Have two opposite poles (N & S) – like poles repel, unlike poles attract. Exert little or no force on a non-magnetic material. Attract magnetic materials by inducing magnetism in them. N Poles induced in both iron and steel. S N S N Attracted? .. mmmm?
  • 8. Magnets N S Properties Have magnetic fields around them. Have two opposite poles (N & S) – like poles repel, unlike poles attract. Exert little or no force on a non-magnetic material. Attract magnetic materials by inducing magnetism in them. N Iron loses magnetism – it was only a temporary magnet S N Steel retains magnetism – it became a permanent magnet Attracted? YES!!!
  • 9. Magnets – make your own! N S S N How strong is it? Not very. Placing a piece of steel near a magnet makes it permanently magnetised, but its magnetism is usually weak.
  • 10. Magnets – make your own! N How strong is it? Getting stronger. The magnet can be magnetized more strongly by stroking it with one end of a magnet S Wide sweep away from the steel Induced poles
  • 11. Magnets – make your own! How strong is it? Strongest! The best way of magnetizing is to place the steel bar in a long coil of wire and pass a large, direct (one way) current through the coil. The coil has a magnetic effect which magnetizes the steel. Coil Steel
  • 12. Magnets – how do they work? N S Just what is happening inside the magnet to make it magnetic?
  • 13. Magnets – how do they work? N S Just what is happening inside the magnet to make it magnetic? We need to look closely at what is happening to the particles (electrons) inside the magnet.
  • 14. Magnets – how do they work? N S Just what is happening inside the magnet to make it magnetic? We need to look closely at what is happening to the particles (electrons) inside the magnet. In an unmagnetized material, the tiny electrons, or atomic magnets point in random directions.
  • 15. Magnets – how do they work? N S Just what is happening inside the magnet to make it magnetic? We need to look closely at what is happening to the particles (electrons) inside the magnet. When the material becomes magnetized, more and more of the tiny atomic magnets line up with each other. They act as one BIG magnet.
  • 16. Magnets – how do they work? N S Just what is happening inside the magnet to make it magnetic? We need to look closely at what is happening to the particles (electrons) inside the magnet. If a magnet is hit with a hammer, the tiny atomic magnets get thrown out of line again, so the material becomes demagnetised.
  • 17. Magnets – how do they work? N S Just what is happening inside the magnet to make it magnetic? We need to look closely at what is happening to the particles (electrons) inside the magnet. If a magnet is hit with a hammer, the tiny atomic magnets get thrown out of line again, so the material becomes demagnetised. A magnet will also become demagnetized if heated to high temperature.
  • 19. Magnetic and non-magnetic Magnetic material – can be magnetized, and is attracted to magnets. Strongly magnetic materials contain iron, nickel or cobalt (eg. Steel is mainly iron).
  • 20. Magnetic and non-magnetic Magnetic material – can be magnetized, and is attracted to magnets. Strongly magnetic materials contain iron, nickel or cobalt (eg. Steel is mainly iron). Ferromagnets Hard magnetic materials, eg. Steel, alloys (Alcomax, Magnadur). Difficult to magnetise, but do not lose their magnetism. Used for permanent magnets.
  • 21. Magnetic and non-magnetic Magnetic material – can be magnetized, and is attracted to magnets. Strongly magnetic materials contain iron, nickel or cobalt (eg. Steel is mainly iron). Ferromagnets Hard magnetic materials, eg. Steel, alloys (Alcomax, Magnadur). Difficult to magnetise, but do not lose their magnetism. Used for permanent magnets. Soft magnetic materials, eg. Iron, Mumetal. Relatively easy to magnetise, but magnetism is temporary. Used in electromagnets and transformers.
  • 22. Magnetic and non-magnetic Magnetic material – can be magnetized, and is attracted to magnets. Strongly magnetic materials contain iron, nickel or cobalt (eg. Steel is mainly iron). Ferromagnets Hard magnetic materials, eg. Steel, alloys (Alcomax, Magnadur). Difficult to magnetise, but do not lose their magnetism. Used for permanent magnets. Soft magnetic materials, eg. Iron, Mumetal. Relatively easy to magnetise, but magnetism is temporary. Used in electromagnets and transformers. Non-magnetic materials. Metals (brass, copper, zinc, tin and aluminium); non-metals.
  • 23. LEARNING OBJECTIVES Core •Describe the forces between magnets, and between magnets and magnetic materials • Give an account of induced magnetism • Distinguish between magnetic and non- magnetic materials • Describe methods of magnetisation, to include stroking with a magnet, use of d.c. in a coil and hammering in a magnetic field • Draw the pattern of magnetic field lines around a bar magnet • Describe an experiment to identify the pattern of magnetic field lines, including the direction • Distinguish between the magnetic properties of soft iron and steel • Distinguish between the design and use of permanent magnets and electromagnets Supplement Explain that magnetic forces are due to interactions between magnetic fields • Describe methods of demagnetisation, to include hammering, heating and use of a.c. in a coil
  • 25. Magnetic fields Iron filings sprinkled around a magnet Magnetic field lines around the magnet
  • 26. Magnetic fields Iron filings sprinkled around a magnet Magnetic field lines around the magnet Field lines run from the north pole (N) to the south pole (S). The magnetic field is strongest where the field lines are closer together.
  • 27. Magnetic fields Using a plotting compass to find the field lines. N S
  • 28. Magnetic fields Using a plotting compass to find the field lines. N S
  • 29. Magnetic fields Using a plotting compass to find the field lines. N S
  • 30. Magnetic fields Using a plotting compass to find the field lines. N S
  • 31. Magnetic fields Using a plotting compass to find the field lines. N S
  • 32. Magnetic fields Using a plotting compass to find the field lines. N S
  • 33. Magnetic fields Using a plotting compass to find the field lines. N S . . . .
  • 34. Magnetic fields Using a plotting compass to find the field lines. http://www.physbot.co.uk/magnetic-fields-and-induction.html
  • 35. Magnetic fields Interactions between magentic fields http://www.homofaciens.de/technics-magnetic-field-energy_en_navion.htm When unlike poles are placed near each other, their magnetic fields combine to produce a single field of almost uniform strength.
  • 36. Magnetic fields Interactions between magentic fields http://www.homofaciens.de/technics-magnetic-field-energy_en_navion.htm When unlike poles are placed near each other, their magnetic fields combine to produce a single field of almost uniform strength. When like poles are placed near each other, their magnetic fields cancel each other, and there is a neutral point where the combined field strength is zero. Neutral point
  • 37. The Earth’s magnetic field The Earth’s magnetic field is like that around a very large, but very weak, bar magnet.
  • 38. The Earth’s magnetic field The Earth’s magnetic field is like that around a very large, but very weak, bar magnet. A compass ‘north’ end points north. But a north pole is always attracted to a south pole, so the Earth’s magnetic south pole must actually be in the north.
  • 39. The Earth’s magnetic field The Earth’s magnetic field is like that around a very large, but very weak, bar magnet. A compass ‘north’ end points north. But a north pole is always attracted to a south pole, so the Earth’s magnetic south pole must actually be in the north. The Earth’s magnetic north is actually over 1200km away from the true geographic north pole.
  • 40. The Earth’s magnetic field The Earth’s magnetic field is like that around a very large, but very weak, bar magnet. A compass ‘north’ end points north. But a north pole is always attracted to a south pole, so the Earth’s magnetic south pole must actually be in the north. The Earth’s magnetic north is actually over 1200km away from the true geographic north pole. Over a period of time the Earth’s magnetic pole will ‘flip’.
  • 41. The Earth’s magnetic field The Earth’s magnetic field is like that around a very large, but very weak, bar magnet. A compass ‘north’ end points north. But a north pole is always attracted to a south pole, so the Earth’s magnetic south pole must actually be in the north. The Earth’s magnetic north is actually over 1200km away from the true geographic north pole. Over a period of time the Earth’s magnetic pole will ‘flip’. In the last 10 million years, there have been, on average, 4 or 5 ‘flips’ per million years.
  • 42.
  • 43. Electromagnets Distinguish between the design and use of permanent magnets and electromagnets
  • 44. Electromagnets Distinguish between the design and use of permanent magnets and electromagnets Unlike bar magnets, which are permanent magnets, the magnetism of electromagnets can be turned on and off.
  • 45. Electromagnets Distinguish between the design and use of permanent magnets and electromagnets Unlike bar magnets, which are permanent magnets, the magnetism of electromagnets can be turned on and off. Permanent magnet uses: 1. Needles of compasses. 2. Fridge door seals, holding the doors closed. 3. Loudspeakers and microphones.
  • 46. Electromagnets Distinguish between the design and use of permanent magnets and electromagnets Unlike bar magnets, which are permanent magnets, the magnetism of electromagnets can be turned on and off. Permanent magnet uses: 1. Needles of compasses. 2. Fridge door seals, holding the doors closed. 3. Loudspeakers and microphones. switch battery coil Soft iron core When a current flows through the coil it produces a magnetic field. This field is temporary and is lost when the current is switched off.
  • 47. Electromagnets Distinguish between the design and use of permanent magnets and electromagnets Unlike bar magnets, which are permanent magnets, the magnetism of electromagnets can be turned on and off. Permanent magnet uses: 1. Needles of compasses. 2. Fridge door seals, holding the doors closed. 3. Loudspeakers and microphones. switch battery coil Soft iron core When a current flows through the coil it produces a magnetic field. This field is temporary and is lost when the current is switched off. Strength increased by: - Increasing the current - Increasing number of turns
  • 48. Electromagnets Distinguish between the design and use of permanent magnets and electromagnets Unlike bar magnets, which are permanent magnets, the magnetism of electromagnets can be turned on and off. Permanent magnet uses: 1. Needles of compasses. 2. Fridge door seals, holding the doors closed. 3. Loudspeakers and microphones. switch battery coil Soft iron core When a current flows through the coil it produces a magnetic field. This field is temporary and is lost when the current is switched off. Strength increased by: - Increasing the current - Increasing number of turns Uses: scrapyard electromagnets, circuit breakers, relays, electric bells.
  • 51. LEARNING OBJECTIVES Core •Describe the forces between magnets, and between magnets and magnetic materials • Give an account of induced magnetism • Distinguish between magnetic and non- magnetic materials • Describe methods of magnetisation, to include stroking with a magnet, use of d.c. in a coil and hammering in a magnetic field • Draw the pattern of magnetic field lines around a bar magnet • Describe an experiment to identify the pattern of magnetic field lines, including the direction • Distinguish between the magnetic properties of soft iron and steel • Distinguish between the design and use of permanent magnets and electromagnets Supplement Explain that magnetic forces are due to interactions between magnetic fields • Describe methods of demagnetisation, to include hammering, heating and use of a.c. in a coil
  • 52. PHYSICS – Simple phenomena of magnetism