SlideShare a Scribd company logo
1 of 81
ORGANOMETALLIC CHEMISTRY
1. Introduction (types and rationale)
2. Molecular orbital (bonding) of CO, arrangement “in space”
or ligand types (hapticity)
3. 16 and 18 electron rule (learning to count)
4. Synthesis, steric effects and reactivity - Wilkinsons catalyst (part 1)
5. Characterisation IR nmr etc.
6. Applications (oxidative addition b elimination)
What is organometallic chemistry?
Chemistry: structures, bonding and properties of molecules.
Organometallic compounds: containing direct metal-carbon bonds.
Either s or p bonds can occur
Main group:
(AlMe3)2
 Structures
 s bonds and 3c-2e (or even 4c-2e) bonds
 Chem 210
 Synthesis
 the first M-C bond
 Reactivity
 nucleophilic and basic
 auxiliaries in organic synthesis
 source of organic groups for transition metals
 Strong preference for s-donor groups but Cp is often p-bound
(deceptively like with transition metals)
 Electropositive metals: often 3c-2e or 4c-2e hydrides/alkyls
Cp2Mg Cp2Fe
(Me3Al)2
(MeLi)4
As a Nucleophile
 Addition to polar C=X bonds
(C=O, C=N, CºN)
 Substitution at sp2 carbon
(often via addition)
R M
O
+
O
R
M
R M
O
OR'
+
O
OR'
R
M O
R
- MOR'
 Substitution at sp3 carbon does occur
but is far less easy and often has a multistep mechanism
 Substitution at other elements:
often easy for polar M-X bonds
(Si-Cl, B-OMe)
MeMgBr + B(OMe)3 BrMg
Me
OMe
B(OMe)2 MeOMgBr + MeB(OMe)2 Me3B
As a base
 More prominent in polar solvents think of free R- acting as base
 Elimination
mechanism can be more complex than this
 Metallation
chelate effect more important than inductive effect!
R M
H
X
+ RH + MX
R M
Me2N
H
Me2N
M
+ RH
 b-hydrogen transfer
mainly for Al:
for more electropositive elements, deprotonation
and nucleophilic attack
are faster
for less electropositive elements, often no reaction
Al H
O O
H
Al
Chemistry: structures, bonding and properties of molecules.
Transition metal compounds
Some compounds do not contain metal-carbon bond, but they are usually
included in the field of organometallic chemistry. They include:
• Metal hydride complexes, e.g.
• N2-complexes, e.g.
• Phosphine complexes, e.g.
In general, metals in
organometallic
compounds include:
• main group metals
• transition metals
• f-block metals
In this course,
transition metals are
our main concern.
Exercise. Which of the following compounds is an organometallic compound?
a)
OCH3
Ti
CH3O OCH3
OCH3
b)
NH3
Cu
H3N NH3
NH3
2+
Cl Pt
Cl
Cl
c) CH2
CH2
-
d)
O Pt O
O
O
Me
Li
Li
Li
Me
Me
Me
Li
e) Co
Co
Co
P
Co
P CO
CO
CO
CO
OC
OC
OC
OC
C O
C
O
Ph
Ph
f)
A brief history of organometallic chemistry
1) Organometallic Chemistry
has really been around for
millions of years
Naturally occurring
Cobalimins contain
Co—C bonds
Vitamin B12
2) Zeise’s Salt synthesized in 1827 = K[Pt(C2H4)Cl3] • H2O
Confirmed to have H2C=CH2 as a ligand in 1868
Structure not fully known until 1975
3) Ni(CO)4 synthesized in 1890
4) Grignard Reagents (XMgR) synthesized about
1900
Accidentally produced while trying to make other
compounds
Utility to Organic Synthesis recognized early on
5) Ferrocene synthesized in 1951
 Modern Organometallic
Chemistry begins with this
discovery (Paulson and Miller)
 1952 Fischer and Wilkinson
Nobel -Prize Winners related to the area:
Victor Grignard and Paul Sabatier (1912)
Grignard reagent
K. Ziegler, G. Natta (1963)
Zieglar-Natta catalyst
E. O. Fisher, G. Wilkinson (1973)
Sandwich compounds
K. B. Sharpless, R. Noyori (2001)
Hydrogenation and oxidation
Yves Chauvin, Robert H. Grubbs, Richard R. Schrock (2005) Metal-
catalyzed alkene metathesis
Common organometallic ligands
M H M C M C
C M M
H
H
M
H
X
M
M
M PR3
M CO M CNR
M CS M NO
M N2
M M M
M
M
M C
M C
Why organometallic chemistry ?
a). From practical point of view:
* OMC are useful for chemical synthesis, especially catalytic processes,
e.g. In production of fine chemicals
In production of chemicals in large-scale
reactions could not be achieved traditionally
* Organometallic chemistry is related to material sciences.
e.g. Organometallic Polymers
Pt C
PBu3
PBu3
C C C
n
Pt C
PBu3
PBu3
C C C
n
Small organometallic compounds:
Precursors to films for coating (MOCVD)
(h3-C3H5)2Pd -----> Pd film
CH3CC-Au-CNMe -----> Au film
Luminescent materials
* Biological Science. Organometallic chemistry may help us to
understand some enzyme-catalyzed reactions.
R
H
H
R
e.g. B12 catalyzed reactions.
b). From academic point of view:
* Organometallic compounds display many unexpected behaviors-
discover new chemistry- new structures e.g.
M
M
M
H
H
M
H
SiR3
M
M C M C
M
C C C C
H3N: M
New reactions, reagents, catalysts, e.g.
Ziegler-Natta catalyst, Wilkinson catalyst
Reppe reaction, Schwartz's reagent
Sharpless epoxidation, Tebbe's reagent
Types of bonds possible from Ligands
Language: All bonds are coordination or coordinative
Remember that all of these bonds are weaker than normal organic
bonds (they are dative bonds)
Simple ligands e.g. CH3
-, Cl-, H2 give s bonds
 systems are different e.g. CO is a s donor and p acceptor
Bridging ligands can occur two metals
Metal-metal bonds occur and are called d bonds – they are weak
and are a result of d-d orbital overlap
18 Electron Rule (Sidgwick, 1927)
• OM chemistry gives rise to many “stable” complexes - how can we
tell by a simple method
• Every element has a certain number of valence orbitals:
1 { 1s } for H
4 { ns, 3´np } for main group elements
9 { ns, 3´np, 5´(n-1)d } for transition metals
px
s py pz
dxz
dxy dx2-y2
dyz dz2
• Therefore, every element wants to be surrounded
by 2/8/18 electrons
– For main-group metals (8-e), this leads to the standard Lewis structure
rules
– For transition metals, we get the 18-electron rule
• Structures which have this preferred count are called
electron-precise
• Every orbital wants to be “used", i.e. contribute to binding an electron pair
The strength of the preference for electron-precise structures depends on the
position of the element in the periodic table
• For early transition metals, 18-e is often unattainable for steric reasons - the
required number of ligands would not fit
• For later transition metals, 16-e is often quite stable (square-planar d8
complexes)
• Addition of 2e- from 5th ligand converts complex to 5 CN 18e- , marginally
more stable
Predicting reactivity
(C2H4)2PdCl2 (C2H4)(CO)PdCl2
(C2H4)PdCl2
(C2H4)2(CO)PdCl2
?
CO
- C2H4
- C2H4
CO
dissociative
associative
Most likely associative
16 e
18 e
16 e
14 e
Cr(CO)6 Cr(CO)5(MeCN)
Cr(CO)5
Cr(CO)6(MeCN)
?
MeCN
- CO
- CO
MeCN
dissociative
associative
Predicting reactivity
Most likely dissociative
16 e
18 e 18 e
20 e (Sterics!)
N.B. How do you know a fragment forms a covalent or a dative bond?
• Chemists are "sloppy" in writing structures. A "line" can mean a
covalent bond, a dative bond, recognise/understand the bonding
first
• Use analogies ("PPh3 is similar to NH3").
• Rewrite the structure properly before you start counting.
Pd = 10
Cl¾ = 1
P® = 2
allyl = 3
+ ¾¾
e-count 16
Cl
Pd
PPh3
covalent
bond
dative
bond
"bond" to the
allyl fragment
Cl
Pd
PPh3
1 e 2 e
3 e
"Covalent" count: (ionic method also useful)
1. Number of valence electrons of central atom.
• from periodic table
2. Correct for charge, if any
• but only if the charge belongs to that atom!
3. Count 1 e for every covalent bond to another atom.
4. Count 2 e for every dative bond from another atom.
• no electrons for dative bonds to another atom!
5. Delocalized carbon fragments: usually 1 e per C (hapticity)
6. Three- and four-center bonds need special treatment
7. Add everything
N.B. Covalent Model:
18 = (# metal electrons + # ligand electrons) - complex charge
The number of metal electrons equals it's row number (i.e., Ti = 4e, Cr = 6 e,
Ni = 10 e)
Hapto (h) Number (hapticity)
For some molecules the molecular formula provides insufficient
information with which to classify the metal carbon interactions
The hapto number (h) gives the number of carbon (conjugated) atoms
bound to the metal
It normally, but not necessarily, gives the number of electrons contributed
by the ligand
We will describe to methods of counting electrons but we will
employ only one for the duration of this module
The two methods compared:
some examples
N.B. like oxidation state
assignments, electron
counting is a formalism and does
not necessarily reflect the
distribution of electrons in the
molecule – useful though
Some ligands donate the same
number of electrons
Number of d-electrons and
donation of the other ligands
can differ
Now we will look at practical
examples on the black board
Does it look reasonable ?
 Remember when counting:
 Odd electron counts are rare
 In reactions you nearly always go from even to even (or
odd to odd), and from n to n-2, n or n+2.
 Electrons don’t just “appear” or “disappear”
 The optimal count is 2/8/18 e. 16-e also occurs
frequently, other counts are much more rare.
Exceptions to the 18 Electron Rule
ZrCl2(C5H5)2 Zr(4) + [2 x Cl(1)] + [2 x C5H5(5)] =16
TaCl2Me3 Ta(5) + [2+ x Cl(1)] + [3 x M(1)] =10
WMe6 W(6) + [6 x Me(1)] =12
Pt(PPh3)3 Pt(10) + [3 x PPh3(2)] =16
IrCl(CO)(PPh3)2 Ir(9) + Cl(1) + CO(2) + [2 x PPh3(2)] =16
What features do these complexes possess?
• Early transition metals (Zr, Ta, W)
• Several bulky ligands (PPh3)
• Square planar d8 e.g. Pt(II), Ir(I)
• σ-donor ligands (Me)
Alkyl ligands:
Transition metal alkyl complexes important for catalysts e.g. olefin
polymerization and hydroformylation thermodynamic
Problem is their weak kinetic stability
(Thermally fine: M-C bond dissociation energies are typically 40-60
kcal/mol with 20-70 kcal/mol)
Simple alkyls are sigma donors, that can be considered to donate one or two
electrons to the metal center depending on which electron counting formalism
you use
Synthesis of Metal Alkyl Complexes
1. Metathetical exchange using a carbon nucleophile (R-). Common
reagents are RLi, RMgX (or R2Mg), ZnR2, AlR3, BR3, and PbR4. Much
of this alkylation chemistry can be understood with Pearson's "hard-
soft" principles
2. Metal-centered nucleophiles (i.e. using R+ as a reagent) Typical
examples are a metal anion and alkyl halide (or pseudohalogen). for
example:
NaFp + RX Fp-R + NaX [Fp = Cp(CO)2Fe]
3. Oxidative Addition. This requires a covalently unsaturated, low-
valent complex (16 e- or less). A classic example:
4. Insertion- To form an alkyl, this usually involves an olefin
insertion. The simplest generic example is the insertion of ethylene
into an M-X bond, i.e.
M-X + CH2CH2 M-CH2CH2-X
Carbonyl Complexes
Bonding of CO
Electron donation of the lone pair
on carbon s This electron
donation makes the metal more
electron rich - compensate for this
increased electron density, a filled
metal d-orbital may interact with
the empty p* orbital on the
carbonyl ligand
p-backbonding or p-
backdonation or synergistic
bonding
Similar for alkenes, acetylenes,
phosphines, and dihydrogen.
What stabilizes CO complexes is M→C π–bonding
The lower the formal charge on the metal ion the more willing it is to
donate electrons to the π–orbitals of the CO
Thus, metal ions with higher formal charges, e.g. Fe(II) form CO
complexes with much greater difficulty than do zero-valent metal ions
For example Cr(O) and Ni(O), or negatively charged metal ions such
as V(-I)
In general to get a feeling for stability examine the charges on the
metals
Syntheses of metal carbonyls
Metal carbonyls can be made in a variety of ways.
For Ni and Fe, the homoleptic or binary metal carbonyls can be made by the
direct interaction with the metal (Equation 1).
In other cases, a reduction of a metal precursor in the presence of CO (or using
CO as the reductant) is used (Equations 2-3).
Carbon monoxide also reacts with various metal complexes, most typically filling
a vacant coordination site (Equation 4) or performing a ligand substitution
reactions (Equation 5)
Occasionally, CO ligands are derived from the reaction of a coordinated ligand
through a deinsertion reaction (Equation 6)
Synthesis of carbonyl complexes
Direct reaction of the metal
– Not practical for all metals due to need for harsh
conditions (high P and T)
– Ni + 4CO Ni(CO)4
– Fe + 5CO Fe(CO)5
Reductive carbonylation
– Useful when very aggressive conditions would be
required for direct reaction of metal and CO
» Wide variety of reducing agents can be used
– CrCl3+ Al + 6CO  AlCl3 + Cr(CO)6
– 3Ru(acac)3 + H2 + 12CO  Ru3(CO)12 +
N.B. From the carbonyl complex we can synthesize other derivatives
Main characterization methods:
• Xray diffraction Þ (static) structure Þ bonding
• NMR Þ structure en dynamic behaviour
• EA Þ assessment of purity
• (calculations)
Useful on occasion:
• IR
• MS
• EPR
Not used much:
• GC
• LC
The υCO stretching frequency of the coordinated CO is very
informative
Recall that the stronger a bond gets, the higher its stretching
frequency
M=C=O (C=O is a double bond) canonical structure
Lower the υCO stretching frequency as compared to the M-C≡O
structure (triple bond)
Note: υCO for free CO is 2041 cm-1)
[Ti(CO)6]2- [V(CO)6]- [Cr(CO)6] [Mn(CO)6]+ [Fe(CO)6]2+
υCO 1748 1858 1984 2094 2204 cm-1
increasing M=C double
bonding
decreasing M=C double
bonding
IR spectra and metal-carbon bonds
Bridging CO groups can be regarded as having a double bond
C=O group, as compared to a terminal C≡O, which is more like a
triple bond:
M
M-C≡O C=O
M
~ triple bond
~ double bond
terminal carbonyl bridging carbonyl
(~ 1850-2125 cm-1) (~1700-1860 cm-1)
the C=O group
in a bridging
carbonyl is more
like the C=O in
a ketone, which
typically has
υC=O = 1750 cm-1
Bridging versus terminal carbonyls
Bridging CO between 1700 and 2200 cm-1
bridging
carbonyls
terminal
carbonyls
OC
Fe
OC
OC
C
C
Fe
CO
CO
CO
C
O
O
O
Bridging versus terminal carbonyls in [Fe2(CO)9]
Summary
1. As the CO bridges more metal centers its stretching
frequency drops – same for all p ligands
– More back donation
2. As the metal center becomes increasingly electron rich the stretching
frequency drops
Alkene ligands
Dewar-Chatt-Duncanson model
The greater the electron density
back-donated into the p* orbital on
the alkene, the greater the reduction
in the C=C bond order
Stability of alkene complexes also
depends on steric factors as well
An empirical ordering of relative
stability would be:
tetrasubstituted < trisubstituted <
trans-disubstituted < cis-
disubstituted < monosubstituted <
ethylene
Alkyne ligands:
Similar to alkenes
Alkynes tend to be more
electropositive-bind more
tightly to a transition metal
than alkenes -alkynes will
often displace alkenes
Difference is 2 or 4 electron
donor
sigma-type fashion (A) as
we did for alkenes,
including a pi-backbond (B)
The orthogonal set can also
bind in a pi-type fashion
using an orthogonal metal
d-orbital (C)
The back-donation to the antibonding orbital (D) is a delta-bond-the
degree of overlap is quite small - contribution of D to the bonding of
alkynes is minimal
The net effect p-donation - alkynes are usually non-linear
in TM complexes
Resonance depict the bonding of an alkyne.
I is the metallacyclopropene resonance form
Support for this versus a simple two electron donor, II,
can be inferred from the C-C bond distance as well the R-
C-C-R angles
III generally does not contribute to the bonding of alkyne
complexes.
Ally ligands:
Allyl ligands are ambidentate ligands that can bind in both a
monohapto and trihapto form The trihapto form can be expressed as
a number of difference resonance forms as shown here for an
unsubstituted allyl ligand: Important applications
Dihydrogen Ligands:
Metal is more electropositive than hydrogen
Hydrogen acts as a two electron sigma donor to the metal center.
The complex is an arrested intermediate in the oxidative addition of dihydrogen
How does this affect the oxidation state of the
meta?
Dihydrogen complexes Bonding is “simple” a 3C-2electron bond.
H2 - neutral two electron sigma donor
One could also describe a back-donation of electrons from a filled metal
orbital to the sigma-* orbital on the dihydrogen
Electronic Attributes of Phosphines
Like that of carbonyls
As electron-withdrawing sigma-donating capacity decreases
At the same time, the energy of the p-acceptor (sigma-*) on phosphorous is
lowered in energy, providing an increase in backbonding ability.
Therefore, range of each capabilities –tuning rough ordering -CO stretching
frequency indicator- low CO stretching frequency- greater backbonding to M
Experiments such as this permit us to come up with the following empirical
ordering:
Phosphine
Ligand
Cone
Angle
PH3 87o
PF3 104o
P(OMe)3 107o
PMe3 118o
PMe2Ph 122o
PEt3 132o
PPh3 145o
PCy3 170o
P(t-Bu)3 182o
P(mesityl)3 212o
Cone Angle (Tolman)
Steric hindrance:
A cone angle of 180 degrees -
effectively protects (or covers) one
half of the coordination sphere of
the metal complex
You would expect a dissociation event
to occur first before any other reaction
-steric bulk (rate is first order
-increasing size)
This will also have an effect on
activity for catalysts
N.B. “flat” can slide past each other
For example Wilkinson's catalyst
(more later)
Has a profound effect on the
reactivity!
Reaction chemistry of complexes
Three general forms:
1. Reactions involving the gain and loss of ligands
a. Ligand Dissoc. and Assoc. (Bala)
b. Oxidative Addition
c. Reductive Elimination
d. Nucleophillic displacement
2. Reactions involving modifications of the ligand
a. Insertion
b. Carbonyl insertion (alkyl migration)
c. Hydride elimination (equilibrium)
3. Catalytic processes by the complexes
Wilkinson, Monsanto
Carbon-carbon bond formation (Heck etc.)
a) Ligand dissociation/association (Bala)
• Electron count changes by -/+ 2
• No change in oxidation state
• Dissociation easiest if ligand stable on its own
(CO, olefin, phosphine, Cl-, ...)
• Steric factors important
M
Br
+ Br-
M
b) Oxidative Addition
Basic reaction:
• Electron count changes by +/- 2
(assuming the reactant was not yet coordinated)
• Oxidation state changes by +/- 2
• Mechanism may be complicated The new M-X and M-Y bonds are
formed using:
• the electron pair of the X-Y bond
• one metal-centered lone pair
LnM +
X
Y
LnM
X
Y
One reaction multiple mechanisms
Concerted addition, mostly with non-polar X-Y bonds
H2, silanes, alkanes, O2, ...
Arene C-H bonds more reactive than alkane C-H bonds (!)
Intermediate A is a s-complex
Reaction may stop here if metal-centered lone pairs
are not readily available
Final product expected to have cis X,Y groups
X
Y
LnM
X
Y
LnM + LnM
X
Y
A
Stepwise addition, with polar X-Y bonds
– HX, R3SnX, acyl and allyl halides, ...
– low-valent, electron-rich metal fragment (IrI, Pd(0), ...)
Metal initially acts as nucleophile
– Coordinative unsaturation less important
Ionic intermediate (B)
Final geometry (cis or trans) not easy to predict
Radical mechanism is also possible
X Y
LnM
B
LnM X Y LnM
X
Y
OC Ir Cl
PEt3
Et3P
OC Ir H
PEt3
Et3P
H
Cl
OC Ir I
PEt3
Et3P
H
Cl
OC Ir Cl
PEt3
Et3P
CH3
Br
Ir(I)
Ir(III)
Ir(III)
Ir(III)
H2
cis
cis
trans
HI
CH3Br
Cis or trans products depends on the mechanism
c) Reductive elimination
This is the reverse of oxidative addition - Expect cis elimination
Rate depends strongly on types of groups to be eliminated.
Usually easy for:
• H + alkyl / aryl / acyl
– H 1s orbital shape, c.f. insertion
• alkyl + acyl
– participation of acyl p-system
• SiR3 + alkyl etc
Often slow for:
• alkoxide + alkyl
• halide + alkyl
– thermodynamic reasons?
We will do a number of examples of this reaction
Complex Rate Constant (s-1) T(oC)
Pd
CH3
Ph3P
Ph3P CH3
Pd
CH3
MePh2P
MePh2P CH3
Pd
CH3
P
P CH3
Ph
Ph
Ph
Ph
1.04 x 10-3
60
60
80
9.62 x 10-5
4.78 x 10-7
Relative rates of reductive elimination
Most crowded is the fastest reaction
Pd
CH3
L
L CH3
+ solv
-L
Pd
CH3
L
solv CH3
RE
LPd(solv) + CH3 CH3
Special case:
Nucleophilic Attack on a Coordinated CO acyl anion
Fisher carbene
This is Fischer carbene It has a metal carbon double bond
Such species can be made for relatively electronegative
metal centers N.B. mid to late TMs
Fischer carbenes are susceptible to nucleophilic attack at
the carbon
Fischer carbenes act effectively as σ donors and p acceptors
The empty antibonding M=C  orbital is primarily on the carbon making it
susceptible to attack by nucleophiles
Other type is called a Shrock carbene (alkylidene)
Characteristic Fischer-type Schrock-type
Typical metal (Ox.
State)
Middle to late T.M.
Fe(0), Mo(0) Cr(0)
Early T.M.
Ti(IV), Ta(V)
Substituents
attached to carbene
carbon
At least one highly
electronegative
heteroatom
H or alkyl
Typical other
ligands
Good p acceptors Good s and p
donors
Electron count 18 10-18
Nucleophilic displacement
Ligand displacement can be described as nucleophilic substitutions
O.M. complexes with negative charges can behave as nucleophiles
in displacement reactions Iron tetracarbonyl (anion) is very useful
RX
R
[Fe(CO)4]2-
[ Fe(CO)4]-
CO
H+
O
X
R
[ Fe(CO)4]-
R
O
H+
O
H
R
R H
O
X
R
X2
O2
R'X O
OH
R
O
R'
R
Modifications of the ligand
a) Insertion reactions
Migratory insertion!
The ligands involved must be cis - Electron count changes by -/+ 2
No change in oxidation state
If at a metal centre you have a s-bound group (hydride, alkyl, aryl)
a ligand containing a p-system (olefin, alkyne, CO) the s-bound
group can migrate to the p-system
1. CO, RNC (isonitriles): 1,1-insertion
2. Olefins: 1,2-insertion, b-elimination
M
R
M
R
M
R
CO
M
O
R
1,1 1,2
1,1 Insertion
The s-bound group migrates to the p-system
if you only see the result, it looks like the p-system has inserted into the M-X
bond, hence the name insertion
To emphasize that it is actually (mostly) the X group that moves, we use the
term migratory insertion (Both possible tutorial)
The reverse of insertion is called elimination
Insertion reduces the electron count, elimination increases it
Neither insertion nor elimination causes a change in oxidation state
a- elimination can release the “new” substrate or compound
In a 1,1-insertion, metal and X group "move" to the same atom of the inserting
substrate.
The metal-bound substrate atom increases its valence
CO, isonitriles (RNC) and SO2 often undergo 1,1-insertion
1,2 insertion (olefins)
Insertion of an olefin in a metal-alkyl bond produces a new alkyl
Thus, the reaction leads to oligomers or polymers of the olefin
• polyethene (polythene)
• polypropene
M
Me
SO2
M
S Me
O O
M
Me
CO
M
Me
O
M
R
M
R
M
R
M
R
Standard Cossee mechanism
Why do olefins polymerise?
Driving force: conversion of a p-bond into a s-bond
One C=C bond: 150 kcal/mol
Two C-C bonds: 2´85 = 170 kcal/mol
Energy release: about 20 kcal per mole of monomer
(independent of mechanism)
Many polymerization mechanisms
Radical (ethene, dienes, styrene, acrylates)
Cationic (styrene, isobutene)
Anionic (styrene, dienes, acrylates)
Transition-metal catalyzed (a-olefins, dienes, styrene)
Two examples
b Hydride elimination (usually by b hydrogens)
Many transition metal alkyls are unstable (the reverse of insertion)
the metal carbon bond is weak compared to a metal hydrogen
Bond Alkyl groups with β hydrogen tend to undergo β elimination
M -CH2-CH3  M - H + CH2=CH2
To prevent beta-elimination from taking place, one can use alkyls that:
Do not contain beta-hydrogens
Are oriented so that the beta position can not access the metal center
Would give an unstable alkene as the product
A four-center transition state in which the hydride is transferred to the metal
An important prerequisite for beta-hydride elimination is the presence of an
open coordination site on the metal complex - no open site is available - displace
a ligand metal complex will usually have less than 18 electrons, otherwise a 20
electron olefin-hydride would be the immediate product.
Catalysis (homogeneous)
Reduction of alkenes etc.
The size of the substrate has an effect on the rate of reaction
Same reaction different catalyst
Alternative starting material
The Monsanto acetic acid process
Methanol - reacted with carbon monoxide in the presence of a catalyst to afford
acetic acid
Insertion of carbon monoxide into the C-O bond of methanol
The catalyst system - iodide and rhodium
Iodide promotes the conversion of methanol to methyl iodide,
Methyl iodide - the catalytic cycle begins:
1. Oxidative addition of methyl iodide to [Rh(CO)2I2]-
2. Coordination and insertion of CO - intermediate 18-electron acyl complex
3. Can then undergo reductive elimination to yield acetyl iodide and regenerate
our catalyst
Catvia Process
Wacker process (identify the steps)
Identify the steps

More Related Content

Similar to Organometallic-Chemistry.ppt

Organometallics Lecture ppt 28.10.2022.pdf
Organometallics Lecture ppt 28.10.2022.pdfOrganometallics Lecture ppt 28.10.2022.pdf
Organometallics Lecture ppt 28.10.2022.pdfShinChanYT4
 
Bonding in Metal Carbonyls.pdf
Bonding in Metal Carbonyls.pdfBonding in Metal Carbonyls.pdf
Bonding in Metal Carbonyls.pdfSpaceTime6
 
Organometallic Compounds_Notes.pdf sem 4
Organometallic Compounds_Notes.pdf sem 4Organometallic Compounds_Notes.pdf sem 4
Organometallic Compounds_Notes.pdf sem 4jyothisaisri
 
Molecular orbital theory
Molecular orbital theoryMolecular orbital theory
Molecular orbital theoryPallavi Kumbhar
 
week2-d3-Introduction to Bonding.pdf
week2-d3-Introduction to Bonding.pdfweek2-d3-Introduction to Bonding.pdf
week2-d3-Introduction to Bonding.pdfIvyJoyceBuan2
 
1 - Organometallic Chemistry.ppt
1 - Organometallic Chemistry.ppt1 - Organometallic Chemistry.ppt
1 - Organometallic Chemistry.pptMaiMostafa61
 
Bonding in Coordination Compounds
Bonding in Coordination CompoundsBonding in Coordination Compounds
Bonding in Coordination CompoundsChris Sonntag
 
Cyclopentadiene-TM, Ferrocene complex .pdf
Cyclopentadiene-TM, Ferrocene complex  .pdfCyclopentadiene-TM, Ferrocene complex  .pdf
Cyclopentadiene-TM, Ferrocene complex .pdfDivyaK787011
 
PPSC Electrochemistry.ppt
PPSC Electrochemistry.pptPPSC Electrochemistry.ppt
PPSC Electrochemistry.pptIqraRubab9
 
Periodic classification of elements -One Shot.pdf
Periodic classification of elements -One Shot.pdfPeriodic classification of elements -One Shot.pdf
Periodic classification of elements -One Shot.pdfjeevisu017
 
Transition Elements
Transition ElementsTransition Elements
Transition ElementsBernard Ng
 
Molecular Orbital Theory (MOT)
Molecular Orbital Theory  (MOT)Molecular Orbital Theory  (MOT)
Molecular Orbital Theory (MOT)Shivaji Burungale
 
All chapters of engineering chemistry
All chapters of engineering chemistryAll chapters of engineering chemistry
All chapters of engineering chemistryavancedlerner
 
Electrochemistry
ElectrochemistryElectrochemistry
ElectrochemistryBernard Ng
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistrybernard_ng
 

Similar to Organometallic-Chemistry.ppt (20)

Organometallics Lecture ppt 28.10.2022.pdf
Organometallics Lecture ppt 28.10.2022.pdfOrganometallics Lecture ppt 28.10.2022.pdf
Organometallics Lecture ppt 28.10.2022.pdf
 
Bonding in Metal Carbonyls.pdf
Bonding in Metal Carbonyls.pdfBonding in Metal Carbonyls.pdf
Bonding in Metal Carbonyls.pdf
 
Organometallic Compounds_Notes.pdf sem 4
Organometallic Compounds_Notes.pdf sem 4Organometallic Compounds_Notes.pdf sem 4
Organometallic Compounds_Notes.pdf sem 4
 
Organometallic compounds
Organometallic compoundsOrganometallic compounds
Organometallic compounds
 
Molecular orbital theory
Molecular orbital theoryMolecular orbital theory
Molecular orbital theory
 
week2-d3-Introduction to Bonding.pdf
week2-d3-Introduction to Bonding.pdfweek2-d3-Introduction to Bonding.pdf
week2-d3-Introduction to Bonding.pdf
 
Jif 419 webex1
Jif 419 webex1Jif 419 webex1
Jif 419 webex1
 
1 - Organometallic Chemistry.ppt
1 - Organometallic Chemistry.ppt1 - Organometallic Chemistry.ppt
1 - Organometallic Chemistry.ppt
 
Bonding in Coordination Compounds
Bonding in Coordination CompoundsBonding in Coordination Compounds
Bonding in Coordination Compounds
 
Coordination notes
Coordination notesCoordination notes
Coordination notes
 
Cyclopentadiene-TM, Ferrocene complex .pdf
Cyclopentadiene-TM, Ferrocene complex  .pdfCyclopentadiene-TM, Ferrocene complex  .pdf
Cyclopentadiene-TM, Ferrocene complex .pdf
 
PPSC Electrochemistry.ppt
PPSC Electrochemistry.pptPPSC Electrochemistry.ppt
PPSC Electrochemistry.ppt
 
Molecular Orbital Theory
Molecular Orbital Theory  Molecular Orbital Theory
Molecular Orbital Theory
 
Periodic classification of elements -One Shot.pdf
Periodic classification of elements -One Shot.pdfPeriodic classification of elements -One Shot.pdf
Periodic classification of elements -One Shot.pdf
 
Transition metals
Transition metalsTransition metals
Transition metals
 
Transition Elements
Transition ElementsTransition Elements
Transition Elements
 
Molecular Orbital Theory (MOT)
Molecular Orbital Theory  (MOT)Molecular Orbital Theory  (MOT)
Molecular Orbital Theory (MOT)
 
All chapters of engineering chemistry
All chapters of engineering chemistryAll chapters of engineering chemistry
All chapters of engineering chemistry
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 

More from Jabir Hussain

watersampling-170819224908.pptx
watersampling-170819224908.pptxwatersampling-170819224908.pptx
watersampling-170819224908.pptxJabir Hussain
 
4_2022_09_14!11_26_26_PM.ppt
4_2022_09_14!11_26_26_PM.ppt4_2022_09_14!11_26_26_PM.ppt
4_2022_09_14!11_26_26_PM.pptJabir Hussain
 
Radiactive process.pptx
Radiactive process.pptxRadiactive process.pptx
Radiactive process.pptxJabir Hussain
 
2_2_Radioactivity_web.ppt
2_2_Radioactivity_web.ppt2_2_Radioactivity_web.ppt
2_2_Radioactivity_web.pptJabir Hussain
 
airsamplingmethod-170601114240.pptx
airsamplingmethod-170601114240.pptxairsamplingmethod-170601114240.pptx
airsamplingmethod-170601114240.pptxJabir Hussain
 
structure based drug design ppt
structure based drug design pptstructure based drug design ppt
structure based drug design pptJabir Hussain
 
Research methodology ch-1 presentation.pptx
Research methodology ch-1 presentation.pptxResearch methodology ch-1 presentation.pptx
Research methodology ch-1 presentation.pptxJabir Hussain
 
Prodrugs - concept & Applications concept
Prodrugs - concept & Applications concept Prodrugs - concept & Applications concept
Prodrugs - concept & Applications concept Jabir Hussain
 
Specimen-collection-presentation.pptx
Specimen-collection-presentation.pptxSpecimen-collection-presentation.pptx
Specimen-collection-presentation.pptxJabir Hussain
 
immunoassays by jabir Hussain
immunoassays by jabir Hussain immunoassays by jabir Hussain
immunoassays by jabir Hussain Jabir Hussain
 
4-Biosynthesis of Terp-Steroid.pdf
4-Biosynthesis of Terp-Steroid.pdf4-Biosynthesis of Terp-Steroid.pdf
4-Biosynthesis of Terp-Steroid.pdfJabir Hussain
 

More from Jabir Hussain (13)

chromatography.pptx
chromatography.pptxchromatography.pptx
chromatography.pptx
 
watersampling-170819224908.pptx
watersampling-170819224908.pptxwatersampling-170819224908.pptx
watersampling-170819224908.pptx
 
4_2022_09_14!11_26_26_PM.ppt
4_2022_09_14!11_26_26_PM.ppt4_2022_09_14!11_26_26_PM.ppt
4_2022_09_14!11_26_26_PM.ppt
 
Radiactive process.pptx
Radiactive process.pptxRadiactive process.pptx
Radiactive process.pptx
 
2_2_Radioactivity_web.ppt
2_2_Radioactivity_web.ppt2_2_Radioactivity_web.ppt
2_2_Radioactivity_web.ppt
 
Nuclear PP.ppt
Nuclear PP.pptNuclear PP.ppt
Nuclear PP.ppt
 
airsamplingmethod-170601114240.pptx
airsamplingmethod-170601114240.pptxairsamplingmethod-170601114240.pptx
airsamplingmethod-170601114240.pptx
 
structure based drug design ppt
structure based drug design pptstructure based drug design ppt
structure based drug design ppt
 
Research methodology ch-1 presentation.pptx
Research methodology ch-1 presentation.pptxResearch methodology ch-1 presentation.pptx
Research methodology ch-1 presentation.pptx
 
Prodrugs - concept & Applications concept
Prodrugs - concept & Applications concept Prodrugs - concept & Applications concept
Prodrugs - concept & Applications concept
 
Specimen-collection-presentation.pptx
Specimen-collection-presentation.pptxSpecimen-collection-presentation.pptx
Specimen-collection-presentation.pptx
 
immunoassays by jabir Hussain
immunoassays by jabir Hussain immunoassays by jabir Hussain
immunoassays by jabir Hussain
 
4-Biosynthesis of Terp-Steroid.pdf
4-Biosynthesis of Terp-Steroid.pdf4-Biosynthesis of Terp-Steroid.pdf
4-Biosynthesis of Terp-Steroid.pdf
 

Recently uploaded

Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 

Recently uploaded (20)

Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 

Organometallic-Chemistry.ppt

  • 1. ORGANOMETALLIC CHEMISTRY 1. Introduction (types and rationale) 2. Molecular orbital (bonding) of CO, arrangement “in space” or ligand types (hapticity) 3. 16 and 18 electron rule (learning to count) 4. Synthesis, steric effects and reactivity - Wilkinsons catalyst (part 1) 5. Characterisation IR nmr etc. 6. Applications (oxidative addition b elimination)
  • 2. What is organometallic chemistry? Chemistry: structures, bonding and properties of molecules. Organometallic compounds: containing direct metal-carbon bonds. Either s or p bonds can occur Main group: (AlMe3)2
  • 3.  Structures  s bonds and 3c-2e (or even 4c-2e) bonds  Chem 210  Synthesis  the first M-C bond  Reactivity  nucleophilic and basic  auxiliaries in organic synthesis  source of organic groups for transition metals
  • 4.  Strong preference for s-donor groups but Cp is often p-bound (deceptively like with transition metals)  Electropositive metals: often 3c-2e or 4c-2e hydrides/alkyls Cp2Mg Cp2Fe (Me3Al)2 (MeLi)4
  • 5. As a Nucleophile  Addition to polar C=X bonds (C=O, C=N, CºN)  Substitution at sp2 carbon (often via addition) R M O + O R M R M O OR' + O OR' R M O R - MOR'
  • 6.  Substitution at sp3 carbon does occur but is far less easy and often has a multistep mechanism  Substitution at other elements: often easy for polar M-X bonds (Si-Cl, B-OMe) MeMgBr + B(OMe)3 BrMg Me OMe B(OMe)2 MeOMgBr + MeB(OMe)2 Me3B
  • 7. As a base  More prominent in polar solvents think of free R- acting as base  Elimination mechanism can be more complex than this  Metallation chelate effect more important than inductive effect! R M H X + RH + MX R M Me2N H Me2N M + RH
  • 8.  b-hydrogen transfer mainly for Al: for more electropositive elements, deprotonation and nucleophilic attack are faster for less electropositive elements, often no reaction Al H O O H Al
  • 9. Chemistry: structures, bonding and properties of molecules. Transition metal compounds
  • 10. Some compounds do not contain metal-carbon bond, but they are usually included in the field of organometallic chemistry. They include: • Metal hydride complexes, e.g. • N2-complexes, e.g. • Phosphine complexes, e.g.
  • 11. In general, metals in organometallic compounds include: • main group metals • transition metals • f-block metals In this course, transition metals are our main concern. Exercise. Which of the following compounds is an organometallic compound? a) OCH3 Ti CH3O OCH3 OCH3 b) NH3 Cu H3N NH3 NH3 2+ Cl Pt Cl Cl c) CH2 CH2 - d) O Pt O O O Me Li Li Li Me Me Me Li e) Co Co Co P Co P CO CO CO CO OC OC OC OC C O C O Ph Ph f)
  • 12. A brief history of organometallic chemistry 1) Organometallic Chemistry has really been around for millions of years Naturally occurring Cobalimins contain Co—C bonds Vitamin B12
  • 13. 2) Zeise’s Salt synthesized in 1827 = K[Pt(C2H4)Cl3] • H2O Confirmed to have H2C=CH2 as a ligand in 1868 Structure not fully known until 1975 3) Ni(CO)4 synthesized in 1890 4) Grignard Reagents (XMgR) synthesized about 1900 Accidentally produced while trying to make other compounds Utility to Organic Synthesis recognized early on 5) Ferrocene synthesized in 1951  Modern Organometallic Chemistry begins with this discovery (Paulson and Miller)  1952 Fischer and Wilkinson
  • 14. Nobel -Prize Winners related to the area: Victor Grignard and Paul Sabatier (1912) Grignard reagent K. Ziegler, G. Natta (1963) Zieglar-Natta catalyst E. O. Fisher, G. Wilkinson (1973) Sandwich compounds K. B. Sharpless, R. Noyori (2001) Hydrogenation and oxidation Yves Chauvin, Robert H. Grubbs, Richard R. Schrock (2005) Metal- catalyzed alkene metathesis
  • 15. Common organometallic ligands M H M C M C C M M H H M H X M M M PR3 M CO M CNR M CS M NO M N2 M M M M M M C M C
  • 16. Why organometallic chemistry ? a). From practical point of view: * OMC are useful for chemical synthesis, especially catalytic processes, e.g. In production of fine chemicals In production of chemicals in large-scale reactions could not be achieved traditionally
  • 17. * Organometallic chemistry is related to material sciences. e.g. Organometallic Polymers Pt C PBu3 PBu3 C C C n Pt C PBu3 PBu3 C C C n Small organometallic compounds: Precursors to films for coating (MOCVD) (h3-C3H5)2Pd -----> Pd film CH3CC-Au-CNMe -----> Au film Luminescent materials
  • 18. * Biological Science. Organometallic chemistry may help us to understand some enzyme-catalyzed reactions. R H H R e.g. B12 catalyzed reactions.
  • 19. b). From academic point of view: * Organometallic compounds display many unexpected behaviors- discover new chemistry- new structures e.g. M M M H H M H SiR3 M M C M C M C C C C H3N: M New reactions, reagents, catalysts, e.g. Ziegler-Natta catalyst, Wilkinson catalyst Reppe reaction, Schwartz's reagent Sharpless epoxidation, Tebbe's reagent
  • 20. Types of bonds possible from Ligands Language: All bonds are coordination or coordinative Remember that all of these bonds are weaker than normal organic bonds (they are dative bonds) Simple ligands e.g. CH3 -, Cl-, H2 give s bonds  systems are different e.g. CO is a s donor and p acceptor Bridging ligands can occur two metals Metal-metal bonds occur and are called d bonds – they are weak and are a result of d-d orbital overlap
  • 21. 18 Electron Rule (Sidgwick, 1927) • OM chemistry gives rise to many “stable” complexes - how can we tell by a simple method • Every element has a certain number of valence orbitals: 1 { 1s } for H 4 { ns, 3´np } for main group elements 9 { ns, 3´np, 5´(n-1)d } for transition metals px s py pz dxz dxy dx2-y2 dyz dz2
  • 22. • Therefore, every element wants to be surrounded by 2/8/18 electrons – For main-group metals (8-e), this leads to the standard Lewis structure rules – For transition metals, we get the 18-electron rule • Structures which have this preferred count are called electron-precise • Every orbital wants to be “used", i.e. contribute to binding an electron pair The strength of the preference for electron-precise structures depends on the position of the element in the periodic table • For early transition metals, 18-e is often unattainable for steric reasons - the required number of ligands would not fit • For later transition metals, 16-e is often quite stable (square-planar d8 complexes) • Addition of 2e- from 5th ligand converts complex to 5 CN 18e- , marginally more stable
  • 23. Predicting reactivity (C2H4)2PdCl2 (C2H4)(CO)PdCl2 (C2H4)PdCl2 (C2H4)2(CO)PdCl2 ? CO - C2H4 - C2H4 CO dissociative associative Most likely associative 16 e 18 e 16 e 14 e
  • 24. Cr(CO)6 Cr(CO)5(MeCN) Cr(CO)5 Cr(CO)6(MeCN) ? MeCN - CO - CO MeCN dissociative associative Predicting reactivity Most likely dissociative 16 e 18 e 18 e 20 e (Sterics!)
  • 25. N.B. How do you know a fragment forms a covalent or a dative bond? • Chemists are "sloppy" in writing structures. A "line" can mean a covalent bond, a dative bond, recognise/understand the bonding first • Use analogies ("PPh3 is similar to NH3"). • Rewrite the structure properly before you start counting. Pd = 10 Cl¾ = 1 P® = 2 allyl = 3 + ¾¾ e-count 16 Cl Pd PPh3 covalent bond dative bond "bond" to the allyl fragment Cl Pd PPh3 1 e 2 e 3 e
  • 26. "Covalent" count: (ionic method also useful) 1. Number of valence electrons of central atom. • from periodic table 2. Correct for charge, if any • but only if the charge belongs to that atom! 3. Count 1 e for every covalent bond to another atom. 4. Count 2 e for every dative bond from another atom. • no electrons for dative bonds to another atom! 5. Delocalized carbon fragments: usually 1 e per C (hapticity) 6. Three- and four-center bonds need special treatment 7. Add everything N.B. Covalent Model: 18 = (# metal electrons + # ligand electrons) - complex charge The number of metal electrons equals it's row number (i.e., Ti = 4e, Cr = 6 e, Ni = 10 e)
  • 27.
  • 28. Hapto (h) Number (hapticity) For some molecules the molecular formula provides insufficient information with which to classify the metal carbon interactions The hapto number (h) gives the number of carbon (conjugated) atoms bound to the metal It normally, but not necessarily, gives the number of electrons contributed by the ligand We will describe to methods of counting electrons but we will employ only one for the duration of this module
  • 29. The two methods compared: some examples N.B. like oxidation state assignments, electron counting is a formalism and does not necessarily reflect the distribution of electrons in the molecule – useful though Some ligands donate the same number of electrons Number of d-electrons and donation of the other ligands can differ Now we will look at practical examples on the black board
  • 30. Does it look reasonable ?  Remember when counting:  Odd electron counts are rare  In reactions you nearly always go from even to even (or odd to odd), and from n to n-2, n or n+2.  Electrons don’t just “appear” or “disappear”  The optimal count is 2/8/18 e. 16-e also occurs frequently, other counts are much more rare.
  • 31. Exceptions to the 18 Electron Rule ZrCl2(C5H5)2 Zr(4) + [2 x Cl(1)] + [2 x C5H5(5)] =16 TaCl2Me3 Ta(5) + [2+ x Cl(1)] + [3 x M(1)] =10 WMe6 W(6) + [6 x Me(1)] =12 Pt(PPh3)3 Pt(10) + [3 x PPh3(2)] =16 IrCl(CO)(PPh3)2 Ir(9) + Cl(1) + CO(2) + [2 x PPh3(2)] =16 What features do these complexes possess? • Early transition metals (Zr, Ta, W) • Several bulky ligands (PPh3) • Square planar d8 e.g. Pt(II), Ir(I) • σ-donor ligands (Me)
  • 32. Alkyl ligands: Transition metal alkyl complexes important for catalysts e.g. olefin polymerization and hydroformylation thermodynamic Problem is their weak kinetic stability (Thermally fine: M-C bond dissociation energies are typically 40-60 kcal/mol with 20-70 kcal/mol) Simple alkyls are sigma donors, that can be considered to donate one or two electrons to the metal center depending on which electron counting formalism you use
  • 33. Synthesis of Metal Alkyl Complexes 1. Metathetical exchange using a carbon nucleophile (R-). Common reagents are RLi, RMgX (or R2Mg), ZnR2, AlR3, BR3, and PbR4. Much of this alkylation chemistry can be understood with Pearson's "hard- soft" principles
  • 34. 2. Metal-centered nucleophiles (i.e. using R+ as a reagent) Typical examples are a metal anion and alkyl halide (or pseudohalogen). for example: NaFp + RX Fp-R + NaX [Fp = Cp(CO)2Fe] 3. Oxidative Addition. This requires a covalently unsaturated, low- valent complex (16 e- or less). A classic example: 4. Insertion- To form an alkyl, this usually involves an olefin insertion. The simplest generic example is the insertion of ethylene into an M-X bond, i.e. M-X + CH2CH2 M-CH2CH2-X
  • 35. Carbonyl Complexes Bonding of CO Electron donation of the lone pair on carbon s This electron donation makes the metal more electron rich - compensate for this increased electron density, a filled metal d-orbital may interact with the empty p* orbital on the carbonyl ligand p-backbonding or p- backdonation or synergistic bonding Similar for alkenes, acetylenes, phosphines, and dihydrogen.
  • 36. What stabilizes CO complexes is M→C π–bonding The lower the formal charge on the metal ion the more willing it is to donate electrons to the π–orbitals of the CO Thus, metal ions with higher formal charges, e.g. Fe(II) form CO complexes with much greater difficulty than do zero-valent metal ions For example Cr(O) and Ni(O), or negatively charged metal ions such as V(-I) In general to get a feeling for stability examine the charges on the metals
  • 37. Syntheses of metal carbonyls Metal carbonyls can be made in a variety of ways. For Ni and Fe, the homoleptic or binary metal carbonyls can be made by the direct interaction with the metal (Equation 1). In other cases, a reduction of a metal precursor in the presence of CO (or using CO as the reductant) is used (Equations 2-3). Carbon monoxide also reacts with various metal complexes, most typically filling a vacant coordination site (Equation 4) or performing a ligand substitution reactions (Equation 5) Occasionally, CO ligands are derived from the reaction of a coordinated ligand through a deinsertion reaction (Equation 6)
  • 38. Synthesis of carbonyl complexes Direct reaction of the metal – Not practical for all metals due to need for harsh conditions (high P and T) – Ni + 4CO Ni(CO)4 – Fe + 5CO Fe(CO)5 Reductive carbonylation – Useful when very aggressive conditions would be required for direct reaction of metal and CO » Wide variety of reducing agents can be used – CrCl3+ Al + 6CO  AlCl3 + Cr(CO)6 – 3Ru(acac)3 + H2 + 12CO  Ru3(CO)12 +
  • 39. N.B. From the carbonyl complex we can synthesize other derivatives
  • 40. Main characterization methods: • Xray diffraction Þ (static) structure Þ bonding • NMR Þ structure en dynamic behaviour • EA Þ assessment of purity • (calculations) Useful on occasion: • IR • MS • EPR Not used much: • GC • LC
  • 41. The υCO stretching frequency of the coordinated CO is very informative Recall that the stronger a bond gets, the higher its stretching frequency M=C=O (C=O is a double bond) canonical structure Lower the υCO stretching frequency as compared to the M-C≡O structure (triple bond) Note: υCO for free CO is 2041 cm-1) [Ti(CO)6]2- [V(CO)6]- [Cr(CO)6] [Mn(CO)6]+ [Fe(CO)6]2+ υCO 1748 1858 1984 2094 2204 cm-1 increasing M=C double bonding decreasing M=C double bonding IR spectra and metal-carbon bonds
  • 42. Bridging CO groups can be regarded as having a double bond C=O group, as compared to a terminal C≡O, which is more like a triple bond: M M-C≡O C=O M ~ triple bond ~ double bond terminal carbonyl bridging carbonyl (~ 1850-2125 cm-1) (~1700-1860 cm-1) the C=O group in a bridging carbonyl is more like the C=O in a ketone, which typically has υC=O = 1750 cm-1 Bridging versus terminal carbonyls Bridging CO between 1700 and 2200 cm-1
  • 44. Summary 1. As the CO bridges more metal centers its stretching frequency drops – same for all p ligands – More back donation
  • 45. 2. As the metal center becomes increasingly electron rich the stretching frequency drops
  • 46. Alkene ligands Dewar-Chatt-Duncanson model The greater the electron density back-donated into the p* orbital on the alkene, the greater the reduction in the C=C bond order Stability of alkene complexes also depends on steric factors as well An empirical ordering of relative stability would be: tetrasubstituted < trisubstituted < trans-disubstituted < cis- disubstituted < monosubstituted < ethylene
  • 47. Alkyne ligands: Similar to alkenes Alkynes tend to be more electropositive-bind more tightly to a transition metal than alkenes -alkynes will often displace alkenes Difference is 2 or 4 electron donor sigma-type fashion (A) as we did for alkenes, including a pi-backbond (B) The orthogonal set can also bind in a pi-type fashion using an orthogonal metal d-orbital (C)
  • 48. The back-donation to the antibonding orbital (D) is a delta-bond-the degree of overlap is quite small - contribution of D to the bonding of alkynes is minimal The net effect p-donation - alkynes are usually non-linear in TM complexes Resonance depict the bonding of an alkyne. I is the metallacyclopropene resonance form Support for this versus a simple two electron donor, II, can be inferred from the C-C bond distance as well the R- C-C-R angles III generally does not contribute to the bonding of alkyne complexes.
  • 49. Ally ligands: Allyl ligands are ambidentate ligands that can bind in both a monohapto and trihapto form The trihapto form can be expressed as a number of difference resonance forms as shown here for an unsubstituted allyl ligand: Important applications
  • 50. Dihydrogen Ligands: Metal is more electropositive than hydrogen Hydrogen acts as a two electron sigma donor to the metal center. The complex is an arrested intermediate in the oxidative addition of dihydrogen How does this affect the oxidation state of the meta?
  • 51. Dihydrogen complexes Bonding is “simple” a 3C-2electron bond. H2 - neutral two electron sigma donor One could also describe a back-donation of electrons from a filled metal orbital to the sigma-* orbital on the dihydrogen
  • 52. Electronic Attributes of Phosphines Like that of carbonyls As electron-withdrawing sigma-donating capacity decreases At the same time, the energy of the p-acceptor (sigma-*) on phosphorous is lowered in energy, providing an increase in backbonding ability. Therefore, range of each capabilities –tuning rough ordering -CO stretching frequency indicator- low CO stretching frequency- greater backbonding to M Experiments such as this permit us to come up with the following empirical ordering:
  • 53.
  • 54. Phosphine Ligand Cone Angle PH3 87o PF3 104o P(OMe)3 107o PMe3 118o PMe2Ph 122o PEt3 132o PPh3 145o PCy3 170o P(t-Bu)3 182o P(mesityl)3 212o Cone Angle (Tolman) Steric hindrance: A cone angle of 180 degrees - effectively protects (or covers) one half of the coordination sphere of the metal complex
  • 55. You would expect a dissociation event to occur first before any other reaction -steric bulk (rate is first order -increasing size) This will also have an effect on activity for catalysts N.B. “flat” can slide past each other For example Wilkinson's catalyst (more later) Has a profound effect on the reactivity!
  • 56. Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. Oxidative Addition c. Reductive Elimination d. Nucleophillic displacement 2. Reactions involving modifications of the ligand a. Insertion b. Carbonyl insertion (alkyl migration) c. Hydride elimination (equilibrium) 3. Catalytic processes by the complexes Wilkinson, Monsanto Carbon-carbon bond formation (Heck etc.)
  • 57. a) Ligand dissociation/association (Bala) • Electron count changes by -/+ 2 • No change in oxidation state • Dissociation easiest if ligand stable on its own (CO, olefin, phosphine, Cl-, ...) • Steric factors important M Br + Br- M
  • 58. b) Oxidative Addition Basic reaction: • Electron count changes by +/- 2 (assuming the reactant was not yet coordinated) • Oxidation state changes by +/- 2 • Mechanism may be complicated The new M-X and M-Y bonds are formed using: • the electron pair of the X-Y bond • one metal-centered lone pair LnM + X Y LnM X Y
  • 59. One reaction multiple mechanisms Concerted addition, mostly with non-polar X-Y bonds H2, silanes, alkanes, O2, ... Arene C-H bonds more reactive than alkane C-H bonds (!) Intermediate A is a s-complex Reaction may stop here if metal-centered lone pairs are not readily available Final product expected to have cis X,Y groups X Y LnM X Y LnM + LnM X Y A
  • 60. Stepwise addition, with polar X-Y bonds – HX, R3SnX, acyl and allyl halides, ... – low-valent, electron-rich metal fragment (IrI, Pd(0), ...) Metal initially acts as nucleophile – Coordinative unsaturation less important Ionic intermediate (B) Final geometry (cis or trans) not easy to predict Radical mechanism is also possible X Y LnM B LnM X Y LnM X Y
  • 61. OC Ir Cl PEt3 Et3P OC Ir H PEt3 Et3P H Cl OC Ir I PEt3 Et3P H Cl OC Ir Cl PEt3 Et3P CH3 Br Ir(I) Ir(III) Ir(III) Ir(III) H2 cis cis trans HI CH3Br Cis or trans products depends on the mechanism
  • 62. c) Reductive elimination This is the reverse of oxidative addition - Expect cis elimination Rate depends strongly on types of groups to be eliminated. Usually easy for: • H + alkyl / aryl / acyl – H 1s orbital shape, c.f. insertion • alkyl + acyl – participation of acyl p-system • SiR3 + alkyl etc Often slow for: • alkoxide + alkyl • halide + alkyl – thermodynamic reasons? We will do a number of examples of this reaction
  • 63. Complex Rate Constant (s-1) T(oC) Pd CH3 Ph3P Ph3P CH3 Pd CH3 MePh2P MePh2P CH3 Pd CH3 P P CH3 Ph Ph Ph Ph 1.04 x 10-3 60 60 80 9.62 x 10-5 4.78 x 10-7 Relative rates of reductive elimination Most crowded is the fastest reaction Pd CH3 L L CH3 + solv -L Pd CH3 L solv CH3 RE LPd(solv) + CH3 CH3
  • 64. Special case: Nucleophilic Attack on a Coordinated CO acyl anion Fisher carbene This is Fischer carbene It has a metal carbon double bond Such species can be made for relatively electronegative metal centers N.B. mid to late TMs Fischer carbenes are susceptible to nucleophilic attack at the carbon
  • 65. Fischer carbenes act effectively as σ donors and p acceptors The empty antibonding M=C  orbital is primarily on the carbon making it susceptible to attack by nucleophiles Other type is called a Shrock carbene (alkylidene) Characteristic Fischer-type Schrock-type Typical metal (Ox. State) Middle to late T.M. Fe(0), Mo(0) Cr(0) Early T.M. Ti(IV), Ta(V) Substituents attached to carbene carbon At least one highly electronegative heteroatom H or alkyl Typical other ligands Good p acceptors Good s and p donors Electron count 18 10-18
  • 66. Nucleophilic displacement Ligand displacement can be described as nucleophilic substitutions O.M. complexes with negative charges can behave as nucleophiles in displacement reactions Iron tetracarbonyl (anion) is very useful RX R [Fe(CO)4]2- [ Fe(CO)4]- CO H+ O X R [ Fe(CO)4]- R O H+ O H R R H O X R X2 O2 R'X O OH R O R' R
  • 67. Modifications of the ligand a) Insertion reactions Migratory insertion! The ligands involved must be cis - Electron count changes by -/+ 2 No change in oxidation state If at a metal centre you have a s-bound group (hydride, alkyl, aryl) a ligand containing a p-system (olefin, alkyne, CO) the s-bound group can migrate to the p-system 1. CO, RNC (isonitriles): 1,1-insertion 2. Olefins: 1,2-insertion, b-elimination M R M R M R CO M O R 1,1 1,2
  • 68. 1,1 Insertion The s-bound group migrates to the p-system if you only see the result, it looks like the p-system has inserted into the M-X bond, hence the name insertion To emphasize that it is actually (mostly) the X group that moves, we use the term migratory insertion (Both possible tutorial) The reverse of insertion is called elimination Insertion reduces the electron count, elimination increases it Neither insertion nor elimination causes a change in oxidation state a- elimination can release the “new” substrate or compound
  • 69. In a 1,1-insertion, metal and X group "move" to the same atom of the inserting substrate. The metal-bound substrate atom increases its valence CO, isonitriles (RNC) and SO2 often undergo 1,1-insertion 1,2 insertion (olefins) Insertion of an olefin in a metal-alkyl bond produces a new alkyl Thus, the reaction leads to oligomers or polymers of the olefin • polyethene (polythene) • polypropene M Me SO2 M S Me O O M Me CO M Me O
  • 70. M R M R M R M R Standard Cossee mechanism Why do olefins polymerise? Driving force: conversion of a p-bond into a s-bond One C=C bond: 150 kcal/mol Two C-C bonds: 2´85 = 170 kcal/mol Energy release: about 20 kcal per mole of monomer (independent of mechanism) Many polymerization mechanisms Radical (ethene, dienes, styrene, acrylates) Cationic (styrene, isobutene) Anionic (styrene, dienes, acrylates) Transition-metal catalyzed (a-olefins, dienes, styrene)
  • 71. Two examples b Hydride elimination (usually by b hydrogens) Many transition metal alkyls are unstable (the reverse of insertion) the metal carbon bond is weak compared to a metal hydrogen Bond Alkyl groups with β hydrogen tend to undergo β elimination M -CH2-CH3  M - H + CH2=CH2
  • 72. To prevent beta-elimination from taking place, one can use alkyls that: Do not contain beta-hydrogens Are oriented so that the beta position can not access the metal center Would give an unstable alkene as the product A four-center transition state in which the hydride is transferred to the metal An important prerequisite for beta-hydride elimination is the presence of an open coordination site on the metal complex - no open site is available - displace a ligand metal complex will usually have less than 18 electrons, otherwise a 20 electron olefin-hydride would be the immediate product.
  • 74. The size of the substrate has an effect on the rate of reaction
  • 77.
  • 78. The Monsanto acetic acid process Methanol - reacted with carbon monoxide in the presence of a catalyst to afford acetic acid Insertion of carbon monoxide into the C-O bond of methanol The catalyst system - iodide and rhodium Iodide promotes the conversion of methanol to methyl iodide, Methyl iodide - the catalytic cycle begins: 1. Oxidative addition of methyl iodide to [Rh(CO)2I2]- 2. Coordination and insertion of CO - intermediate 18-electron acyl complex 3. Can then undergo reductive elimination to yield acetyl iodide and regenerate our catalyst